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Abstract: The multi-scale carbon-carbon dioxide (C-CO2) dynamics of subtropical urban forests and
other green and grey infrastructure types were explored in an urbanized campus near Shanghai, China.
We integrated eddy covariance (EC) C-CO2 flux measurements and the Agroscope Reckenholz-Tänikon
footprint tool to analyze C-CO2 dynamics at the landscape-scale as well as in local-scale urban forest
patches during one year. The approach measured the C-CO2 flux from different contributing areas
depending on wind directions and atmospheric stability. Although the study landscape was a net
carbon source (2.98 Mg C ha−1 yr−1), we found the mean CO2 flux in urban forest patches was
−1.32 µmol m−2s−1, indicating that these patches function as a carbon sink with an annual carbon
balance of −5.00 Mg C ha−1. These results indicate that urban forest patches and vegetation (i.e., green
infrastructure) composition can be designed to maximize the sequestration of CO2. This novel
integrated modeling approach can be used to facilitate the study of the multi-scale effects of urban
forests and green infrastructure on CO2 and to establish low-carbon emitting planning and planting
designs in the subtropics.

Keywords: carbon dioxide offsets; ART footprint tool; urban ecosystems; nature-based solutions;
green infrastructure

1. Introduction

Urban areas are a complex matrix of different land covers, primarily including green infrastructure
(GI; e.g., urban forests and other vegetation patches) and grey infrastructure (e.g., buildings, roads,
and impervious). This matrix affects greenhouse gas (GHG) dynamics due to the combination of
fossil fuel emissions from transportation and industrial activities and carbon-carbon dioxide (C-CO2)
sequestration by urban forests and other areas of natural and semi-natural vegetation, wetlands and
rivers [1]. As such, there is increasing research on urban C-CO2 dynamics and the use of urban forests
as a nature-based solution across many cities of the world [2–4].

However, multi-scale modeling of urban C-CO2 dynamics for different urban land covers, including
urban and peri-urban forests in developing countries, is complex due to: Landscape heterogeneity,
socioeconomic factors, emission sources, seasonality, wind direction-speed, and atmospheric stability [4,5].
Thus, many studies on the role of vegetation on C have used indirect methods such as allometric biomass
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equations and tree inventory data to assess C stocks and CO2 sequestration in urban areas [6,7]. Other
empirical approaches, such as urban metabolism [8] and direct measurements using eddy covariance
(EC) flux observation systems [9], are also being used to assess these urban C-CO2 dynamics. However,
of these methods, EC allows for integrated measurements of C-CO2 fluxes between the surface and the
atmosphere within a contribution area to measured C fluxes, known as the footprint, which consists of
sources and sinks [9–11]. These contribution areas are generally landscape-scale segments or portions
within the study footprint [12]. As such, the C-CO2 dynamics of smaller localized patches and areas
within the footprint are much more difficult to model [4,10].

But, the available ART Footprint Tool (Agroscope Reckenholz-Tänikon; ART hereafter), based
on the Kormann and Meixner model, is a relatively accessible approach for modeling source-sink
heterogeneity and the partial flux contribution of specific local-scale areas inside a footprint [13].
Although little used in cities, it can potentially quantify how local-scale urban forest or other GI
patches offset CO2; a topic that is increasingly important to researchers and decision-makers globally.
Such research using direct measurements of C-CO2 flux source-sink characteristics and their use as a
nature-based solution in subtropical urban forests in low-middle income countries is scarce [2,3,9].

Therefore, the aim of this short communication is to explore a novel approach for estimating the
landscape and local-scale C-CO2 flux dynamics of subtropical urban forests in an urbanizing area near
subtropical Shanghai, China. Our specific objectives were two-fold. First, we quantified the overall
CO2 flux variation in an urbanized landscape and its different land covers. Second, we then explored
the local-scale C-CO2 flux dynamics of the specific urban forest, mixed, and grey infrastructure patches.
We did so by combining Geographical Information Systems, direct annual EC measurements of C-CO2

fluxes with the ART contribution area model. We then compared the C dynamics of urban forests with
other areas of green-grey infrastructure [13].

As we will point out in the methods, the below approach requires advanced expertise, state of the
art equipment, and data to implement. In particular, the long-term datasets required include canopy
height and fine-scale meteorological and environment measurements, as well as spatial land use cover
boundaries. Similarly, these local-scale flux source area assessments need CO2 flux partitioning in
different time series for the different land-use types. As such all these requirements are needed to
make the below flux calculations and spatial assessments. That said, the novel, integrated, multi-scale
techniques explored here could provide an improved approach to better understand, plan, manage,
and design urban forests as essential components of urban nature-based solutions.

2. Materials and Methods

The 456-hectare study area, or landscape, is located at the Fengxian University Campus,
approximately 40 km south of central Shanghai, China, in a coastal plain with a subtropical monsoon
climate. Southeast winds dominate during the summer and northwest winds in the winter. The annual
average temperature is 16 ◦C, the mean minimum and maximum temperatures are 4 ◦C in January
and 33 ◦C in July–August, respectively [14,15]. The mean annual precipitation is 1200 mm and occurs
mostly in the summer. Seasonality, as used in this study, is defined as follows, where Spring is the
1st of March–31st May, Summer is the 1st of June–31st August, Autumn is the 1st of September–30th
November, while Winter is the 1st of December–28th February.

The grey infrastructure land use/covers (LULCs; e.g., building, roads, impervious) accounted for
39.25% of the study landscape. The buildings alone accounted for 24.31% of the total area and had an
average height of 10 m. The GI or vegetation-dominated LULCs accounted for 53.2% of the study area,
and the remaining was mixed and water bodies. Vegetation is characterized by a subtropical evergreen
broad-leaved forest tree types dominated by Cinnamomum camphora with a canopy height of 8 m and
other common herbaceous species such as Acorus calamus L., Phragmites australis, and Ophiopogon
japonicus.

The EC system used for this short communication consisted of a three-dimensional ultrasonic
anemometer (Windmaster, Gill, UK), and infrared gas analyzer (Li-7500, Licor, Lincoln, NE, USA),
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mounted on 20 m tall antenna tower in the center of the study area. High-frequency data was collected
at 10 Hz on a CR3000 datalogger (Campbell Scientific Instruments, Logan, UT, USA) from April 2015
to March 2016. Carbon dioxide fluxes were calculated in 30 min intervals using EddyPro 5.1.1 software
(Li-COR, Lincoln, NE, USA), which applied a coordinate rotation to adjust for local wind streamline
and corrects for: The frequency response losses, spectral attenuation, and density fluctuations due to
changes in air temperature and air moisture content.

The estimated fluxes were filtered following quality control indicators generated by the processing
software (0-1-2; where “0” indicates best to “2”, the poorest quality data) and the steady-state and
developed turbulent conditions tests [16]. The fluxes were also eliminated under raining conditions or
when less than 90% of the high-frequency data was collected in the 30 min intervals. Sixty-six percent
of data remained after this filtering protocol was applied [17]. Atmospheric stability was defined
according to Obukhov’s stability lengths (L), where L < 0 represent unstable and L > 0 represent stable
atmospheric stability, respectively [13,18]. Temporal gaps in the fluxes, usually less than 2 consecutive
hours, were filled using the diurnal variation method (MDV) by interpolating the average value of
the data generated at the same time in a cycle of 7 days for daytime and 14 days for night van ’t Hoff

model time [18–20]. For longer periods, the Landsberg model was used for daytime and CO2 fluxes
were related to photosynthetically active radiation, while the van ’t Hoff model, which relates fluxes to
soil temperature, was used for nighttime gap-filling [19,20]. The MDV method was used for all data
gap filling procedures when estimating CO2 fluxes of both the footprint and different GI areas within
the study area. Negative CO2 flux values indicate CO2 uptake.

To attribute the CO2 fluxes to their sources within the study landscape, we first estimated the
characteristics and range of flux sources in the entire contributing area, or footprint, located on the
urbanized campus [21,22]. The footprint had a radius of 500 m relative to the EC tower. We used the
Hsieh model, based on the Lagrangian stochastic model and dimensional analysis, as it is suitable for
long-term time series and requires few parameters, including: The observing height (m), zero-plane
displacement value (m) and aerodynamic roughness length (m) [22]. Although the Flux—Source Area
Model (FSAM) is also used for these types of analyses, it is much more complex and is not suitable for
long-term flux footprint calculations [23,24].

Second, we estimated the flux contribution of 3 specific local-scale urban forest (i.e., tree dominated
GI), mixed, and grey infrastructure patches to the total measured fluxes in the footprint using ART.
We identified and selected the 3 specific patches using the following approach. A 15 × 15 m grid was
initially established inside the footprint to spatially segregate the different LULCs. Then, 200 of these
cells were grouped into either green or grey infrastructure types based on their LULCs. Afterward,
the selected grey and green infrastructure cells were grouped into 26 different polygons that best
represented the green and grey infrastructure patches across the 4 footprint quadrants (Figure 1).
All polygons were summed producing the contribution of grey and GI to total measured fluxes and
total fluxes from each quadrant [12]. The footprint function was then combined with the LULC
data and the footprint contribution was calculated for 3 selected polygons that best represented the
3 different patch types (i.e., urban forest, mixed, and grey infrastructure) [12,13].
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Figure 1. The eddy covariance footprint’s grid, quadrants, and 26 polygons representing green
(vegetation dominated cells) and grey infrastructure (building and impervious dominated cells) patches
in the university campus study landscape near Shanghai, China.

3. Results

Ranges of prevailing seasonal wind direction and the percent of total frequency were estimated
(Appendix A) and then the Hsieh footprint model was used to calculate the range of 90% of flux
contribution area to the measured C-CO2 flux according to the prevailing wind direction. The flux
contribution area length for non-prevailing winds under stable atmospheric conditions was 260–810 m
during the spring. When the atmosphere was unstable, the length of the flux contribution area was
121–220 m. The flux contribution areas for seasonal prevailing winds under stable and unstable
atmospheric conditions are shown in Appendix A. As expected, all seasons exhibited a pattern of
increased flux contribution areas as the atmospheric stability improved. The total daily C-CO2 for the
study is shown in Figure 2.

The total C-CO2 balance in the study landscape was 2.98, with the northeast quadrant contributing
1.22, followed by the southwest with 0.78 and southeast and northwest quadrants contributing 0.47
and 0.51 Mg C ha−1 yr−1, respectively. The sum of carbon emissions per quadrant accounts for 88% of
the observed values in the total footprint.

The grey and GI areas were then selected throughout the footprint and we combined this EC data
to characterize seasonal C-CO2 fluxes (Figure 2) [12]. Overall, the annual carbon budget for GI areas
was −5.00 Mg C ha−1 and the seasonal carbon budget in the spring, summer, autumn, and winter
were: −1.52, −2.76, −1.02, and 0.30 Mg C ha−1 yr−1, respectively. The annual average CO2 flux for
GI was −1.32 µmol m−2s−1. The annual carbon budget for the grey infrastructure areas was 8.17 Mg
C/ha, and there were no obvious seasonal changes. The peak CO2 flux values were within the range of
5–8 µmol m−2s−1. The CO2 flux peak value decreased due to the lower traffic flow and reduced human
activities at night. The annual average CO2 flux for the grey infrastructure types was 2.16 µmol m−2s−1.
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Figure 2. Daily C-CO2 fluxes (gC m−2 day−1) for the university campus study footprint near Shanghai,
China from 1st April 2015 to 31st March 2016.

Parsing out the C-CO2 flux of exclusively treed patches versus other areas of mixed vegetation is
not possible as conventional EC studies the sum of all vegetation, soils, water, and other attributes
in a given area [12]. Thus, hereafter we refer to patches of grey infrastructure and urban forests, or
tree-dominated GI. Accordingly, we used three specific patches in the footprint of approximately 400 m2

to represent: Urban forests, a mix of buildings and GI, and building-dominated grey infrastructure
(Figure 3). An ideal annual average value was estimated according to the CO2 flux in the three patches
(Equation (1)) [18,23,25]. The Fi

c is the ideal value (Annual average, µmol m−2 s−1), AGreen is the
tree-dominated GI/urban forest area (ha), AGrey is the area of the grey infrastructure (ha), and Atest is the
study area (ha). The calculated annual average value is the calculated ART Footprint Tool CO2 flux of
the study area. The ideal and calculated values for urban forests, grey infrastructure, and mixed were
−1.32 and −1.11, 2.16, and 2.48 and mixed were 0.42 and 0.95 µmol m−2s−1, respectively. By comparing
the differences between the ideal and the calculated values, we determined the accuracy of the CO2

fluxes for the different patches.

Fi
c = −1.32

AGreen
Atest

+ 2.16
AGrey

Atest
(1)

The difference between the ideal and calculated value for the buildings plus GI patch was
0.53 µmol m−2s−1 and differed greatly, relative to the difference between the ideal and calculated value
for the vegetation and buildings. The difference of 0.53 µmol m−2s−1 was within the acceptable error
range, relative to the predicted CO2 flux values [13].
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Figure 3. Selected local-scale patches in the study landscape. From left to right are: Urban forests
(100% trees and grass), grey infrastructure (100% building impervious), and a mixed patch (50% grey
infrastructure, 50% green infrastructure).

4. Discussion and Conclusions

Our measured C-CO2 fluxes were similar to other studies, despite the climatic and GI compositional
differences [11]. Vesala et al. [12] found that vegetation in an area in Helsinki, Finland, had a C-CO2 flux
of less than 5 µmol m−2s–1. A CO2 flux study in the nearby Chongming Island wetlands found that the
distribution range under stable atmospheric conditions can reach 378 m [20,26]. The maximum winter
CO2 flux in Shenyang China can be 84 µmol m−2s−1 [25], which, noticeably, is different from our grey
infrastructure peak value and likely due to greater industrial and heating activities in cooler, northern,
inland temperate China. Outside China, EC CO2 fluxes for other cities are reported in Ward et al. [11].

In terms of the CO2 flux contribution for different urban forest-GI types at the landscape scale, we
found that the most notable difference was between herbaceous-woody and building-road LULCs; a
finding similar to Yao et al., who identified forest cover in the Shanghai, China area as being a driver of
C stocks [6]. The contribution of other LULC types in terms of CO2 flux contribution was, however,
lower as observed in other studies [5]. Thus, our results show the cumulative influence of these urban
forests and other green infrastructure can have on CO2 flux, as opposed to grey infrastructure, on the
overall CO2 flux contribution area [2,4,10].

We do note that the main limitation of this short communication is that we used one year of data and
we did not analyze water and bare soil LULC types. These areas of “blue and brown” infrastructures
are common in urban areas and will likely influence the C-CO2 balance in the study area. But, our short
communication presents an approach for future research, such as understanding how water bodies,
wetlands, and urban development and construction activities affect the C flux of urban ecosystems and in
improving the ART footprint tool functionality to better analyze urban ecosystems. Future studies can
use the approach presented here and multiple years of data to better characterize the CO2 budget for
other GI types, such as areas planted with native versus non-native vegetation and other high versus
low maintenance urban vegetation types. In particular, characterizing their seasonal and annual budgets
across time and space could lead to better estimates of their true CO2 offsetting potential.
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Multi-scale studies combining geospatial, EC CO2 flux data, and footprint/contribution area models
are not common for subtropical, coastal, cities in low-middle income countries. Thus, this short
communication demonstrates how long-term, local-scale data, and the ART tool can provide a more
accessible and novel approach for modeling urban forest C-CO2 dynamics and heterogeneity in cities.
Such information can help us better urban plan, design, and justify the use of urban forests as integral
components of nature-based solutions, which are becoming popular in many cities. The research approach
presented in the paper can be used to quantify the role of low-carbon cities and local-scale effects of
regulating greenhouse gas emissions. This study in subtropical China can also provide a baseline and
approach for carbon flux research of the urban environment in other cities in the tropics and subtropics.
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