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Abstract: Plug-in Hybrid Electric Vehicles (PHEVs) have the potential of providing frequency
regulation due to the adjustment of power charging. Based on the stochastic nature of the daily
mileage and the arrival and departure time of Electric Vehicles (EVs), a precise bidirectional charging
control strategy of plug-in hybrid electric vehicles by considering the State of Charge (SoC) of the
batteries and simultaneous voltage and frequency regulation is presented in this paper. The proposed
strategy can control the batteries charge which are connected to the grid, and simultaneously regulate
the voltage and frequency of the power grid during the charging time based on the available power
when different events occur over a 24-h period. The simulation results prove the validity of the
proposed control strategy in coordinating plug-in hybrid electric vehicles aggregations and its
significant contribution to the peak reduction, as well as power quality improvement. The case study
in this paper consists of detailed models of Distributed Energy Resources (DERs), diesel generator
and wind farm, a generic aggregation of EVs with various charging profiles, and different loads.
The test system is simulated and analyzed in MATLAB/SIMULINK software.

Keywords: bidirectional power flow; charging station; Distributed Generations (DGs); microgrids;
Plug-in Electric Vehicles (PHEVs); State of Charge (SoC)

1. Introduction

1.1. Motivation

The rapid increase in energy demand, destruction of the earth’s resources, and discharge of
carbon dioxide are the leading causes of environmental pollution and climate change in the world.
Further, transportation is more attentive, considering the fact that it causes more than 15% of carbon
dioxide discharge, which is critical for all the people [1,2]. As a result of that, the transition from the
Internal Combustion Engine (ICE) to hybrid and full-electric vehicles has been an immense focus for
the reduction of greenhouse gases [2]. Due to pollution and energy crisis, many studies in the field of
Electric-Drive Vehicles (EDVs), including Battery Electric Vehicles (BEVs), Hybrid Electric Vehicles
(HEVs), and Plug-in Hybrid Electric Vehicles (PHEVs) have appeared worldwide [2–4]. However,
developments in the field of electric vehicles are restricted by the technology of the batteries and Energy
Storage Systems (ESSs), there are many positive signs of progress in this field [5–7]. A good number of
alternative energy sources, which are renewable, are already being harnessed and utilized to meet the
energy demand in the world [8,9]. This paper mainly focuses on PHEVs to study the impact of EVs
and their interconnection to the power system.

The arbitrary connection of PHEVs to the power grid leads to the complicated operation, planning,
and control of the power system. There are different charging mechanisms for PHEVs to be charged.
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IEC Std. 61851 is one of the common standards, which is established for PHEVs charging [8]. Regardless
of the charging mechanism, the availability of charging stations is an essential factor that should be
considered for power system control, operation, and long-term planning. The common and low-cost
procedure for charging PHEVs is slow charging, which drains less power from the grid. However, the
main drawback of this mechanism is that it takes more time to fully charge the batteries of PHEVs.
On the other hand, the fast charging mechanism, based on the new developments in power electronics
devices and restructuring both of both ESSs and chargers, can expedite the charging process and charge
a depleted battery from 10 to 80 percent in half an hour [10]. However, this mechanism drains more
current at a high voltage level from the network and has a negative effect on the other loads connected
to the same bus, e.g., the voltage drop at the end of the power line.

In modern power systems, microgrids are defined as interconnected local energy centers with
control and management capabilities and clear boundaries. They enable bidirectional and autonomous
power exchange to prevent power outage by providing high-quality operation and more reliable
energy supply to the load centers. Aging electric power grid infrastructures, continuous increase in the
load demand, integration of renewable energy resources and electric vehicles, transmission power
losses, and improving the efficiency of the power system, are several challenges in modern power
systems. Therefore, to overcome the mentioned challenges, macro and micro-grids are utilized to both
enhance the power quality and increase the reliability of the grid side and the load side. There are
several studies in the field of microgrids, considering their different manifestations, such as Smart
Grids (SGs) and Virtual Power Plants (VPPs), etc. [11]. One of the main concerns in modern power
system analysis is the dependency on the power from microgrids by using the grid power along with
their developments. As a result, microgrids can interconnect to the power grid and improve the power
quality and reliability. From another perspective, microgrids can connect to/disconnect from power
grids to enable themselves and operate in both grid-connected and islanding modes.

Based on the expansion of the interconnected power grids through the long transmission lines,
increasing the load demand, and the need for a supervisory control system for the power generation
units, electric utilities are moving toward the decentralized and deregulated power systems, focusing
on independent microgrids. Non-traditional power generation sources (e.g., wind farms, solar power
plants, diesel generators, etc.) in microgrids are allowed to trade electricity with the local consumers.
In addition, microgrids in a centralized structure no longer rely on a single power source. On-site
generations can be utilized as emergency backups in the event of blackout or load shedding to
mitigate disturbances and increase power system reliability. Figure 1 illustrates the concept of modern
microgrids. As shown, there are several ways to utilize Distributed Generations (DGs), such as wind,
solar, ESSs, etc. in the power system to support the grid and supply the load demand.
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1.2. Literature Survey and Contributions

Technically, modern microgrids are a small part of low voltage distribution networks that are
located far from the substation and interconnected through a Point of Common Coupling (PCC) [12].
Based on the nature of microgrids operation (e.g., ownership, location, reliability requirements, and
trading purposes), significant developments are carried out by researchers, industrial and commercial
factories, and military bases. According to the Power and Utilities Navigant Research, the capacity of
the global microgrid has been projected to grow from 1.4 GW in 2015 to 7.6 GW in 2024 under a base
scenario [12]. Modern microgrids not only offer great promises owing to their significant benefits but
also result in tremendous technical challenges. There is an urgent need to investigate the state-of-art
control and energy management systems in microgrids.

One of the main challenges in microgrids technology is to manage and balance the generation and
consumption of energy [13]. The power imbalance is a typical scenario in microgrids, which comes
from the nature and availability of renewable energy resources to discontinuously generate power and
available loads connected to microgrids. The control system should manage these imbalances to prevent
electrical damage and maintain AC/DC grids stable [14–17]. As a result, recent studies have focused
on proper power management and control strategies to manage the generation and consumption of
energy. These control strategies are mainly targeted at: (i) controlling the interconnected DGs and ESSs,
(ii) DC bus voltage regulation, (iii) minimizing the cost of imported/exported energy from/to the main
grid by optimizing the power dispatch between converters and DC bus voltage, (iv) management, and
optimization of ESSs operation, and (v) current sharing management between parallel converters in
DC grids [17–20].

In order to optimize the power dispatch, proper communication infrastructure between the
microgrids and the grid operator are required [21,22]. However, real-time simulation and monitoring can
be implemented by the communication infrastructure, the outage of the communication links/signals can
cause many complicated problems. The droop control method is a well-known strategy to maintain the
power balance in DC microgrids [17,22–26], which does not require communication infrastructure [17].
The power management of microgrids can be classified into centralized, decentralized, and distributed
control categories [25–29]. The energy dispatched in the centralized control systems can be monitored
and managed by an intelligent centralized (master) controller, which receives and analyzes the data,
manages the power among the converter stations under operation, and forecasts the power and voltage
references to all the power devices of the microgrids. [30,31]. These systems usually offer precise
power-sharing among converters in microgrids [28,29]. In case of loss or outage of the master controller,
local autonomous controllers (decentralized structure) are needed to fulfill the master controller
failure [32–35]. In a distributed control system, each microgrid is allowed to only communicate with
its nearby neighbors. Therefore, there is still a need for communication infrastructure. Further, there
are many loops in a distributed control system, which make its design more complicated [36].

However, installing new components and/or upgrading the existing components are two methods
to overcome the negative impacts of PHEVs in power grids, high investment costs prevent the
mentioned solutions to be implemented. If the high penetration level of PHEVs is connected to the
system, up to a 15% increase in the cost of upgrading the existing grid to guarantee the adequacy of
the power system can be expected [37]. Therefore, more investigations are required to find a suitable
and cost-effective solution. Utilizing proper ESSs and appropriate charging/discharging mechanism to
control the power flow in PHEVs are preferable to installing new components and/or upgrading the
existing infrastructures in power grids. High penetration chargers can be designed and implemented
to allow bidirectional power flow between ESSs and power grids.

PHEVs can assist in improving the load-leveling profile and reducing power losses [38]. Further,
utilizing efficient Voltage-Source Converters (VSCs) in power system allows transferring reactive
power, as well as active power into the power grid. The DC-link capacitor and a proper switching
mechanism can improve the quality of the transferred power into the grid [39]. Therefore, several
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studies have investigated different control strategies to implement the concept of a bidirectional charger
and solve the charging issues of PHEVs [40–43].

A practical power electronics grid interface that can provide the Vehicle-to-Grid (V2G) bidirectional
power flow with a high power quality is necessary to perform the grid-connected vehicle battery
application. This interface should respond to the charge/discharge commands that are received from the
monitoring system to enhance the reliability of the power grid. Moreover, essential requirements, such
as reactive power injection and tracking the reference charge/discharge power, should be met [44,45].
A comprehensive review of the bidirectional converters is presented in [46], and discusses their
advantages and disadvantages. In [47], the energy efficiency in PHEV charges along with the evaluation
and comparison of the AC/DC topologies, such as the conventional Power Factor Correction (PFC)
boost converter, including a diode-bridge rectifier followed by a boost converter, an interleaved PFC
boost inverter, a bridgeless PFC boost converter, a phase-shifted semi bridges PFC boost converter [48],
and a bridgeless interleaved boost converter [49] is presented. In addition, some non-inverted
topologies are presented in [50–60], some of which require two or more switches to be operated in Pulse
Width Modulation (PWM) mode, which causes higher total switching losses [50–52,54–61]. However,
bidirectional power flow cannot be achieved in the topologies of [50,54,57,61–64].

Different DC charging station architectures for PHEVs are proposed in [65–67]. For instance,
the control of the individual EV charging processes introduced in [65] is decentralized, while a separate
central supervisory system controls the power transfer from the power grid to the DC link. With
sufficient energy stored in the battery of PHEVs, the bidirectional charging/discharging power control
of PHEVs can be applied to reduce the frequency fluctuation [68–74]. A power charging control system
to control the frequency in the interconnected power system with wind farms is considered in [68].
The controller in [68] is capable of stabilizing the system frequency during the charging period. Further,
the bidirectional power control of PHEV applied for frequency control in the interconnected power
systems with wind farms is proposed in [69]. The proportional-based PHEV power controller in [69]
provides satisfactorily control, but its performance may not tolerate such uncertainties, and it may fail
to handle the system frequency fluctuation.

Further, the system parameters may not remain constant and continuously change when operating
conditions vary [75]. The system parameter variations, such as the inertia constant and damping ratio,
are conventionally considered to check the performance and robustness in the Load Frequency Control
(LFC) approach [76]. Hence, the robustness of the controller against system uncertainties is a vital
factor that must be considered.

This paper presents a precise bidirectional charging control strategy of PHEVs in power grids to
simultaneously regulate the voltage and frequency, as well as reducing the peak load, and improving
the power quality by considering the SoC and available active power in power grids. Different
events that may occur during a 24-h scenario in the studied DG-based system consisting of different
microgrids, diesel generator and wind farm, PHEVs with several charging profiles, and different loads
are considered. The simulation and analysis are performed in MATLAB/SIMULINK software.

2. Principles of Bidirectional Power Flow

Figure 2 shows a basic model of a power system consisting of two generators and a transmission
line which is connected to two generation buses. In this figure, each bus has its voltage magnitude and
phase angle, where V1∠θ1 and V2∠θ2 are the corresponding voltage magnitude and phase angle of
buses 1 and 2, respectively. The impedance of the transmission line is Z∠γ, where:

Z = R + jX (1)

and
γ = tan−1 X

R
(2)
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Therefore, by considering voltage magnitude and phase angle differences between buses, the active
power, P, and reactive power, Q, can be transferred, bidirectionally. In order to study the bidirectional
power flow, it should be assumed that both buses are capable of supplying and absorbing active and
reactive power.Sustainability 2019, 11, x FOR PEER REVIEW 5 of 25 
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Based on the direction of power flow, the active and reactive power equations can be written as:

P12 =

∣∣∣V2
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Q12 =
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|Z|
sin(γ+ θ1 − θ2) (4)

Assuming X� R, Equations (3) and (4) can be re-written as:

P12 =
|V1||V2|

X
sin(θ1 − θ2) (5)

Q12 =
|V1|

X
[|V1|−|V2| cos(θ1 − θ2)] (6)

Small changes in the voltage magnitude have a direct impact on the reactive power flow, while
deviations in phase angle can change the active power flow in power grids. If θ1 > θ2, the active
power can be transferred from bus 1 to bus 2 and vice versa. Further, if V1 > V2, the reactive power
can be transferred from bus 1 to bus 2 and vice versa. Therefore, the voltage magnitude and phase
angle play the important roles in power transfer in power grids.

3. Control Strategy and Power System Modeling

3.1. Bidirectional Charging Station

PHEV chargers should be installed off-board and onboard in a vehicle. Onboard chargers are built
with a small size, low power rating, and can be used based on a slow charging mechanism. Off-board
PHEV chargers are located at specific places and provide either a slow or fast charging mechanism.
As a result, charging networks play an important role to support PHEVs. In addition, there are two
common architectures (series and parallel) in the PHEV drivetrain. Moreover, a combination of these
two (series-parallel architecture) is also used in some vehicles [1,5–8,77]. This paper has considered
a generic aggregation of PHEVs with different charging profiles. The number of vehicles in charge,
the rated power and rated capacity, and the power converter efficiency are the important factors in
this model. This model is also capable of enabling vehicles to the grid, instantly. Table 1 shows the
charging station specifications.
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Table 1. Charging station specifications.

Parameter Descriptions

Rated Power 40 kW
Rated Capacity 85 kWh
Rated Voltage 50–600 VDC

System Efficiency 90%
No. of cars (different profile) 35, 25, 10, 20, 10

The fundamental configuration of the charging station consists of a centralized AC/DC converter
and different DC/DC converters as the charging lots. The AC/DC converter rectifies the three-phase
AC input signal into a DC output signal. DC/DC converters have been used to regulate and shift the
output signal to the desired level. A bidirectional charging station is capable of controlling the power
flow in both directions between charging stations and power grids.

Figure 3 illustrates the single-line diagram of the case study in this paper [78]. Further, the proposed
scheme of the grid-connected PHEV system is illustrated in this figure. The proposed model has a
central AC/DC VSC station and different controllable DC/DC converters based on a certain number
of PHEVs. All DC/DC converters are in a parallel architecture and are connected to a common DC
bus, which has been regulated by the central AC/DC VSC station. Two different conditions have been
assumed for the charging stations: (1) cars in regulation, which contribute to the grid regulation; and
(2) cars in charge, which are regularly in the charging process. Therefore, there are two modes of
operation for each PHEV: (1) regulation mode; and (2) charging mode.

In order to minimize the output harmonics during the operation and switching processes of
converters, an RL filter has been considered between the charging station and power grid. The
charging system in this paper allows transferring the active and reactive power bidirectionally with
the help of a control system. The control strategy mainly focuses on the AC/DC and DC/DC converters.
By proper controlling the central AC/DC VSC station, injecting reactive power into the power grid to
regulate the voltage, improving the power factor, and maintaining a constant DC-bus voltage, can
be achieved. Moreover, an appropriate control mechanism for the DC/DC converters can ensure
controlling the charging and discharging processes of PHEVs. This paper has considered both
charging and discharging operations, where the DC/DC converters are controlled by charge/discharge
PHEV batteries.
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3.2. Converter Station Control Systems

As stated in Section 3.1, the converter station can work in two modes: (1) the regulation mode,
and (2) the charge mode, and is capable of compensating reactive power, and consequently, regulating
the voltage of the power grid during the charging and discharging processes of PHEVs. This section
provides details of the control systems of the converter station in different modes.

3.2.1. Grid Regulation Mode

In order to contribute to the grid regulation, two controllers have been designed: (1) a grid
regulation controller, and (2) a grid regulation power generation. Figure 4 shows the grid regulation
controller scheme. This controller is fed by the maximum regulated active power, Pmax_reg.Sustainability 2019, 11, x FOR PEER REVIEW 7 of 25 
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Figure 4. Grid regulation controller scheme.

To achieve the maximum active power regulation, a control system that consistently checks the
nominal active power, Pnom, is proposed, as shown in Figure 5. In this controller, the nominal active
power, the number of cars in regulation, N, and an online key to enable the V2G mode are matter.
Lastly, the output power has been limited within the standard range to be considered as the maximum
regulated active power. There is a threshold (0.5) for passing the first input to the second input, C1, of
this controller.

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 25 

 236 
Figure 4. Grid regulation controller scheme 237 

To achieve the maximum active power regulation, a control system that consistently checks the 238 
nominal active power, 𝑃௡௢௠, is proposed, as shown in figure 5. In this controller, the nominal active 239 
power, the number of cars in regulation, 𝑁, and an online key to enable the V2G mode are matter. 240 
Lastly, the output power has been limited within the standard range to be considered as the 241 
maximum regulated active power. There is a threshold (0.5) for passing the first input to the second 242 
input, 𝐶ଵ, of this controller. 243 

 244 
Figure 5. Outer control system scheme for gaining maximum regulated active power 245 

In order to contribute to the grid regulation, real-time measurement of the frequency, 𝜔୥୰୧ୢ, is 246 
required. By comparing 𝜔୥୰୧ୢ  and the reference frequency, 𝜔୰ୣ୤ , the frequency deviation can be 247 
obtained. The frequency deviation should be less than 0.05%. Otherwise, the controller stops the 248 
process. To prevent sudden changes in the frequency deviation, the controller’s derivative has been 249 
utilized. By considering that the frequency deviation is within the standard range, two gains for the 250 
grid regulation controller have been set by the operator, the open-loop gain, 𝐾ଵ, and the loop gain, 251 𝐾ଶ. Changing these two gains has a direct impact on the SoC of all the cars in the charge mode. A 252 
zero-crossing detection integrator has been considered to minimize the disturbance and steady-state 253 
error of the input signal. The output signal of the integrator has been rechecked to avoid the 254 
maximum allowable regulated active power that is fed into the grid regulation power generation 255 
system. Figure 6 illustrates a detailed diagram of the grid regulation controller. 256 

 257 
Figure 6. Control diagram of the grid regulation controller 258 

Commented [m4]: 请更新图片 

 

Commented [m5]: 请更新图片 

Commented [m6]: 请更新图片 

Figure 5. Outer control system scheme for gaining maximum regulated active power.

In order to contribute to the grid regulation, real-time measurement of the frequency, ωgrid,
is required. By comparing ωgrid and the reference frequency, ωref, the frequency deviation can be
obtained. The frequency deviation should be less than 0.05%. Otherwise, the controller stops the
process. To prevent sudden changes in the frequency deviation, the controller’s derivative has been
utilized. By considering that the frequency deviation is within the standard range, two gains for
the grid regulation controller have been set by the operator, the open-loop gain, K1, and the loop
gain, K2. Changing these two gains has a direct impact on the SoC of all the cars in the charge mode.
A zero-crossing detection integrator has been considered to minimize the disturbance and steady-state
error of the input signal. The output signal of the integrator has been rechecked to avoid the maximum
allowable regulated active power that is fed into the grid regulation power generation system. Figure 6
illustrates a detailed diagram of the grid regulation controller.

Furthermore, by controlling the voltage, and consequently, the current through another control
system, the proposed control strategy can ensure a contribution to the grid regulation power generation,
as shown in Figure 7.
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The grid regulation power generation controller captures the voltage of pair phases. Therefore:

V =
1
3

(
Vab − a2Vbc

)
(7)

where Vab is the voltage between phases a and b, and Vbc is the voltage between phases b and c.
Moreover:

a2 = e− j 2π
3 (8)

By using Equation (7) and decomposing the real and imaginary parts from the apparent power, S,
the current can be derived as follows:

I =
2
3

S∗

V∗
(9)

where V and I denote the voltage and current, respectively. S∗ and V∗ represent the complex conjugate of
the apparent power and the complex conjugate of the voltage, respectively. Accordingly, the controller
feeds constant current into the power grid and regulates the voltage and frequency, simultaneously.
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3.2.2. Charge Mode

In order to control the PHEV station in charge mode, two states have been studied: (1) SoC,
and (2) plug. The charge power generation controller requires the nominal active power and the
number of cars in charge, M, as its inputs. Same as the grid regulation mode, a threshold (0.5) is used
for passing the first input to the second input, C4, of the charge power generation control system.
The threshold can guarantee safe operation. Figure 8 shows the outer control diagram of the charge
power generation controller.
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Same as the previous section, by regulating the voltage, and decomposing the real and imaginary
parts of the apparent power of the charging system, a constant current, Ireg, is obtained from the
controller, and fed into the power grid. Figure 9 illustrates the inner control diagram of the charge
power generation controller.
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Each group of cars has a certain charging profile. As mentioned, the car profile has been
investigated by checking the SoC and plug states. Figure 10 demonstrates the control diagram of the
profile of each PHEV in charge and regulation modes. In this control design, the SoC initialization
and plug state have been implemented by using the Binary Search Method (BSM). Therefore, the SoC
initialization and plug state have stochastic, but linear behavior. Complementary descriptions for the
different profiles are provided in Section 3.7.
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In order to control the output changes of the SoC initialization and plug state within limits, two
state limiters have been considered. By capturing the SoC initialization and plug state, and the present
values of the SoC in different profiles, the state estimator for each SoC controller has been designed.
Figure 11 indicates the SoC controller, where the output of this controller is the State Estimator (SE%),
and regulated for the charger controller. The SoC controller needs accurate information of the active
power of the cars in charge, Pcharge, the number of cars in charge mode, M, the number of cars in the
specific charging profile, Li (where i = 1, . . . , 5), the number of cars in regulation mode, N, the active
power of the cars in EV mode, PEV, and the regulated output of the SoC initialization and plug state.
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The state estimation of batteries in PHEVs requires checking the mode of vehicles. The PHEV
can be either in charge or EV mode. Therefore, there should be a switch to toggle between these two
modes. By reaching the maximum level of the charge, the controller terminates the charging process.
In the meantime, the controller checks the plug state dynamically, and if the PHEV is unplugged from
the grid, it sends zero signal, C6, as shown in Figure 11, and terminates the charging process.

Assuming the PHEV is in charge mode, the charge/discharge efficiency has been taken into
consideration. These two are modeled as two direct gains, K14 and K15, so that:{

K14 = η
K15 = 1/η

(10)

where η shows the efficiency.
The SoC, which is converted to real-time by multiplying the present capacity by 1000 × 3600,

the plug state, and the charging state are sent to an integrator with the initial condition and dynamic
saturation, and lastly, the output is multiplied by the number of cars in a particular profile to obtain
the state estimation. State estimation from this stage is used as the SoC of the vehicles. Deriving the
state estimation, the cars are checked whether they are either in the charge mode or regulation mode
through the charger controller. Figure 12 indicates the charger control diagram. In order to guarantee a
high-efficiency output during the charging process, the state estimation has been set within the range
of 85% and 95%. Otherwise, the charger terminates the process. In fact, this can ensure both injecting
power with high quality to the power grid during the regulation mode and charging the batteries
during the charging mode.
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Proper operation of the charging station of PHEVs lead to the energy balance of ESSs in
PHEVs subject to the maximum and minimum operating limitations in charging and discharging
power as follows:

Es,i,(t+1) = Es,i,t + ηs,i,c × Ps,i,t,c −
Ps,i,t,disc

ηs,i,disc
(11)

subject to:
0 ≤ Ps,i,t,c ≤ ks,i,t,c × Ps,i,c_max (12)

0 ≤ Ps,i,t,disc ≤ ks,i,t,disc × Ps,i,disc_max (13)

ks,i,t,c + ks,i,t,disc ≤ 1 (14)
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ks,i,t,c + ks,i,t,disc ∈ {0, 1} (15)

Es,i,min ≤ Es,t ≤ Es,i,max (16)

where indices s, i, and t refer to the sth energy storage system at the ith bus in the tth time interval.
Therefore, Es,i,t is the energy storage of the sth energy storage system at the ith bus in the tth time interval
in MWh. ηs,i,c and ηs,i,disc are charging and discharging efficiencies, respectively. Ps,i,t,c and Ps,i,t,disc are
charge and discharge power, and ks,i,t,c and ks,i,t,disc are the binary variables for charging and discharging
operations of the sth energy storage system at the ith bus in the tth time interval, respectively.

Figure 13 shows the flow chart of the proposed bidirectional power charging strategy. According
to the collected data from the installed meters, the amount of the active and reactive power in the system
is checked. When V2G is not activated, the existing microgrid(s) satisfy the total load consumption,
whether there is a contingency in the system or not. When V2G is activated, the SoC initialization
and plug state of PHEVs are checked and based on them, the SoC can be estimated. According to
the estimated SoC, PHEVs mode can be either in charge or regulations mode. By considering that
there is no contingency in the system, the required power to charge PHEVs is supplied by the existing
microgrid(s). Otherwise, all PHEVs in charge and regulation modes are passed through a regulation
unit, and the regulated voltage and frequency are then used to update the active and reactive power.
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3.3. Diesel Generator

A three-phase synchronous machine in the dq-rotor reference frame with the engine governor and
excitation system has been modeled and considered as the diesel generator to feed 15 MW active power
to the power grid. The nominal power, line-to-line voltage, and frequency of the generator are 15 MW,
25 kV, and 60 Hz, respectively. The IEEE type 1 synchronous generator voltage regulator combined
with an exciter has been implemented as the excitation system. Moreover, the diesel governor has
been modeled, where the desired and actual rotor speeds are the inputs and the mechanical power
of the diesel engine is the output. Further, the motor inertia has been combined with the generator.
The design considerations for the governor are made through the regulation of the controller and
actuator as follows:

Hc =
K(1 + T3s)

(1 + T1s + T1T2s)
(17)

where Hc is the controller transfer function, K is the regulator gain, and T1, T2, and T3 are the regulator
time constants, respectively.

Furthermore:

Ha =
(1 + T4s)

s((1 + T5s)(1 + T6s))
(18)
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where Ha is the actuator transfer function, and T4, T5, and T6 are the regulator time constants,
respectively. The engine time delay, Td, has been set to 0.024 sec. It should be noted that ωre f and Vre f
of the diesel engine governor and excitation system have been set to 1 p.u.

Accordingly:

Tm − Te −D∆ω = J
dω
dt

(19)

where Tm = Pm
ωm

, Te = Pe
ωe

, and ∆ω = ω − ωrated. Tm, Te, ωm, and ωe are the mechanical torque of
the synchronous generator rotor shaft input from the prime mover, stator electromagnetic torque,
mechanical speed of the rotor, and synchronous speed, respectively. D indicates the damping coefficient,
ω and ωrated are the actual electrical and rated angular velocities, respectively. Pm and Pe are the
mechanical and electromagnetic power, respectively. J shows the rotational inertia, and θ indicates the
electrical angle.

In addition:
E0 = Vs − I(ra − jxs) (20)

where E0, Vs, and I are the three-phase stator winding electromotive force, the stator voltage and current,
respectively. Moreover, ra and xs indicate the armature resistance and stator reactance, respectively.

3.4. Wind Farm

As the second source of energy, a wind farm with 4.5 MW nominal power capacity, with 13.5 m/s
as the nominal wind speed, and 15 m/s as the maximum wind speed, is studied in this paper. The wind
speed fluctuations provide a situation to study the power grid under a stochastic condition (uncertainty).
The generated power by the wind farm can be obtained as follows:

Pwind =


0 0 ≤ vi < vcut−in

vi−vcut−in
vr−vcut−in

× Pr vcut−in ≤ vi < vr

Pr vr ≤ vi < vcut−out

0 vr ≥ vcut−out

(21)

where Pwind is the active power generated by the wind farm, Pr shows the rated power of the wind
farm, vi indicates the wind speed, and vcut−in, vr, and vcut−out are the cut-in, rated, and cut-out speeds
of the wind turbine, respectively. The output power of the wind farm has been treated as a negative
load so that the power factor can be kept at a constant level.

3.5. Loads

A three-phase squirrel-cage asynchronous machine 1.5 MVA, 600 V, 60 Hz in the dq-reference
frame (as the industrial load), and a set of loads with the nominal power of 10 MW at 0.95 power factor
(as the residential load) have been modeled as the loads’ case study. This model can represent the
impact of inductive loads on the microgrid. The residential load follows a specific profile with the
assigned power factor during the day. Further, the industrial load has been controlled by the square
relation between the mechanical torque and the rotor speed.

3.6. Power Transformers

Two three-phase power transformers, a 20 MVA, 25kV/25kV, 60Hz transformer for the voltage
regulation with Yg-Yg winding connections and a 20 MVA, 25kV/600V, 60 Hz step-down transformer
with Yg-Yg winding connections have been modeled as a part of transmission systems for the
power system.
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3.7. Power System Modeling

As shown in Figure 3, a single-line diagram of a power system consisting of different microgrids
and PHEVs has been modeled, where the total peak load is 10.15 MW, and the total generated power is
19.5 MW. One of the contributions of this paper is to consider variable power loading levels for PHEVs,
which lead to different profiles for the charging stations. Five different profiles have been assigned to
PHEVs. Profile 1 is for vehicles with the possibility to be charged during the working hours. Profile 2 is
for vehicles with the possibility to be charged during working hours but with a longer ride. Profile 3 is
for vehicles with no possibility to be charged during the working hours. Profile 4 is for vehicles which
are parked at home and charged during the whole day. Profile 5 is for vehicles that are charged during
the night shift. In this case, the impact of charging on the power grid has been investigated. In order
to differentiate between the SoC of the PHEVs and the stand-alone battery packs, different charging
and discharging cycles have been studied in this paper. The generator balances the power and load
demand. The generator determines the frequency deviations of the grid at the rotor speed. By using
transformers, the voltage level has been stepped-down to suitable voltage levels for the power grid.
Table 2 shows the corresponding values of the control parameters for the charging station system in
the power grid.

Table 2. Control parameters of the charging station.

Parameter Value

C1, . . . , C5 and C7 0
C6 1
C8 85×103

K1 2
K2 4×103

K3, K9, and K17 -1
K4, K7, K8, and K12 eˆ(-j2π/3)

K5 and K10 1/3
K6 and K11 2/3
K13 and K18 1/3600

K14 1/(90%)
K15 90%
K16 306×106

K19 100

It is well-known that the PHEV charging process highly depends upon the connection point to
the power system. This means that by connecting the PHEV to a weak bus, more power drains from
the grid and the voltage drop increases, and consequently, it has a negative impact on the power grid.

Two scenarios have been investigated in 24 h. The wind speed varies during the day and has
multiple maximum and minimum values. The residential load consumption profile is similar to that of
the real world. The demand is low during the day, increases to the peak value during the evening and
night, and gradually decreases during the late night. Two events have significantly affected the grid
frequency during the day: (1) event 1, which is the asynchronous machine (industrial load) start-up at
t = 03:00 a.m., and (2) event 2, which is the wind farm outage at t = 10:00 p.m., when the wind speed
exceeds the maximum speed. The case study has been simulated under two different conditions for
vehicles in regulation and charging modes.

4. Results and Discussions

The case study in this paper conducts the power profile (the generated and consumed power)
as the bidirectional power flow during a 24-h. Contributions of the diesel generator and wind farm
and the impact of PHEVs on the peak load reduction have been studied in this section. To study the
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bidirectional power flow, the active and reactive power balance of the system have been determined
as follows:

Pgi,t + Pwi,t + PLi,t − Ps,i,c + Ps,i,disc −
∑

j

[
Vi,tVi,t

Zi j
cosθi j +

Vi,tV j,t

Zi j
cos(θi − θ j + θi j)] = 0 (22)

Qgi,t −QLi,t −

∑
j

[
Vi,tVi,t

Zi j
sinθi j +

Vi,tV j,t

Zi j
sin(θi − θ j + θi j)] = 0 (23)

subject to:
Vi,tV j,t

Zi j
cos(θi,t − θ j,t + θi j,t) −

Vi,tV j,t

Zi j
cosθi j,t ≤ Pi j,max (24)

Vi,tV j,t

Zi j
sin(θi,t − θ j,t + θi j,t) −

Vi,tV j,t

Zi j
sinθi j,t ≤ Qi j,max (25)

where indices i, j, s, and t refer to the bus i, bus j, the sth energy storage system, and the tth time interval.
Pgi,t , Pwi,t , PLi,t , Qgi,t and QLi,t show the active power generated by the non-renewable energy source,
the active power generated by the wind farm, the active power consumed by the load, the reactive
power generated by the non-renewable energy source, and the reactive power consumed by the load
at the ith bus in the tth time interval, respectively. Further, V, θ, and Z indicate the voltage magnitude,
and angle, and the impedance of the bus, respectively. Pi j,max and Qi j,max are the maximum allowable
active and reactive power that can be transferred between the buses, respectively.

4.1. V2G Mode is Deactivated

Based on the results of the simulation for 86,400 sec. (24 h), which is shown in Figure 14, when the
V2G system is not under operation, due to the defined scenarios during two different time intervals,
one at t = 03:00 a.m. (10,800 sec.) and the second one at t = 10:00 p.m. (79,200 sec.), the industrial
load bus voltage shows a significant change. Due to the first event, the voltage at all buses changes.
Based on the nature of the load profile, the industrial load is not under operation before the third
hour (the output power is 0 MVA), and the residential load reaches its minimum value (5.446 MVA),
because of less usage of the normal resistive and inductive loads, such as lightings, refrigerators, etc.
Therefore, the amount of current, and consequently, the drained power from the grid is not significant.
At t = 10,800 sec., the industrial load starts up, and the power flow in the grid changes. The voltage at
the industrial load bus drops, and the current increases drastically (from 0 to 2184 A). Hence, 445.3 kW
power is extracted as the power losses due to this event, and accordingly, this power is supplied by
the diesel generator and wind farm. The total load demand at that time reaches 7.235 MVA, and the
power grid supplies the load through the amount of generated power by the two microgrids, where
the generation contributions of the diesel generator and wind farm are 5.328 MVA and 2.446 MVA,
respectively. Thus, the total generated power is derived as 7.774 MVA, which is more than the total
load demand. It should be noted that when the V2G mode is deactivated, by increasing or decreasing
the corresponding values of the controller’s gains (K1 and K2), the SoC of the batteries of PHEVs in the
charge mode does not change.
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Figure 14. Voltage, current, the apparent power, active power and reactive power curves of (a) the
diesel generator, (b) wind farm, (c) residential load, and (d) industrial load during 24 h when the V2G
system is not under operation.

As shown in Figure 15, the total load consumption increases from 6.0980 MVA at 05:00 a.m.
(21,600 sec.) to 8.1800 MVA at 10:00 p.m. (79,200 sec.). Based on the results of the simulation,
the diesel generator and wind farm successfully supply the load demand, even during the contingency.
The transient time related to the voltage regulation at each bus is minimized by proper operating of
the controllers. This is achieved by defining the power flow constraints (Equations 24 and 25) for the
power grid. When the wind farm has less generation or is not under operation for a certain period
of the time, the diesel generator acts as a fast-response power supply to supply the load without
interruption. Table 3 shows the power flow of the power grid during the entire day.
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Table 3. Power flow results when the V2G system is not under operation.

Time
Diesel

Total Generation Total Demand Power Losses
Wind

00:00 a.m.
3.3660

4.0660 3.8480 0.21800.7000

01:00 a.m.
5.3350

6.6650 6.1430 0.52201.3300

02:00 a.m.
5.4550

6.3890 5.9210 0.46800.9340

03:00 a.m.
5.3280

7.7740 7.2350 0.53902.4460

04:00 a.m.
5.1270

6.0610 5.6160 0.44500.9340

05.00 a.m.
4.3380

6.7640 6.0980 0.66602.4260

06:00 a.m.
6.1750

6.8025 6.3170 0.48550.6270

07:00 a.m.
6.8530

7.7860 7.1920 0.59400.9330

08:00 a.m.
7.8370

8.7710 8.0710 0.70000.9340

09:00 a.m.
8.8380

9.7720 8.9470 0.82500.9340

10:00 a.m.
8.9790

10.308 9.3830 0.92501.3290

11:00 a.m.
9.6030

10.538 9.6060 0.93200.9350

12.00 p.m. 7.4050
11.416 10.004 1.41204.0110

01:00 p.m. 9.0070
11.437 10.260 1.17702.4300

02:00 p.m. 10.140
11.470 10.370 1.10001.3300

03:00 p.m. 10.640
11.574 10.480 1.09400.9340

04:00 p.m. 10.910
11.844 10.700 1.14400.9340

05.00 p.m. 9.2090
11.638 10.430 1.20802.4290

06:00 p.m. 9.0070
11.436 10.260 1.17602.4290

07:00 p.m. 10.120
11.054 10.040 1.01400.9340

08:00 p.m. 9.4940
10.823 9.8260 0.99701.3290

09:00 p.m. 6.6540
10.664 9.3870 1.27704.0100

10:00 p.m. 8.3160
8.3250 8.1800 0.14800.0120

11:00 p.m. 6.8520
7.7860 7.1950 0.59100.9340

Note: All the values are in MVA and have been rounded to the closest number.
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Figure 16 shows the dynamic behavior of the converter station during the simulation time. As long
as the breaker of the converter station is open and the V2G system is not under operation, the power
consumption by the converter station is completely insignificant. However, the station detects the
two events during the simulation time. It should be noted that the consumed power by the converter
station is considered as the power losses in Table 3. As shown in Figure 16, in the regulation and charge
modes, the consumed power by the converter station is close to zero.
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not under operation.

4.2. V2G Mode is Activated

When the V2G mode is activated, the operating impact of the V2G system changes the power flow
of the grid. Theoretically, it is expected that when the V2G system is under operation, more power is
supposed to be drained from the power grid. The more power consumed by the converter station,
the greater the power required from the diesel generator and wind farm. Unlike the previous mode
that the V2G mode was deactivated, the different car profiles change the total load profile. Therefore,
the peak load is expected to be more than the previous operating mode. Figure 17 shows the results of
the simulation in the V2G system operation.

Unexpected events (contingency and/or outage) in the power system lead to a change in the
voltage and frequency. Heavy load or generator outages can be considered as such changes that
influence the voltage and frequency variations. As shown in Figure 18, based on the two defined
scenarios, at t = 10,800 sec., the industrial load starts up and drains power from the generation buses.
The total generated power should satisfy the total load demand, including the cars in profiles 4 and
5. Due to the sudden changes in the power, the converter station detects the voltage and frequency
variations, and the controllers switch to the regulation mode and contribute to the grid regulation,
as shown in Figure 18. However, the voltage curve in both charge and regulation modes fluctuates
around its nominal value, the frequency deviations related to the power changes after the contingency
are more visible. Due to rapid fluctuations in the voltage of the power supply or loads, a momentary
flicker can also be observed in the power system. The designed system attempts to mitigate and
eliminate this momentary flicker by regulating (or stabilizing) the voltage.
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under operation.

According to the descriptions of the car profiles in Section 3.7, the behavior of the SoC varies
based on the car profile. Figure 19 illustrates the SoC of the different car profiles during the day, when
the V2G system is under operation. When the second scenario occurs at t = 79,200 sec., the level of
the generated power is reduced significantly. Consequently, PHEVs switch to the regulation mode to
contribute to the voltage and frequency regulation and restore the system to its previous condition.
Because the cars in profile 4 are connected to the grid for the entire day, their contributions to the grid
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regulation are more severe. Also, due to the grid mode controller settings, a gradual increase in the
SoC is expected. Due to the fact that the wind farm outage decreases the level of generated power,
the system can reach a critical condition without utilizing proper control systems.

It is observed that when the V2G mode is activated, by decreasing K1, the SoC of the batteries
decreases very slightly during the simulation time. By increasing K1, the SoC of the cars in profile 4
increases from 90.0 to 90.6. Decreasing K2 causes an inverse trend in the SoC variations. This means
that the SoC of the cars in profile 4 increases, and then, gradually decreases. By increasing K2, the SoC
of the batteries of the cars in profile 4 moderately decreases during the simulation time. It should be
noted that the minimum level of the SoC is 10%.Sustainability 2019, 11, x FOR PEER REVIEW 20 of 25 
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Figure 20 illustrates the total generated and consumed power curves when the V2G system is
under operation. As shown in this figure, the total load demand varies throughout the day and is
met by the dispatchable generation unit. The generation units adjust operations to follow the load
pattern. When the V2G system is not under operation, there is only one peak point during the entire
simulation time. However, when the V2G mode is activated, the number of peak points is increased
due to the different car profiles. The peak points are met when the number of car-users is increased,
and the generation units are forced to generate more power. The maximum peak point has been
detected between t = 17:00 and t = 18:00, because cars in profiles 1, 3, 4, and 5 are all in the charging
mode. Although the wind farm has been under operation, the diesel generator has been operated
close to its maximum capacity. The total power at t = 10,800 sec. has reached its first peak point of
8.107 MVA as the generated power, and 7.435 MVA as the total load demand. The loads have met
the minimum value of 5.616 MVA at t = 14,400 sec. where the generated power has been 6.062 MVA.
Between t = 14,400 sec. and t = 16,550 sec., the total load demand has increased to 6.303 MVA (due to the
different charging profiles), and the generation units have followed the load profile, and have generated
6.831 MVA. Over time, the total load level has shown an overall increasing trend and increased from
6.100 MVA at t = 18,800 sec. to 6.317 MVA at t = 21,600 sec. and 8.071 MVA at t = 28,800 sec., where
the total generated power has reached 6.766 MVA, 6.802 MVA, 8.771 MVA, respectively. The power
grid has experienced the second increase between t = 28,800 sec. and t = 30.160 sec. in which more
cars have been in the charging mode. During this time interval, the total load demand has increased
from 9.916 MVA to 10.200 MVA, and the generated power has been 10.680 MVA and 11.020 MVA,
respectively. The same trend has been observed between t = 30,940 sec. and t = 64,800 sec. in which
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the number of PHEVs in charge has been increased. The demand has changed from 8.591 MVA to
10.270 MVA, and correspondingly, the generated power has varied from 9.365 MVA to 11.440 MVA,
respectively. At the third peak point, the generated power has reached its maximum capacity where
approximately the total load demand has been 12.650 MVA. From t = 66.200 sec. to t = 79,200 sec., both
the total load demand and generated power have decreased, but in general, their corresponding values
have remained at a high level. At t = 79,200 sec., the power grid has lost 4.5 MW active power due to the
outage of the wind farm and accordingly, there has been an intensive drop in the generated power, and
the load demand has been more than the generated power. This could interrupt the power flow, and
there has been this need to use an auxiliary system, such as the V2G system to restore power. As shown
in Figure 20, PHEVs have supported the grid and contributed to the voltage and frequency regulation,
and also the robustness of the proposed control system has been illustrated. The decreasing trend in
both the generated power and total load demand has continued until the load level has decreased.
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5. Conclusions

This paper reveals the impact of PHEVs charging on the power grid. A bidirectional charging
station with a novel control strategy is proposed to solve the problem of voltage and frequency
regulation in the power system due to the charging of PHEVs. A central AC/DC VSC converter
station is investigated to inject active and reactive power into the power grid to regulate the voltage
and frequency and reduce the peak load, as well as power quality improvement by considering the
SoC and available active power in power grids. The proposed control strategy allows PHEVs to
contribute to the grid regulation when an event occurs in a DG-based power grid consisting of different
microgrids, diesel generator and wind farm, PHEVs with several charging profiles, and different loads.
The simulation results show the robustness of the proposed control strategy.
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