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Abstract: This paper discusses the effects of different innovation search scopes on the performance
of the N-K fitness landscape model with a focus on its contextual factors of technology complexity
and environmental turbulence. Results show that the medium-level search scope has a significantly
better outcome than the low-level search scope, especially when the technological complexity is
high, while the high-level search scope would not provide a statistically significant advantage. After
introducing the turbulent range and rapidity into the N-K model, we extend the model into a dynamic
one to simulate better the real turbulent business world. The results of the simulation in dynamic
landscapes show that the higher degree of environmental turbulence causes a higher search scope to
become more valuable.

Keywords: N-K simulation; innovation search scope; complexity; environmental turbulence

1. Introduction

Innovation search, which is defined as “a problem-solving activity in which firms solve problems
through combining knowledge elements to create new products (pp. 88)” [1], has attracted increasing
attention from both academics and practice. Following the views of Nelson and Winter [2], Katila and
Ahuja [3] introduced the concept of innovation search scope, which is generally defined as how widely
the firm explores new knowledge. Developing the open innovation theory proposed by Chesbrough [4],
which could also be considered as part of innovation search, Laursen and Salter [5] proposed a similar
concept named as external search breadth. Based upon these concepts, extant literature has focused
mainly on the value of higher innovation search scope [6–9], while environmental and technological
contingencies are largely ignored.

In fact, issues of technological complexity, which are defined as the degree of interdependence among
components in a technological system [10], have been recognized as critically important to the ability of
firms to manage innovation successfully [10,11]. Meanwhile, environmental turbulence, which refers to
those market or technological changes that are frequent and unpredictable [12], has significance in the
innovation search process, particularly for firms in transitional economies, such as China [13,14].

This paper develops a theoretical model on innovation search scope by considering the moderating
effects of environmental turbulence and technology complexity with the N-K adaptive landscape
method. In our paper, innovation search scope is operationalized as the number of technological
components developed simultaneously during the innovation process. Each technology could be
considered as a system with interdependent components and thus, it is suitable for use in analyzing
the process of technology innovation by the N-K model [15], which allows us to compare the different
levels of innovation search scope. Our argument starts with the observation that during the innovation
process, some firms choose to treat technology components one by one, while others deal with several
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components simultaneously. By increasing the innovation search scope, some firms achieve much
better performance, while others face problems. Thus, examining whether firms should expand
their innovation search scope is an interesting step. Interactions and interdependence between
technological components are constantly observed, and thus, the answer is not a simple “the larger,
the better.” However, if the innovation search scope is indeed valuable, what about its contextual
factors? According to our reviews and observations, technological complexity and environmental
turbulence might be as two essential factors, which would influence the effect of the innovation search
scope on innovation performance.

Using the formal N-K model, we examine the relationship between innovation search scope
and performance as well as the moderating effects of technological complexity and environmental
turbulence. The simulation results show that in a stable environment, a firm could expect significant
performance improvement by expanding its Innovation Search Scope from low to medium level
in accordance to the research of scholars, such as Katila and Ahuja [3] and Laursen and Salter [5].
With regard to technological complexity, we determined that the improvement increases with the
increase in complexity and that the high-level innovation search scope is more valuable than the medium
level only if the technology is with great complexity. Firms with higher innovation search scope could
expect significantly better innovation performance with the increase in its technological complexity.

Our research contributes to the literature in the following ways. First, we further develop the
N-K fitness landscape simulation model [16,17] by introducing the environmental turbulence more
concretely. As an important simulation tool, the N-K model has been used widely in studies in the fields
of innovation, strategic management, and organization [18,19]. Several studies [17] have considered
changing environments. That is, once N and K are fixed, the typology of the fitness landscape will not
change with time. In reality, however, the value of certain technology continues to change because
of the emergence of new technology, changes in customer’s preferences, and industrial structure.
We extend the N-K model into a dynamic model by introducing two turbulence variables. This paper
is expected to optimize the simulation for the changing environment by introducing two variables:
turbulent rapidity and turbulent range. In our dynamic landscapes, we find that the expansion of the
innovation search scope becomes more valuable as the turbulence increases, which means a firm with a
larger search scope could achieve better improvement in the turbulent environment, compared to that
in more stable one. This paper also focuses on the value of innovation search scope and its contextual
factors, which has not been given sufficient focus. During the technology innovation process, firms
could deal with the technological components one by one or several components simultaneously.
Dealing with the technological components becomes even more complicated when factors, such as
technological complexity and environmental turbulence, set in. Our paper takes these determinants
into consideration and studies how they jointly influence innovation performance.

The paper is organized as follows. We review the concept and effect of technological complexity
and environmental turbulence in the following section. We then present our model and describe the
mechanics of the simulations. Finally, we present and analyze the results and make conclusions.

2. Literature Review

2.1. Innovation Search

Innovation search refers to the problem-solving activity in which firms solve problems by
combining knowledge components to create new products, better organization form, or operation
process [3,20,21]. The knowledge sources for innovation search includes both internal and external [22].
Through the analysis of the robot industry, Katila and Ahuja [3] empirically proved the existence of an
inverted U-shaped relationship between the innovation search scope and new product performance.
Zhang and Li [1] focused on external search, particularly on the role of intermediary institutes.
Generally, extant literature has agreed that a firm can obtain higher innovation performance when
broader innovation sources are searched [6–9]. However, few studies have focused on the contextual
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factors of innovation search scope—innovation performance relationship, especially the moderating
role of Environmental Turbulence and technological complexity.

2.2. Technological Complexity

Defining and understanding technological complexity is the premise for analyzing its influence
on innovation and business. The concept of complexity is described in many fields, spanning natural
and manmade systems in manufacturing, computer systems and organizational structures [23–25].
Similar to the concept of complex systems [26], technology is also composed of structured components.
Knowledge complexity is the origin of technological complexity and is defined as the number and
interaction of interdependent components, routines, individuals, and resources [27]. Simon [26]
classifies knowledge as complex if it is composed of many elements that interact richly. Higher
degree interdependence indicates that many ingredients influence the effectiveness of others so that
an improvement in one may dramatically reduce the usefulness of the system [21]. Garud and
Nayya [28] considered the knowledge complexity from the view of information: the greater complexity
of knowledge, the greater the uncertainty and the need to collect more information to make choices
and the greater the amount of information that must be maintained and retrieved over time.

Therefore, we define technological complexity as the degree of interdependence among
components in a technological system. Technological complexity plays an important role in
innovation [10,29]. The problem with increasing technological complexity during the innovation
process is that it causes more difficulty in getting things done. Integrated technology components cause
difficulty in the transformation into a successful product or process innovation [30]. Engineers have to
spend their time trying to predict, avoid, and debug the subtle interdependences among components
rather than exploring new combinations [23]. Thus, innovators might face a complex catastrophe when
they attempt to combine highly interdependent technologies [31]. Technological opportunities would
also increase with complexity, and thus, innovators can take advantage of increasing sensitivities
and opportunistic couplings among components [23,31]. In fact, Baldwin and Clark [32] argue that
the optimal degree of interdependence lies where we could achieve the balance between uncertainty
and complexity.

2.3. Environmental Turbulence

The innovation processes are environmentally context-dependent [33–35]. Emery and
Trist [36] first proposed the concept of environmental turbulence. From then on, environmental
turbulence has been described in many different ways: unfamiliar [37], hostile and heterogeneous [38],
uncertainty [39], complexity [40], and dynamic [38,41]. We followed Calantone et al. [42] and defined
environmental turbulence as that in which market or technological changes are frequent and
unpredictable. Market and technology are two main aspects of environmental turbulence [12,43].
Market turbulence refers to the degree of instability and uncertainty within a firm’s market,
while technological turbulence refers to the rate of technological change [14,44–47].

We argue that the essence of environmental (both market and technology) turbulence’s effect
on the firm is that it makes firm’s knowledge (including technology) evolve [46,48,49]. In other
words, because of the environmental turbulence, the value of the same technology may increase or
decrease with time. Consequently, the contribution of technology to innovation performance fluctuates.
We define environmental turbulence as the rapidity and range of the market and technological changes
that would vary the value of firm knowledge (including technology) [50]. Rapidity and range of
environmental turbulence are two key factors determined by industry features, stage of the industry
life cycle, and technology evolution. We take four industries as an example to differentiate better the
range and rapidity. Figure 1 shows that new energy is a novel industry with high turbulent rapidity
and range, while textile is a mature one with low rapidity and range. As for the pharmacy industry,
it remains relevantly stable and does not change very frequently. However, whenever a change occurs
in the pharmacy industry, it must be a radical one, which is why pharmacy is located in the upper right
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corner. In contrast, the cellphone industry [42] is fast-paced, evolves rapidly, and does not undergo a
radical change.

Figure 1. Matrix of environmental turbulence.

3. The Dynamic N-K Model

3.1. Baseline Model

Since Kauffman [16] introduced the N-K model into the study of biological evolution, the model
has been applied widely by innovation scholars to simulate the complex system of management [17–19].
Technology is also a complex system with interdependent components and hence, using the N-K model
is suitable for use in simulating the technology innovation process [15]. Our formal baseline model is
as follows:

P (b1, b2, . . . , bn) =
N∑

i=1

Ci(b1, b2, . . . , bn)/N, (1)

where we assume a technology system is composed of N interdependent components represented by a
vector of <b1, b2, . . . , bn>, where each bi is an element of {0,1}.

The contribution ci of each component bi to system performance depends on other K components.
Thus, K represents the degree of complexity in the system. For each of 2K possible combinations,
a value is drawn from a uniform probability distribution on [0,1] [18].

The performance of the entire technology system is average over the N contributions. Hence,
we can generate a landscape with 2N performance values.

For a specific firm, it would have an initial vector <b1 . . . ,bi . . . , bN> with performance P.
During each simulation period, firm changes any one component bi into bi’, to generate a new vector
<b1 . . . ,bi’ . . . , bN> with performance P’. If P’ is bigger than P, the firm will move the new position
where b’ is in the configuration. If the P’ is less than P, it will return to the initial position where b is in
the configuration. This process is called the hill-climbing adaptive walk. By adopting this process,
the firm would keep moving until it reaches an optimal peak in the landscape.

3.2. Innovation Search Scope

In most of the studies that apply N-K models [51], only one component bi will be changed at each
time to activate the adaptive walk. In one period, a firm would look at alternatives that are only one
step away from their current position and select the best alternatives [18]. In this case, a firm pays
attention each time to one technology component to try to improve the overall performance, called
“incremental improvement search” or “greedy search”. A firm can only walk one step nearby in the
fitness landscape because of the search narrowness. When it reaches a peak, a higher probability that
firm would be trapped in this so-called “sub-optima” position, not the global peak, exists simply
because the one-step adaptive walk cannot make the organization “jump” to other higher peaks [16].
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In reality, however, we see many cases with “radical improvement search”, where firms would
improve more than one technological component simultaneously. Thus, the N-K model needs to be
extended. In line with Rivkin and Siggelkow’s research [19], we introduce s (innovation search scope:
technology innovation scope) into our model, which is the number of components that can be changed
in every period. For example, s = 5 means a firm can try to mutate five components simultaneously;
for instance, from (00000000) to (01011011) in just a one-time period. Through this step, we can find the
effect of the search scope on the performance. Different from the study by Rivkin and Siggelkow [19],
we also let the firm “climb” in a dynamic fitness landscape.

3.3. Simulation

In all our simulations, we set N = 12, while K has six options: 1, 3, 5, 7, 9, and 11, to represent
the different levels of technological complexity. The higher the K, the more rugged the landscape
would be [16]. In the first step, we release 12 firms in stable landscape and each firm has a search scope
(the variable s) ranging from 1 to 12 to represent different levels of search scopes. Each simulation lasts
for 200 periods. By doing this for 30 times, we might find whether a statistically significant difference
can be found between the performances of different search scopes. The effect of complexity (K) was
also examined.

Next, the 12 firms would be released into our dynamic landscape by setting t = 2 and r = 0.12.
We need to analyze t and r separately to further find the effect of environmental turbulence. Thus,
by keeping K = 5 and t = 6, we simulate the four combinations of (t, r)—(2, 0.12), (2, 0.02), (10, 0.12)
and (10, 0.02), to represent four types of environmental turbulence—(high rapidity, large range), (high
rapidity, small range), (low rapidity, large range), and (low rapidity, small range). All the simulations
were 200-period for 30 times.

3.4. Dynamics of Landscape

Our simulation extends the traditional N-K fitness landscapes model. In most prior studies,
the landscape is stable. That is, given a specific combination of N and K, the landscape is fixed without
any change with time. As discussed in the previous sections, in the real business world, the value
of knowledge or technology would change with time because of t environmental turbulence. Thus,
the N-K landscape should be dynamic to realize better simulation [17].

We fluctuate the landscape by introducing variables t and r into the model to reflect the key
factors of environmental turbulence, rapidity and range and to capture the effect of turbulence as
simply as possible. In our model, the landscape would change randomly within certain simulation
period intervals, and t refers to the period interval when the simulator activates the landscape changes.
For example, t = 2 means the landscape itself will change every two periods. Thus, the larger t,
the lesser the rapidity. Meanwhile, r reflects the change range of landscape in the simulations. Suppose
the contribution of certain component b0 equals to c0 at the time t0, it would change randomly at time
t0 + t in our model and the simulator will randomly pick up a value from [c0 − r, c0 + r], to give a new
contribution c0’ of the same b0. Thus, the turbulent range would become larger by increasing r. Taking
t = 5 and r = 0.05 as an example, if a technology component has a contribution c = 0.6 in time period t1,
a new contribution c’ is picked randomly up from an interval [0.6 − 0.05, 0.6 + 0.05] in time period
t1 + 5.

Two main differences can be observed between our dynamic landscape simulation and prior
stable one. In the stable one, the overall value of technology would never diminish but could increase
and decrease in the dynamic one. Obviously, the later one could better simulate the real world because
no value of technology continues upwards all the time. There is also no need for a fixed optimal peak
in the dynamic one because the landscape fluctuates with time. Hence, we will measure the average
performance of all time periods to compare the result, instead of the last performance in the stable
one [18,51]. Figure 2 shows that in a stable landscape, performance rises and remains steady one it
reaches the optimal peak, while in our dynamic landscape, performance fluctuates.
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Figure 2. Simulation in stable and dynamic landscapes.

4. Results

4.1. Simulation Results in Stable Landscape

We attempted to analyze the effects of innovation search scopes on innovation performance in a
stable landscape. In our simulation process, we have 12 different scopes, ranging from 1 to 12. Different
from Rivkin and Siggelkow [19], we do not think the comparison of a certain number of scopes make
sense. Thus, we divided all 12 scopes into three groups, low scope (1 to 4), medium scope (5 to 8),
and high scope (9 to 12), and conduct the t-test on the differences between the three groups. All the
normality is checked before the ANOVA.

Table 1 shows that the mean differences between medium and low scopes are statistically significant
in all levels of technological complexity, except for K = 1 when the complexity is very low. That is, when
the technological complexity is not that low, the firm could expect a significantly higher performance by
increasing its innovation search scope from low to medium. We also calculate the advantage percentage
of medium scope on low, which is listed in the parentheses, to compare the effects of complexity. As
the K increased from 3 to 5, 7, 9, and 11, the advantage percentage expanded from 5.15% to 6.06%,
6.86%, 8.14%, and 11.2%, respectively, with statistical significance. Thus, high technological complexity
can make the medium scope more valuable.

Table 1. Mean difference in stable landscapes.

K MD between Medium and Low MD between High and Medium

K = 1 0.01043
(1.47%)

0.00103
(0.15%)

K = 3 0.03632 *
(5.15%)

0.00236
(0.32%)

K = 5 0.04371 *
(6.06%)

0.00351
(0.46%)

K = 7 0.04840 *
(6.86%)

0.00381
(0.51%)

K = 9 0.05661 *
(8.14%)

0.01217 *
(1.62%)

K = 11 0.06696 *
(9.70%)

0.02249 *
(2.93%)

Each result in Table 1 is an average over 30 landscapes. * The mean difference is significant at the 0.05 level.
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In terms of the differences between high and medium scopes, statistical significance exists only in
cases of high-level complexity (K = 9 and 11). Hence, a high search scope might not ensure significant
performance improvement. Only when the technology is very complex could a firm expect performance
advantage by enlarging the search scope from medium to high. The effect of complexity can still be
determined because the advantage percentage increases with K. Comparing the second and third rows
in Table 1, we also could find that the advantage of high as against medium is much less than that
of medium on low, which means that the positive effect of search scope on innovation performance
decreases as search scope enlarged.

Therefore, we might conclude that in the stable landscapes, the firm could realize significantly
higher innovation performance by enlarging its technology innovation scope from low level to medium
(unless the technology is much less complex), and high technology complexity would make the
enlargement more valuable. The advantage of high compared to medium is statistically significant
only in the case of high-level complexity.

4.2. Simulation Results in Dynamic Landscape

Next, we will examine the effect of Innovation Search Scopes in dynamic landscapes. Innovation
Search Scope would also be divided into three groups. But this time, variables t and r are introduced
into our model. Setting t = 2 and r = 0.12 (high rapidity and large range), we make the N-K fitness
landscape dynamic. Before the analysis with ANOVA, we also examine the normality of data.

According to Table 2, there are statistically significant advantages of medium scope on low, in all
levels of complexity, including the case of K = 1, which is different from the result in stable landscapes.
As the complexity increases (K, from 1 to 11), the advantage percentage (numbers in the parenthesis)
grows (from 3.08% to 10.4%), which means that high complexity makes the medium scope more
valuable in the turbulent environments, too. As to the differences between high scope and medium,
the statistical significance exists in the cases of not only high-level complexity (K = 9 and 11) but also
medium-level complexity (K = 5 and 7). This means that it is more valuable to enlarge the search scope
from medium to high in turbulent environments.

In order to better compare the advantage differences in dynamic and stable landscapes, we put
them into the same figure (regardless of statistical significance here). Figure 3 shows the advantage
percentage of medium scope on low both in dynamic and stale landscapes, which Figure 4 shows
that of high scope on medium. We might determine clearly from the two figures that the advantage
percentages are larger in a dynamic landscape than a stable landscape in all levels of complexity. Thus,
in a dynamic landscape, higher technology innovation scope is more valuable for firms.

Table 2. Mean differences in dynamic landscapes (t = 2, r = 0.12).

K MD between Medium and Low MD between High and Medium

K = 1 0.02107 *
(3.08%)

0.00358
(0.51%)

K = 3 0.04135 *
(5.99%)

0.00850
(1.16%)

K = 5 0.05222 *
(7.48%)

0.01558 *
(2.08%)

K = 7 0.05870 *
(8.49%)

0.01871 *
(2.49%)

K = 9 0.06124 *
(8.88%)

0.02718 *
(3.62%)

K = 11 0.06943 *
(10.4%)

0.03673 *
(4.99%)

Each result in Table 2 is an average over 30 landscapes. * The mean difference is significant at the 0.05 level.
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Figure 3. Advantage (medium on low) differences between stable and dynamic landscapes.

Figure 4. Advantage (high on medium) differences between stable and dynamic landscapes.

The differences between dynamic landscape and stable landscape interest us to further examine the
effect of environmental turbulence, by analyzing t and r separately. We constructed four combinations
of t and r: (2, 0.02), (2, 0.12), (10.0.02) and (10, 0.012). By comparing the advantage percentages in the
four situations, we try to make the effect of environmental turbulence clear.

Figures 5 and 6 show that the advantage percentage becomes larger as the turbulent rapidity or
range increases. The advantage percentage was the largest in a situation with high rapidity and large
range (7.48% and 2.08%), and least in a situation with low rapidity and small range (5.01%, 0.51%).
The results shown in the two matrices above confirm that both turbulent rapidity and range make the
enlargement of technology innovation scope more valuable. Turbulent rapidity and range had positive
effects on the relationship between innovation search scope and innovation performance.
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Figure 5. Mean differences between medium and low (K = 5). Note: each result in Figure 5 is an
average over 30 landscapes. * The mean difference is significant at the 0.05 level.

Figure 6. Mean differences between high and medium (K = 5). Note: each result in Figure 6 is an
average over 30 landscapes. * The mean difference is significant at the 0.05 level.

5. Conclusions

Using the formal N-K simulation method [17–19], the effect of innovation search scope on
innovation performance in the stable landscapes is examined by introducing the innovation search
scope into our model [19]. The simulation results show that firms could expect a significant improvement
in their innovation performance by increasing their innovation search scope from a low to a medium
level. A higher technological complexity causes the improvement to become larger, which means
a medium scope is more valuable in high complexity context. However, no statistical significance
was observed between high and medium scopes, unless the technology has very high complexity.
This finding further proves the effect of technological complexity on the relationship between innovation
search cope and innovation performance.

We make the fitness landscape dynamic to simulate reality better [17]. Thus, we extend the
traditional N-K model by introducing two variables, t for turbulent rapidity and r for turbulent range.
Using the turbulence matrix, we find that both turbulent rapidity and turbulent range have a positive
effect on the advantage percentage of higher scope. That is, higher innovation search scope would be
more valuable in an environment with higher rapidity or larger range and bring a larger advantage.
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Firms in a turbulent environment, such as new energy in Figure 1, should make full use of the greater
profit from the higher innovation search scope.

These findings have important managerial implications. First, firms could expect a considerably
higher performance by expanding its innovation search scope to a medium level. Compared to
ones that adopt the “incremental search strategy”, “radical search” firms could achieve much better
innovation performance; however, “the more, the better” is necessarily true. The positive effect of
innovation search scope on performance decreases and the advantages of high scope on the medium
are usually not significant. Thus, medium-level innovation search scope is suitable for most firms.
Second, technological complexity makes the higher scope more valuable. Hence, firms in the industry
with high technological complexity, such as computer and automobile, should focus more on the
enlargement of innovation search scope. Moreover, compared to the results in a stable landscape, all the
advantage percentage improves. Meanwhile, the performance differences between high and medium
scopes become more significant in the dynamic landscape. A firm could achieve better innovation
performance by expanding innovation search scope from medium to high, as long as the technological
complexity is low. Therefore, the enlargement of the innovation search scope is more valuable in a
turbulent environment such as China [1,52–54].

This paper extends the traditional N-K model to make it dynamic by introducing turbulent
rapidity and turbulent range, which better simulates the real world. However, dynamic N-K fitness
landscape should be developed further to make it more reasonable and reliable. The method of
simulation has some typical deficiencies that could be improved through the use of other methods,
such as a case study.
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