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Abstract: Landslides have multidimensional effects on the socioeconomic as well as environmental
conditions of the impacted areas. The aim of this study is the spatial prediction of landslide using
hybrid machine learning models including bagging (BA), random subspace (RS) and rotation forest
(RF) with alternating decision tree (ADTree) as base classifier in the northern part of the Pithoragarh
district, Uttarakhand, Himalaya, India. To construct the database, ten conditioning factors and a total
of 103 landslide locations with a ratio of 70/30 were used. The significant factors were determined by
chi-square attribute evaluation (CSEA) technique. The validity of the hybrid models was assessed by
true positive rate (TP Rate), false positive rate (FP Rate), recall (sensitivity), precision, F-measure and
area under the receiver operatic characteristic curve (AUC). Results concluded that land cover was the
most important factor while curvature had no effect on landslide occurrence in the study area and it
was removed from the modelling process. Additionally, results indicated that although all ensemble
models enhanced the power prediction of the ADTree classifier (AUCtraining = 0.859; AUCvalidation =

0.813); however, the RS ensemble model (AUCtraining = 0.883; AUCvalidation = 0.842) outperformed
and outclassed the RF (AUCtraining = 0.871; AUCvalidation = 0.840), and the BA (AUCtraining = 0.865;
AUCvalidation = 0.836) ensemble model. The obtained results would be helpful for recognizing the
landslide prone areas in future to better manage and decrease the damage and negative impacts on
the environment.
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1. Introduction

Landslide is a local natural phenomenon, popularly understood as the “mass displacement of earth,
debris, and rocks”, that can be triggered by hydrological, topographic, and geophysical reasons [1].
However, anthropogenic activities such as mining and construction, as well as natural events including
heavy rainfall, earthquake, volcanic eruption, and marine erosion can also trigger landslides [2].
Landslides have multidimensional effects on the socioeconomic as well as environmental conditions of
the impacted areas. Hilly areas are highly prone to landslides and the after effect may significantly
change the topographic features as well as river course and patterns [3]. The environmental loss
could be in the form of forest along with habitat and wildlife destruction, and can elicit mild to severe
tsunami and floods. Human populations living in the landslide susceptible areas are the foremost
victims of landslides and may experience loss of houses, cattle, fertile lands, and even lives of their
families and friends.

The World Bank reported that nearly 3.7 million square kilometers of world’s land area is highly
prone to landslides which could put at risk about 300 million human lives [4]. After nearly one and
half decades later, these figures must have changed; however, because of the lack of consistency in the
landslide reports, it is very difficult to come up with an exact number of the landslide incidences and
the fatalities. These inconsistencies in the reports could be because of the varied nature of landslides;
for example, landslides could be seismic only or triggered by rainfall, rock-slides, floods, or hurricane.
In a recent study, the authors provide a good discussion of the discrepancies in landslide reports [2].
Furthermore, the authors report that between only 2004 and 2016, a total of 4862 landslide events
occurred globally, with high impacts in the Central and South America, Caribbean Islands, East Africa,
Turkey, Iran, European Alps, and Asia [2].

These seismic landslides caused 55,997 fatalities [2]. On the other hand, the National Aeronautics
and Space Administration (NASA) reported that nearly 10,804 landslides occurred between 2007
and 2017, triggered by rainfall [5]. Petley captured the landslides events between 2004 and 2010,
and reported 2620 landslides that caused 32,322 human losses [6]. The global infrastructure and
economic damages due to landslides are daunting, costing about US$20 billion, the highest in the USA
(US$12.1–4.3 billion) and Italy (US$3.9 billion), followed by Japan (>US$3.0 billion), India (US$2.0
billion), China (>US$1.0 billion), and Germany (US$0.3 billion) [7]. These numbers have significantly
risen in the last decades when compared with previous reports. For example, in 1992, China’s estimated
annual economic loss due to landslides was nearly US$500 million [8] and in 1998, USA’s estimated
economic damages due to landslides was approximately US$1–3.6 billion [9].

The Himalayan Arc across Indian and southeastern China has experienced the highest landslide
events, followed by areas of Laos, Bangladesh, Myanmar, Indonesia, and the Philippines [2]. India, the
scope of this study, has experienced severe naturally triggered landslides in the 21st century. In 2001,
nearly 40 individuals died in the Amboori of Kerala state of India; in 2013, a landslide occurred in
Kedarnath of Uttarakhand state of India and more than 5000 people died; and in 2014 in the Pune
of Maharashtra state of India, over 100 individuals were found to be missing after the landslide
(Figure 1) [10,11]. Figure 1 depicts the locations of landslide events in India and the fatalities that
occurred at such locations—an estimated 12.6% of land area of India and approximately 4.5 million
USD worth economic damage [12].
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Figure 1. Landslides and fatalities due to landslide in India (This map is created based on the data
using ArcGIS version 10.6.1) [11].

Based on our analysis of the NASA data, we found that a total of 958 landslide events occurred
between 2007 and 2015 that caused 6779 human fatalities (Table 1).

Table 1. Landslide events and fatalities caused in India between 2007 and 2015 [11].

Indian State Sum of Fatalities Indian State Sum of Fatalities

Uttarakhand 5228 Andhra Pradesh 19
Jammu and Kashmir 590 Manipur 12

Maharashtra 251 Orissa 12
Himachal Pradesh 114 Goa 8
Arunachal Pradesh 88 Uttar Pradesh 6

West Bengal 73 Gujarat 5
Assam 72 Nagaland 5
Sikkim 66 Tripura 4

Rajasthan 54 Jharkhand 2
Tamil Nadu 46 NCT 2

Kerala 38 Haryana 1
Meghalaya 30 Bihar -
Karnataka 29 Odisha -
Mizoram 24 Total 6779

The landslides may not be stopped or controlled; however, the losses can be reduced by
establishing a decision support system to predict possible landslides or identifying landslide prone
areas for management. Therefore, prediction of possible landslides at the local and regional levels
is required for pro-active landslide mitigation policy creation and management [13]. Although
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domain-knowledge-driven qualitative approach is advantageous in predicting landslides, data-driven
quantitative methods are widely used because collecting field data from landslide areas are challenging
and hard to acquire [3]. Pourghasemi et al. [14] reported that a variety of quantitatively-statistical,
multi-criteria decision making, and machine learning-methods have been applied for predicting
landslide susceptibility, of which logistical regression [15–18] is the most frequently used method,
followed by the frequency ratio [19,20], weights-of-evidence [18,21], artificial neural networks [22,23],
analytic hierarchy process [24,25], statistical index [26], index of entropy [27–30], and support vector
machine [31,32]. Environmental data collected from fields as well as extracted from satellite images to
develop landslide prediction models are diverse in nature, and therefore prone to inaccuracies [13].
To mitigate these challenges, researchers have applied various fuzzy-based techniques that are yet to
accomplish satisfactory results [13].

Machine learning techniques have recently gained good attention among the environmental
modeling research community as they are advantageous in efficiently capturing the complex relationship
between the environmental predictors and the response, such as flood [33–41], wildfire [42], sinkhole [43],
drought [44], gully erosion [45,46], groundwater [47–49] and land/ground subsidence [27], and landslide
in this case [3,13,50–57]. In due course, researches have also attempted to improve the prediction
accuracy and the interpretability of the models through applying various decision-trees machine
learning algorithms such as chi-square automatic interaction detector; quick, unbiased and efficient
statistical tree [58]; J48 decision trees [59]; ID3 decision trees [60]; random forests [61]; classification and
regression trees [62]; alternating decision trees [63]; reduced error pruning trees [3]; naïve Bayes [35,53];
naïve Bayes tree [13,64]; kernel logistic regression [37]; logistic model tree [38,65]; Bayesian logistical
regression [66] and support vector regression [67]. There is a consistent recommendation of applying
hybrid or ensemble models as they have shown promising results in correctly predicting the landslide
susceptibility on smaller, but complex datasets [3,13,53,62,68–70].

In order to correctly predict possible landslides, landslide prone areas have to be clearly understood
and should be used for prediction model development. This study aims to fill the above research gaps
by introducing a novel decision tree-based hybrid machine learning system to correctly predict the
landslide susceptible areas. To achieve a landslide susceptibility map with reliable and high prediction
accuracy, we ensembled a decision tree, ADTree, as a base classifier with several Meta classifier namely
bagging (BA), random subspace (RS) and rotation forest (RF) ensemble at the northern part of the
Pithoragarh district, Uttarakhand, Himalaya, India. An alternative decision tree (ADTree) classifier
is one of the powerful algorithms among decision tree algorithms which is rarely used for spatial
prediction modelling [71,72]. It combine decision rules by the boosting and decision tree algorithms in
the classification problems and therefore it can produce a simpler structure and also its interpretation
of classification rules are simple and more visualizable [73]. The modelling process was carried out
using Arc GIS 10.3, and Weka 3.9.

2. Description of the Study Area

The study area is located in the northern part of the Pithoragarh region, Uttarakhand in India,
between the latitudes 29◦59′13′′ N and 29◦48′2′′ N and longitudes 80◦0′34′′ E and 80◦12′28′′ E,
respectively, covering an area of about 242 km2 (Figure 2). Topographically, the region includes rugged
hills and high mountain peaks which are dissected by long, narrow and deep valleys. The maximum
elevation of the basin is 2713 m in the north and at least 757 m in the south at the outlet of the East
Ramganga River from the basin. The East Ramganga River originates from the Namik glacier in the
Himalayan Mountains, and flows into the Ganges River after passing 108 km in the Kumaon Region.
The average slope is 28.61◦ and the maximum gradient is 75.50◦. The areas with a steep slope are
related to the slopes overlooking the river bed. Additionally, 9.6% of the basin area is more than 44◦

slope, and only 14.81% of the basin is less than 15◦ slope.



Sustainability 2019, 11, 4386 5 of 25

Figure 2. Location of landslides in the study area.

In terms of land cover, 57% of the study area is covered by moderate to high density of vegetation
and 23.32% of the area is under the cultivated lands. The rest of the basin includes sparsely vegetated
(10.57%), barren (6.84%), lakes and rivers (1.33%), settlement (0.31%) and extensive slope cut (0.31%).
In recent years, the major part of the basin has been converted into low-density forests and land
degradation due to the destruction of forests and land use change from forest to agricultural land.
The very fertile lands are located on the riverside. The settlements are surrounded by vast areas of
agricultural lands. Most soil mass movements occur along the river valleys and the periphery of roads
that are drawn along the rivers, especially during the rainy season.

In terms of geology, this basin is occupied by metamorphic rocks found in the Dharamgarh
Formation (biotite gneiss, chlorite schist, inter bands of schistose quartzite with meta-volcanics) and
Baijnath Formation (quartzite and gneiss), meta-sedimentary rocks of the Pithoragarh Formation
(dolomitic limestone with intercalations of talcose schist, carbonaceous phyllite, slate, limestone
and quartzite) and the Bering Formation (quartzite/arenite/sericitie and phyllite intercalated with
meta-volcanics) of Garhwal group and recent alluvium. In terms of lithology, the northern and
northeastern part of the basin is mainly covered by slate, quartzite, talc and dolomite. This lithological
unit covers an area about 56% of the basin that contained 90.27% of landslides. The remaining 9.73%
of landslides are located in colluvium units covering 9% of the basin area. The southwestern part of
the study area, consisting of in situ soil and quartzite and slate with basic metavolcanics, has covered
an area about 24% of the basin but without any landslides. In terms of geological structure, the area
is affected by friction and fault due to tectonic activity. Most likely, the instability of rock in the rock
masses is fractured due to discontinuities caused by faults, cracks, fractures and seams.

3. Landside Inventory Map

The past landslide location of any given area gives valuable information on the patterns of
spatial distribution of landslide events in the landslide susceptibility zonation [74]. The past landslide
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locations help to understand the landslide behavior and relation between the landside causative factors.
On account of this, the making of a landside inventory is an important step to landslide susceptibility
assessment. Many scholars prepare a landslide inventory using high resolution remote sensing data
or aerial photograph interpretation [27,75–77]. Every year the area was affected by several active
landslides during rainy season or after a rainy season [78] and therefore, the Google Earth data were
used to cover rainfall affected landslides. In the present study, the landslide inventory map was
prepared by using the Google Earth digitization from the post-rainfall seasons and the locations were
field verified. A total of 103 landslide polygons were delineated and converted into the raster format.
Of the total delineated landslide locations, we have selected 70% of landslides as training dataset and
the remaining 30% of landslide locations for validation datasets (Figure 2).

3.1. Landslide Conditioning Factors

A variety of landslide conditioning factors (LCF) have been used for developing landslide
susceptibility prediction models including slope, lithology, aspect, land use, elevation, distance from
river, distance from roads, distance from faults, plain curvature, profile curvature, precipitation,
topographic wetness index, soil type, stream power index, normalized difference vegetation index,
slope length, curvature, and drainage density [14]. The selection of these factors may vary based on the
study area, scale of the study, and data availability [14]. Among the above-listed LCF, slope gradient
has been the most frequently used LCF in the studies. The selection of LCF in this study is based on
the previous research and our field observations.

3.1.1. Overburden Depth

The overburden depth captures the information of depth to the bedrock and has been linked to
shallow translational debris landslides [79]. Furthermore, it is also influenced by slope and erosion.
The study area is highly prone to erosion and has steep slopes; therefore, the overburden depth could
play an important role in identifying landslide prone areas and developing prediction models. The
overburden depth in the study area ranges between ‘0’ and ‘4’ m (Figure 3a).

3.1.2. Land Cover

The majority of landslides occur in forest-scant areas, as in densely vegetated areas, the plant
roots hold the soil and rocks strongly and keep them stable at steeper slopes, reduces soil erosion, and
therefore protects against landslides [80,81]. Henceforth, how various land covers impact the landslide
become imperative in developing landslide prediction models. In this study, we have categorized
land cover into barren, cultivated land, extensive slope cut, lakes and rivers, moderately vegetated,
settlement areas, sparsely vegetated areas, thickly vegetated, and wasteland (Figure 3b).

3.1.3. Geomorphology

Geomorphology is one of the most important LCF as various geomorphological formations
represent geomorphological phenomena including alluvial flood plain, colluvial footslop, denudational
hill slope, highly dissected hills, lowly dissected hills, moderately dissected hills, ridge, river, and
transportation midslope (Figure 3c) [79]. Geomorphology has also been found to have contributing
effects on shallow and deep debris landslides [79].
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Figure 3. Cont.
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Figure 3. Landslide conditioning factors used in the study area: (a) overburden depth; (b) land cover;
(c) geomorphology; (d) distance to rivers; (e) distance to roads; (f) curvature; (g) aspect; (h) valley
depth; (i) slope; (j) SFM.

3.1.4. Distance to Rivers

River networks erode the catchment areas in their natural course through surface runoff, therefore
making the hilly areas highly vulnerable to landslides. Consequently, distance to river has been an
important LCF in those studies where the study areas have dense river networks such as in our case
in Uttarakhand [82]. We have classified the distance to rivers into 0–100 m, 100–200 m, 200–300 m,
300–400 m, 400–500 m, and above 500 m from the landslide locations (Figure 3d).

3.1.5. Distance to Roads

As mentioned in the previous section, landslide could be induced by road construction; considering
road network in the landslide prediction model development therefore becomes a necessity. As road
networks negatively impact the slopes by loosening the slope materials, the distance from roads helps
understand the landslide prone areas [83]. Like distance to rivers, we have classified the distance to
roads into 0–100 m, 100–200 m, 200–300 m, 300–400 m, 400–500 m, and above 500 m from the landslide
locations (Figure 3e).

3.1.6. Curvature

Erosion of riverbanks steepens the curvature, thus acting as a trigger point for landslide. Therefore,
knowing whether the curvature is negative, zero, or positive for flat, concave, and convex surfaces is
vital in identifying the landslide prone areas and so for developing landslide prediction models [84].
In this study, the curvature is classified into below −0.05, between −0.05 and 0.05, and above 0.05
(Figure 3f).

3.1.7. Aspect

Slope aspect is another important LCF that plays a significant role in inducing landslides in the
study area as it influences the evapotranspiration by controlling the topographic moisture [82,85].
Slope aspect represents the course of extreme sloping of the terrain surface and moves clockwise
starting at 00 (North) and ends to 3600 (West) [86]. The slope aspect in this study is categorized into
flat, north, northeast, east, southeast, south, southwest, west, and northwest (Figure 3g).
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3.1.8. Valley Depth

The valley depth above 160 m in the study area is highly prone to landslides and showed a
positive association between the valley depth and landslides [53]. We have classified valley depth into
six categories (Figure 3h).

3.1.9. Slope

Slope is one of the most significant LCF used in developing landslide susceptibility prediction
models since with an increase in the slope angles, the likelihood of the occurrence of landslides
increases [2,84,87]. Slope is also found to be associated with both shallow translational rockslides and
debris slides and has the highest landslide susceptibility predictive capability [79,85]. The study area
is precipitous, and the majority of the areas fall between 15–45 degrees and goes up to 700 m, making
the area prone to landslide during heavy rainfall. A majority of the landslides in the area was found to
have occurred in cut-slopes [82]. We have classified the slope of the study area into 0–15, 15–25, 25–35,
35–45, and 45–75 degrees (Figure 3i).

3.1.10. SFM

Slope forming material (SFM) defines the rock and the soil types of the area and has significant
impact on both shallow translational rock and debris landslides [79]. In this study, we classified the
SFM into twelve categories based on their rock and soil types (Figure 3j) and a majority of landslide
events were reported in the study area with weak rock formed slopes [53].

4. Machine Learning Algorithms

Over time, landslide susceptibility modeling has been considered using both qualitative
(inventory-based analysis) and quantitative or data driven models [88,89]. Development of geographical
information system (GIS) and machine learning algorithm has provided alternative decision tree
(ADTree), support vector machine, artificial neural network and kernel logistic regression (KLR)
advanced techniques with precise model building [90]. Machine learning based data driven models
with better performance than conventional models are quite appealing these days [88]. Machine
learning-based landslide susceptibility models are more cost efficient and rapid than conventional
models and can be extended to large area analysis [91]. Use of artificial neural network and support
vector machine yielded high prediction accuracy but comparison with other models is still required to
understand its precision.

4.1. Base Classifier: Alternating Decision Tree (ADTree)

Decision trees is one of the most advanced classification techniques with minimum probability
of error, concomitant robustness, easy interpretation and precise classification, and has seamless
applicability in solving real world situations [73]. This model has been built through data portioning in
which each iteration data has been split according to the attribute values. Thus, the major goal of this
analysis is to split data into subsets unless a subset contains homogenous target value or the predictable
attribute. In each split, the impact of selected variables was examined on the predictable attribute. If
the predictable attribute comprises discrete data, the resulting tree model is called a classification tree.
This decision tree process is also called decision tree induction [92]. The training set inputs are divided
into prediction node using split tests to obtain the prediction node values:

Z(c) = 2(
√

W + (d)W − (d) +
√

W + (−d)W − (−d)) + W′ (1)

where W + (c) and W − (c) refers to weighted sum of positive tuples and negative tuples meeting the
demand of d. W’ is other tuples’ weighted sum except the tuple sets divided into p. Best split testing
can be obtained by finding the minimum Z value.
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The optimal construction algorithm of ADTree enunciated by [93] utilizes the Zpure pruning
technology as:

Zpure = 2
(√

W+ +
√

W−
)
+ W′ (2)

where Zpure represents the low limit of Z utilized for evaluating the predictive nodes.

4.2. Meta/Ensemble Classifiers

4.2.1. Bagging Ensemble Classifier

Ensemble model combines various base models to produce a more optimal predictive model than
single decision tree classifier. The main idea of ensemble model is to combine several weak learners
(bootstrapping) to a strong learner (aggregation) for enhancing the predictability of the model. This
model helps to minimize the biasness, noise and variance errors. AdaBoost, random forest and bagging
are some of the random subspaces used in ensemble models. These techniques have now been utilized
for groundwater potential analysis, landslide and flood susceptibility analysis (Chen et al. 2019) [18].
In AdaBoost model inaccuracy arises as it ignores the remaining data by concentrating on the difficult
one which leads to a large range of diversity in the performance of bagging [94]. However, bagging
ensemble can effectively be utilized for landslide susceptibility and has better prediction power than
the conventional models [95].

4.2.2. Random Subspace Ensemble Classifier

In the time of pattern recognition, machine learning classifier is one of the topics of interest among
researchers [94]. Random subspace ensemble model comprises several classifiers in a data feature
space. Random subspace ensemble classifier can be used by nearest neighbor, linear, support vector
and by other classifiers [67]. The advantage of this model is that training data seems to be smaller for
original data which is larger for subspace data.

4.2.3. Rotation Forest Ensemble Classifier

There are several methods used for landslide susceptibility analysis but none of them are
perfect [70]. The accuracy of the landslide susceptibility can only be achieved using the combination of
ensembles classifiers [63]. Rotation forest ensemble approach first introduced by Rodriguez et al. [94]
focuses on inducing the diversity and individual accuracy within the ensembles [94]. For creation of
the training set, principle component analysis (PCA) was used to extract the features. The success of
this model is based on the rotation matrix which is formed by the base classifier and the transformation
method [63] (Figure 4).

4.2.4. Selecting the Most Important Conditioning Factors Using Chi-Square Attribute Evaluation
(CSEA) Technique

Feature selection techniques, which have been more widely used in artificial intelligence, select
a small features set of the training dataset for reducing the cost and time of modelling process as
well as producing acceptable results during the modelling process [96]. There are some feature
selection techniques such as gain ratio (GI), information gain ratio (IGR), least square support vector
machine (LSSVM), chi-Square attribute evaluation (CSEA), correlation-based feature selection (CFS),
fast correlation-based feature selection (FCBF), Euclidean distance, i-test, principal component analysis
(PCA), and Markov blanket filter [97]. In this study, the chi-square attribute evaluation (CSEA)
technique was used. The CSEA is calculated according to the following formula:

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei
(3)
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where E is expected values and O is actual/observed values. The higher the value of the chi-square for a
given conditioning factor in feature selection techniques, the more importance for landslide incidence.

Figure 4. The flowchart of modeling process of the current study.

4.2.5. Model Validation and Comparison

Although there are some evaluation measures to validate the performance of the machine learning
models, in this study TP rate, FP rate, recall, precision, F-measure and ROC were used. All these
measures can be computed from the confusion matrix (Table 2). It consists of four elements including
(A) true positive (TP); (B) false positive (FP); (C) false negative (FN); and (D) true negative (TN) [98].

TPRate = A/P = TP/P (4)

FPRate = B/N = FP/N (5)

Precision = A/(A + B) = TP/TP + FP (6)

F-measure = 2/(1/Precision + 1)/Recall (7)
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Table 2. Confusion matrix and evaluation measures.

Predicted Class

Actual Class

1 0

1 A (TP) B (FP)

0 C (FN) D (TN)

Column total: P N

Another measure for evaluation of the performance of the models is receiver operating
characteristic (ROC) curve. It is plotted by recall (sensitivity) and 100-specificity on the x- and
y-axis, respectively [13,99]. According to the definition, specificity is the number of incorrectly
classified landslide cells per total predicted non-landslide cells [55]. The area under the ROC curve
(AUC) generally has been used to evaluate model performance. The AUC for an ideal and inaccurate
model have the values of 1 and 0.5, respectively [69]. The AUC is calculated as follows:

AUC =
(∑

TP+
∑

TN
)
/(P + N) (8)

where P and N are the total number of gullies and non-gullies, respectively.

5. Results and Analysis

5.1. The Most Significant Conditioning Factors

The predictive merit of the landslide susceptibility affecting factors with CSAE method is shown
in Figure 5. The conditioning factors with higher than zero average merit (AM) values indicate
contribution to landslide models. Conditioning factor selection findings revealed that the curvature
factor had no effect on landslide susceptibility modelling, because its average merit (AM) was zero;
hence, it was not entered in the modelling process. The CSAE method also showed that other nine
conditioning factors were capable of landslide susceptibility modelling (AM > 0). Land cover has
the highest predictive merit for landslide susceptibility modelling (AM = 234.285). It is followed by
geomorphology (AM = 150.886), valley depth (AM = 131.336), SFM (AM = 116.89), aspect (AM =

75.479), distance to river (AM = 67.457), slope (AM = 43.585), depth (AM = 19.609), and distance to
road (AM = 11.627).

Figure 5. The most important factors by chi-square attribute evaluation (CSEA) technique.



Sustainability 2019, 11, 4386 13 of 25

5.2. Landslide Modelling, Evaluation and Comparison

The number of seeds and iterations can affect the landslide model performance. In order to select
the optimal values a trial and error procedure has been carried out with varying numbers of seeds and
iterations versus AUROC using both the training and validation data. The results showed that the
best performances of RSADT model (AUC = 0.915) for the validation dataset were obtained with the
number of iterations and seeds equal to 14 and 7, respectively (Figure 6a,b). Also, it can be concluded
that the maximum performance (AUC) of BAADT model in the validation step was determined as 0.919
since the number of iteration equal to 20 (Figure 6c) and for the number of seed equal to 3 (Figure 6d).
From Figure 6e and f. It can be observed that the highest AUC value (0.931) of RFADT model for the
validation dataset was obtained with number of iterations and seeds equal to 3 and 12, respectively.

The ADTree, BAADT, RSADT and RFADT models were constructed using training data sets.
According to statistical performance analysis of models in Table 3, all of the models have shown
acceptable performance for landslide position prediction in the training step. Among the four models,
the RFADT model has the best performance in term of TP (0.911) and FP (0.100) rate, precision (0.911),
AUC (0.972), Kappa (0.815) and RMSE (0.305). It is followed by the BAADT and RSADT models. In
addition, the ADTree model was shown to have the lowest performance with TP, FP, precision, Kappa,
AUC and RMSE equal to 0.863, 0.131, 0.867, 0.939, 0.722 and 0.326, respectively.

Table 3. Model validation and comparison by training dataset.

ADTree BAADT RSADT RFADT

TP Rate/Recall 0.863 0.880 0.881 0.911
FP Rate 0.131 0.131 0.112 0.100

Precision 0.867 0.880 0.885 0.911
Kappa 0.722 0.752 0.751 0.815
RMSE 0.326 0.314 0.325 0.305
AUC 0.939 0.954 0.949 0.972

The results of statistical performance criteria in the validation step showed that all of the landslide
susceptibility models had acceptable values (Table 4). Out of these, like the training stage, the RFADT
model was the best performing model (TP rate = 0.717, FP rate = 0.285, precision = 0.771, AUC = 0.931,
Kappa = 0.433, and RMSE = 0.397) and the ADTree model showed the lowest performance (TP rate =

0.717, FP rate = 0.285, precision = 0.771, AUC = 0.931, Kappa = 0.433, and RMSE = 0.397). Therefore,
both BAADT and RSADT models had intermediate efficiency between the RFADT and ADTree models.

Table 4. Model validation and comparison by validation dataset.

ADTree BAADT RSADT RFADT

TP Rate/Recall 0.711 0.714 0.717 0.717
FP Rate 0.291 0.288 0.276 0.285

Precision 0.734 0.773 0.759 0.771
Kappa 0.421 0.427 0.451 0.433
RMSE 0.404 0.400 0.398 0.397
AUC 0.897 0.919 0.915 0.931
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Figure 6. Cont.



Sustainability 2019, 11, 4386 15 of 25

Figure 6. Determination of optimal values of parameters (seed and iteration) used in the new
hybrid models. (a) RS-Iteration; (b) RS-Seed; (c) Bagging-Iteration; (d) Bagging-Seed; (e) RF-Iteration;
(f) RF-Seed.

5.3. Development of Landslide Susceptibility Maps

After determining the landslide susceptibility index using different models, the entire study area
was classified into five susceptibility classes (very low (VLS), low (LS), moderate (MS), high (HS) and
very high (VHS)) based on the geometrical interval, natural break and quantile classification schemes.
The relative distribution of the susceptible classes in the study area and the contribution of classes in
the recorded landslides are shown in Figure 7. Generally, the histograms of all models for different
classification methods revealed that most of the recorded landslides are located in very high (VHS)
susceptibility classes, except for ADTree model in which high class (HS) had the highest proportion of
the recorded landslides. In the case of ADTree model, the very high susceptibility class determined
by geometrical interval, natural breaks and quantile schemes cover 15.1, 16.9, and 16.9 percentages
of the whole watershed pixels and, 27.4, 29.8, and 29.8 percentages of the recorded landslide pixels,
respectively. Therefore, the natural break and quantile schemes were the best methods; however,
the quantile was selected as the most appropriate method for landslide susceptibility classification.
Accordingly, the quantile method was selected as the best classification method for the BAADT.
However, both quantile and geometrical interval were best for the RFADT susceptibility maps for
which the quantile was used. Finally, the geometrical method was the most appropriate for classification
of the RSADT susceptibility maps.
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Figure 7. Selecting the best method to classify the landslide susceptibility maps.

The final landslide susceptibility maps were prepared using the selected classification schemes.
In the case of ADTree model, the VLS class has the largest area (30.27%) followed by HS (25.45%), VHS
(16.9%), LS (15.8%), and MS (11.61%) (Figure 8a). Regarding RFADT as the best performing model, the
determining percentage of the study area in VLS, LS, MS, HS and VHS classes were 26.24%, 24.38%,
21.80%, 13.49% and 14.08%, respectively (Figure 8b). For BAADT, the VLS, LS, MS, HS, and VHS
classes covered 29.70, 23.13, 13.59, 16.14 and 19.17 percentages of the whole study area, respectively
(Figure 8c). Also, based on RSADT model, the VHS has the largest area (23.46%), followed by MS
(21.22%), VLS (20.32%), HS (19.29%), and LS (15.71%) (Figure 8d).
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Figure 8. Landslide susceptibility maps: (a) ADTree; (b) RF-ADTree; (c) Baging-ADTree; (d) RS-ADTree.

5.4. Evaluation of the Landslide Susceptibility Maps

The performance of ensemble models in the prediction of landslide susceptibility were compared
using the area under the ROC curve (AUC) for both training and validation datasets.

Figure 9a shows the ROC curves of the four landslide susceptibility maps prepared by ADTree,
RSADT, RFADT and BAADT models in the training step. The result showed that the highest degree of
fit has the RSADT (AUC = 0.883), followed by the RFADT (AUC = 0.871), BAADT (AUC = 0.865), and
ADT (AUC = 0.859). From Figure 9b, it can be observed that for the validation step RSADT has the
highest area under the curve, with AUC value of 0.842. It is followed by RFADT, BAADT and ADTree
with AUC values of 0.840, 0.836, and 0.813, respectively.

Figure 9. Model validation and comparison by AUC: (a) training datasets, (b) validation dataset.
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Comparison of the ROC curves between training and validation steps showed that the AUC
values of the training dataset were higher than the validation dataset. This is because of the same
landslides that have already been used to construct the landslide models and used for performance
analysis in the training step.

6. Discussion

Recognizing regions that are prone to landslide occurrence is one of the most important issues in
land management and allocation strategies. Although different methods and techniques have been
explored for spatial prediction of landslides over the world, the aims of all these methods are the
same. Indeed, achieving a reasonable and reliable susceptibility map of landslides is a debate and
controversial subject among landslides researchers. Researchers earlier have been mainly focused
on the individual models for spatial prediction of natural hazards such as landslides. On the other
hand, recently, most of them focused on the application of the ensemble/hybrid models due to some of
their advantages. Basically, the aim of this study is to introduce a new hybrid artificial intelligence
for landslide susceptibility mapping at the Pithoragarh region, Uttarakhand in India. This study has
been focused on application of some meta-classifier/ensemble algorithms including BA, RS and RF
based on a decision tree classifier such as ADTree for spatial prediction of landslide. In the modelling
process and analyzing the goodness-of-fit and performance of the ensemble models, ten factors
were selected. According to the chi-square attribute evaluation (CSAE) technique, all factors except
curvature were effective and used for the final process. Feature selections are intelligent techniques
that along with selecting the unimportant factors helps to increase the goodness-of-fit and performance
of the models [55]. In this study, the curvature, known to be an ineffective factor, was removed
from the final modelling process due to creating noise and over-fitting problems. Hybrid models are
powerful techniques for considering the appropriate factors and enhancing the power prediction of
base/individual classifiers while decreasing noise and over-fitting problems. Indeed, their results were
better visualized and considered when compared with other cutting-edge/soft computing individual
algorithms [55].

The ADTree can be considered for classifying binary classes and enhancing the accuracy such that
it has produced promising results in spatial prediction of landslide over the world [63,67,90,100]. It is a
known fact that the ADTree is an interpretable and robust algorithm against noise in order to provide
significant improvement in classification error in comparison to the individual/base decision tree stump
classifiers [73]. The ADTree in addition to a classification scheme has a measure of confidence that
is known as classification margin. It based on very simple/weak rules represents a majority vote for
classification issues. Based on this majority vote, ADTree using the Adaboost/boosting algorithm easily
learn alternating trees from the training dataset [73].

After comparing the goodness-of-fit and performance of the ensemble models using TP rate/recall,
FP rate, precision, kappa index, RMSE, and ROC indexes, the RS-ADTree model was known as
the best model in predicting of landslide modelling. The RS is more efficient in reduction of both
variance and bias compared to other ensemble methods. The obtained results are in agreement
with Shirzadi et al. [13] and Pham et al. [101] who reported the ability of RS for spatial prediction
of landslides and enhancing the accuracy of the base classifier used in their study. However, other
ensemble models including RFADT and BAADT were also powerful techniques with higher prediction
accuracy than the ADTree as an individual/base classifier. In this study, ADTree was selected as a
weak classifier (a classifier with a poor performance), for modelling process of landslide susceptibility.
Basically, we developed some novel ensemble models to enhance and improve the performance of the
ADTree classifier by developing powerful decision rules.

It is remarkable that the ensemble models may have a different result in combination with decision
tree individual/base classifiers. For example, bagging may be useful for perceptrons neural network
algorithms and linear discriminant analysis (LDA) for weak and unstable classifiers; bagging and
RS may be advantageous for k-nearest neighbors classification rules; and boosting and bagging are
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advantageous for linear classifiers [102]. Accordingly, it is possible that in a region not all these
ensembles enhance the prediction accuracy of single-based classifiers. For example, Bui et al. [103]
have used of functional tree (FT) as a base/weak classifier for developing some ensemble model such
as bagging-FT, Adaboost-FT, and multiboost-FT for landslide susceptibility modelling. Their result
concluded that Adaboost-FT had lower prediction accuracy than the FT algorithm. Such results also
were shown in Bui et al. [104] that indicated Adaboost-DT had the lower prediction accuracy than the
DT and bagging-DT models. In this study, all ensemble models performed well and the prediction
accuracy were better obtained than the ADTree classifier. Hong et al. [98], Pham et al. [99], and
Pham et al. [100] achieved the same results in which their applied ensembles had a better accuracy
than the based classifier. Skurichina and Duin [102] demonstrated that the RS may have a better
performance than the boosting and bagging algorithms which are useful for unstable classifiers [105].
They also confirmed that bagging is not useful for linear classifiers because they are mainly stable.
Additionally, they reported that bagging for very small and also for very large training sample sizes is
not usually appropriate.

The advantage of bagging is the shifting effect on the generalization error of the base classifier in
the direction of generalization error computed on smaller training datasets. Therefore, it is applicable
for classifiers that having a decreasing learning curve. On the other hand, the RF is a robust classifier
with low bias and noise that causes an enhancement of the accuracy of individual/base classifiers
and also the diversity in the ensemble at the same time [94]. The RS are useful meta-classifiers for
weak linear classifiers which have been obtained from a small and critical training dataset. However,
the efficient dimensionality (disadvantages) of RS depends on the level of redundancy in the feature
space of the training dataset [102]. The above-mentioned advantages of the ensemble models prepared
reasonable landslide susceptibility maps with high prediction accuracy in comparison to use of a
weak classifier.

7. Conclusions

According to the obtained results from the hybrid machine learning algorithms in literature,
they are more strongly and robustness than other methods and techniques for spatial prediction of
landslide and hence are more favorable among landslide researchers. Since each classifier/algorithm
has a different probability distribution function and structure, the output from modelling will be
different due to uncertainties from the model and inputs. In the landslide modelling by machine
learning, the performance and prediction accuracy will be enhanced when the proper meta/ensemble
classifier is tested and selected. This result will be obtained when a training dataset with low noise
and over-fitting problems and high performance and goodness-of-fit is selected. In this study, among
ten conditioning factors, curvature had error and noise in the training dataset and was removed from
the modeling, while land cover was the most significant factor for landslide occurrence in the study
area. Three meta-classifiers including BA, RS and RF in this study were used for combination with
ADTree as a weak base classifier to construct hybrid models. Our findings based on several statistical
metrics pointed out that the RS-ADTree hybrid model outperformed the BA-ADTree and RF-ADTree
models. This model was more able to overcome bias and over-fitting problems, resulting in higher
prediction accuracy. Therefore, we conclude that the RS-ADTree ensemble model can be used as a
new promising technique for spatial prediction of landslides in the study area. The RF-ADTree and
the BA-ADTree models are other proper models for landslide susceptibility mapping. We suggest
that to check the applicability and efficiency of these models, more case studies with different climate
and geo-environmental factors should be used and validated. We believe that achieving a landslide
susceptibility map with reliable and high prediction accuracy, which is the main aim of landside
researchers, may be useful and constructive for decision making, enabling better management of
landslide prone areas.
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