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Abstract: The realization of carbon emissions peak is important in the energy base area of China for
the sustainable development of the socio-economic sector. The STIRPAT model was employed to
analyze the elasticity of influencing factors of carbon emissions during 1990–2010 in the Xinjiang
autonomous region, China. The results display that population growth is the key driving factor for
carbon emissions, while energy intensity is the key restraining factor. With 1% change in population,
gross domestic product (GDP) per capita, energy intensity, energy structure, urbanization level, and
industrial structure, the change in carbon emissions was 0.80%, 0.48%, 0.20%, 0.07%, 0.58%, and
0.47%, respectively. Based on the results from regression analysis, scenario analysis was employed
in this study, and it was found that Xinjiang would be difficult to realize carbon emissions peak
early around 2030. Under the condition of the medium-high change rates in energy intensity, energy
structure, industrial structure, and with the low-medium change rates in population, GDP per capita,
and urbanization level, Xinjiang will achieve carbon emissions peak at of 626.21, 636.24, 459.53,
and 662.25 million tons in the year of 2030, 2030, 2040, and 2040, respectively. At last, under the
background of Chinese carbon emissions peak around 2030, this paper puts forward relevant policies
and suggestions to the sustainable socio-economic development for the energy base area, Xinjiang
autonomous region.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) in its Fifth Assessment Report (AR5)
confirms that the concentration of greenhouse gases has significantly increased since the Industrial
Revolution, which accelerated the speed of climate change primarily characterized by global
warming [1]. This will bring much more risks on the ecological safety, the food security, the
safety of water resources, and so on, which seriously affect the development of the society and
economy [2]. It is widely acknowledged that the significant increase in greenhouse gas concentrations
is mainly due to the energy-related carbon emissions caused by human activities [2,3]. With the
topic of global warming increasingly becoming a key environmental, political and economic issue,
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in order to mitigate the risks of global warming, the international community has made great efforts
to reduce carbon emissions [4]. As an emerging market, though simultaneous development and
accelerating industrialization, informatization, agricultural modernization, and urbanization, due to
its long-term growth mode of high consumption, high pollution and low output, China has become
the country with the largest carbon emissions [5]. In 2006, Chinese carbon emissions surpassed the
United States of America (USA) and became the world’s largest emitter [4]. In 2015, China accounted
for 28.65% of the world’s total carbon emissions, exceeding the sum of the USA (14.93%) and the
European Union (9.68%), which was ranked second and third in the world, respectively (Global Carbon
Project. http://www.globalcarbonatlas.org/en/ CO2 emissions). With this, China has incurred huge
attention from the world, which posed great international political pressures on China. In face of this
situation, China pledged at the Copenhagen Climate Summit to increase the percentage of renewable
energy in energy consumption structure to 15%, and to cut 40–45% of the energy intensity in 2020
when compared to the 2005 levels. Moreover, China promised at the Paris Agreement to increase the
percentage of renewable energy in energy consumption structure to 20% and to cut 60–65% of the
energy intensity in 2030 when compared to the 2005 levels, and make the best efforts to peak carbon
emissions around 2030 [6]. How to realize this promise without compromising the socio-economic
development has become an important issue that needs to be solved urgently. Therefore, empirical
analysis and projection on carbon emissions are useful for the government to provide a theoretical and
scientific basis for the sustainable development of low-carbon economy [4].

At present, the research on energy-related carbon emissions are mainly classified as the calculation
of carbon emissions [7–9], analysis of decomposition methods and influencing factors [5,10,11],
scenarios analysis and prediction of carbon emissions [12–15], the application of technology and
policy simulation to reduce carbon emissions [16–18]. Moreover, the studies on influencing factors
is a critical field to make projection and reduction policies for carbon emissions [5]. The research of
carbon emissions’ influencing factors are mainly focused on the social and economic fields, such as
population scale [19,20], urbanization level [21,22], economic development [23,24], energy consumption
structure [25], industrial structure [26], energy utilization efficiency [27], and so on. With the largest
carbon emissions, studies have increased on the influencing factors in China. Economic growth,
population size, and urbanization level have been confirmed to contribute the increase of carbon
emissions, while reducing energy intensity, decreasing the percentage of coal in energy consumption
structure, and adjusting industrial structure have been regarded as the main aspects to restrain carbon
emissions [5,19,28,29]. As to the projections, it is mainly carried out by constructing the relationship
model between carbon emissions and influencing factors, then using the scenario analysis to assess the
projections. The projection models mainly include Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) [29], EKC (the Environmental Kuznets Curve) [30], IAMs
(Integrated Assessment Model) [31], LEAP (Long-range Energy Alternative Planning) [32], GM (Grey
Model) [33], and so on. The STIRPAT model is an effective method for quantitative analysis of influence
factors on carbon emissions. It has advantages of comprehensive analysis and is considered as an
established carbon emissions model which has been used widely [5,19,28,29].

Under the background of carbon emissions peak, several scholars focused on the STIRPAT
model to analyze and project carbon emissions, thus assisting Chinese policymakers to formulate
reasonable sustainable approach of socio-economic development. These studies suggested that
Chinese carbon emissions will peak between 2020 and 2030 [4,14,15,34]. However, the national carbon
emissions peak would not mean that provincial emissions status at the regional-level [5]. China is
a vast country, which has great differences among provinces. There are huge discrepancies in the
natural geographical condition, economic development, income level, population scale, development
level, resident consumption tendency, and resource endowment among the different provinces [5].
For example, coastal areas are entering the post-industrialization stage, while western China are still
in the stage of accelerating industrialization [35]. Developed areas have optimized the industrial
structure to services, while central and western China are still dependent on the secondary industry [36].
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Energy base areas are major exporters of energy, but central and eastern China are major importers
of fossil fuel and electricity [37]. Some provinces have increased the percentage of renewable energy,
while energy base areas remain dependent on coal consumption [38]. In this condition, there is great
significance to forecast and analyze the provincial carbon emissions and put forward reduction strategy
in consideration of huge variation across different provinces [5]. From the perspective of provincial
analysis, Wen et al. found that under the medium growth rate of population, gross domestic product
(GDP) per capita and urbanization, with reducing energy intensity and the adjustment of industrial
and energy structure, the Beijing-Tianjin-Hebei area, the peak value of carbon emissions will appear
between 2029–2045 [12]. Wu et al. found that in Qingdao, one of 36 low-carbon pilot cities, located in
the Shandong province on the eastern coastal areas of China, the carbon emissions peak will appear
between 2020 and 2025, under the condition of population control, reducing energy intensity and
optimizing energy and industrial structure [6]. Zhang et al. found that if the population keep at a low
growth rate, the GDP per capita and energy intensity kept at a high growth rate, the peak value of
carbon emissions will appear at 2039 in Henan, the most populous province [15]. Cong et al. found that
if the carbon intensity declines faster than the GDP per capita growth rate in Shanxi, the largest carbon
emissions province in central China, the peak of carbon emissions will appear around 2030, if not, the
carbon emissions will not peak before 2040 [39]. As a consequence, there are significant differences on
the growth trends of carbon emissions at the provincial level. Moreover, the provincial differences pose
a serious challenge to achieve the promise that China made at the Paris Agreement [10]. Therefore,
it is necessary to understand the energy base area’s carbon emissions and formulate a sustainable
development road-map of carbon emissions peak.

In 2013, China promulgated the 12th five-year Energy Development Plan, which proposed to
build five national comprehensive energy bases in Xinjiang autonomous region, Shanxi province,
Ordos Basin, Eastern Inner Mongolia region, and southwestern China. Xinjiang is an important energy
base in China, which contains the largest proven reserves fossil fuel, wind power and solar energy
resources, the proved reserves of coal, gas, and oil accounting for 40%, 34%, and 30% of the national
total resources, respectively [40]. Xinjiang, as a bridgehead of The Belt and Road, an undeveloped area
in China, and is currently in the process of urbanization, agricultural modernization and accelerating
industrialization. As an important energy base of “North–South Coal Transportation”, “West–East
Natural Gas Transmission Project”, “North–South Oil Delivery”, and “West–East Power Transmission
Project”, Xinjiang exports large amount of energy to other regions, which resulted in the huge transfer
of carbon emissions [41]. Fossil fuel consumption has made great contributions to the socio-economic
development in Xinjiang, which poses great challenges to sustainable development. Currently, the
biggest dilemma is how to reduce carbon emissions without sacrificing at the expense of sustainable
socio-economic developments in Xinjiang. This case study aims to go through scenario analysis
and find out the pattern to realize carbon emissions peak as well as sustainable development in
the socio-economic sector of Xinjiang. For the research of carbon emissions in Xinjiang, population
scale and economic growth have been regarded as the key aspects contributing to the increase of
carbon emissions, energy intensity and renewable energy are the key aspects for carbon emissions
reduction [16,42]. Studies found that urbanization and industrialization also play significant roles to
the change of carbon emissions in Xinjiang [5]. On the basis of existing research results, this research
adopted STIRPAT model for the scenario analysis and considered the influencing factors such as
population, GDP per capita, energy intensity, urbanization level, energy structure, and industrial
structure. In order to verify the relationship between economic development and carbon emissions,
we introduced the EKC model into STIRPAT model. Then, empirical analysis was performed between
carbon emissions and the influencing factors. At last, by scenario analysis we put forward an optimized
low-carbon development mode for the construction of socio-economic sustainable development in
Xinjiang. This paper can serve as a reference for other energy base provinces or region with the
similar situation.
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Compared with other existing studies, there are two innovations or characteristics in this study.
First, we verified whether an EKC relationship exists between economic development and carbon
emissions in Xinjiang. Second, this study suggests a controlled way of socio-economic sustainable
development for achieving carbon emissions peak in Xinjiang. The rest of the paper is organized as
follows: Section 2 presents the study area, Section 3 provides the method and data, Section 4 provides
the empirical analysis results, Section 5 explains the scenario analysis and projection results, Section 6
puts forth the discussions, and Section 7 presents the conclusions of this study.

2. Study Area

Xinjiang autonomous region (73◦–96◦ E, 34◦–50◦ N) is the largest province and accounts for
one-sixth of the national land area in the northwest arid of China (Figure 1). It lies surrounded by
the Kunlun, Tianshan, and Altay mountains. The Tien Shan mountain ranges divides the Xinjiang
autonomous region into the Junggar and Tarim basins (Figure 1) [43,44]. The economy and population
have grown rapidly in the recent years. The gross domestic product (GDP) hit 812.57 billion Yuan, and
the GDP per capita reached 34,435 Yuan, which was less than 22% of the national level in 2015 [45].
The population was 23.59 million and urbanization level at 47.23% in 2015. The rapid socio-economic
growth caused the huge demand of energy consumptions during 1990–2015. For example, the
energy consumption was 659.67 million ton coal equivalent (Mtce) during 2011–2015 [45]. With the
socio-economic development, energy consumption will reach new heights in the future. However,
the huge demand of energy consumption will result in fast growth of carbon emissions. Xinjiang
approximately accounted for 5% of the national total carbon emissions, but only accounted for 1.35%
of Chinese total GDP in 2015. Carbon emissions per capita was 22.67 ton/person in Xinjiang, which
was 2.7 times the national level in 2015 [9]. Therefore, there are huge challenges and pressures to the
carbon emissions reduction while considering the fact that Xinjiang is a resource-dependent economic
province, with rapid urbanization and industrialization, and an immense energy demand.
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3. Data and Method

3.1. Data Sources

This study used three databases for carbon emissions projection in Xinjiang. We obtained the
carbon conversion factors from the 2006 IPCC National Greenhouse Gas Inventories and China
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Emission Accounts and Datasets (CEAD) [9]. The data of population, GDP per capita, energy intensity,
urbanization level, the percentage of coal in energy consumption structure, and the percentage of
secondary industry output to GDP from 1990 to 2015 were excerpted or calculated from the Xinjiang
Statistical Yearbook [45]. Additionally, time series of economic data was corrected using the Consumer
Price Index (CPI) in Chinese Yuan, with consideration of GDP constant prices in 2010 to evade the
effect of inflation. Finally, the population and GDP projection in Xinjiang (2020–2050) were obtained
from the Projection of Population and Economy to 2100 Under the Shared Socioeconomic Pathways in
China [46,47].

3.2. Calculation of Carbon Emissions

According to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, total carbon
emissions related to energy could be calculated in accordance with Equation (1):

Ct =
∑

jE j
t × LCV j ×CF j

t ×O j (1)

where Ct denotes total carbon emissions in year t, E j
t represents consumption of fuel j in year t, LCV j

denotes lower calorific value of fuel j, CF j
t denotes carbon emissions factors of fuel j in year t, and O j

represents oxidation rate of fuel j. j represents different fossil fuel.

3.3. STIRPAT Model

The STIRPAT model derived from the IPAT model [48,49]. It describes the environmental effect of
human activities [50] and is expressed as:

I = P×A× T (2)

where I denotes environmental impact, P denotes the population, A represents the affluence, T denotes
the technology level. However, the IPAT model cannot allow hypothesis testing [13], it also separates
the other drivers behind environmental impact [51], and it assumes the elasticity of P, A, T is the same,
which means P, A, T have the same contributions to environmental impact [52]. Reformulating the
IPAT model to a stochastic form can overcome its limitations [53], which can be given as follows:

I = aPbAcTde (3)

where a is the model coefficient, b, c, d is the elasticity of P, A, T, e is the model random error. If a, b, c, d,
e are all equal to 1, STIRPAT model can be seen as a same form of IPAT model [29]. In the empirical
studies, taking Equation (3) logarithms, it can be transformed as the following:

ln I = a + b ln P + c ln A + d ln T + e (4)

Besides population, affluence, and technology, there are many other social factors which also
have the influence on environment. Many researchers have conducted to introduce additional social
factors to STIRPAT model [54,55]. In this study, taking into account the specific circumstances and
learning from previous studies, population, GDP per capita, energy intensity, urbanization rate, energy
consumption structure, and industrial structure were introduced into STIRPAT model to analyze the
impact of influencing factors on carbon emissions. Therefore, Equation (4) can be given as follows:

ln I = a + b ln P + c ln A + d ln T + e ln E + f ln U + g ln S (5)

where I represents carbon emissions (million ton), P denotes population (million person), A refers to
GDP per capita (ten thousand Yuan/Per person), T denotes energy intensity (ton/ten thousand Yuan),
E represents energy consumption structure (the percentage of coal in primary energy consumption
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structure), U represents urbanization rate, S is the industrial structure (the proportion of secondary
industry output in GDP).

3.4. Environmental Kuznets Curve (EKC)

In order to testify the relationship between economic development and carbon emissions, we
introduced the (EKC) into the STIRPAT model [56]. The EKC is a widely supported hypothesis as
whether there exists an “inverse U-curve” relationship between economic development and carbon
emissions or not [57]. In this study, the quadratic term of GDP per capita was introduced in STIRPAT
model to test the existence of the EKC. Equation (5) can be given as follows:

lnI = a + b lnP + c lnA + h (lnA)2 + d lnT + e lnE + f lnU + g lnS (6)

where c represents elasticity of GDP per capita, h represents elasticity of quadratic term of GDP per
capita. From Equation (6), we can obtained the elasticity (EEIA) of GDP per capita to the carbon
emissions [11].

EEIA = c + 2 h lnA (7)

If h was the negative value, it means that there is an “inverse U-curve” relationship between GDP per
capita and carbon emissions in Xinjiang.

3.5. Ridge Regression

Ridge regression analysis was used to fit the STIRPAT model. Ridge regression analysis is an
improved ordinary square regression method, where regression sensitivity is reduced by avoiding
multiple collinearity of variables. Multiple collinearity refers to the high linear correlation between
two or more explanatory variables in multiple regression models. It will lead to the expansion of
the variance for the parameter estimation in the ordinary least square (OLS), making the regression
model unstable and unreliability of the regression coefficients [29]. Ridge regression is one of the most
effective methods to deal with multiple collinearity. Ridge regression can reduce large standard errors
among the independent variables, through the tradeoffs of bias-variance in independent variables, the
satisfactory biased estimation of smaller mean square error can be obtained [5,29].The usage of ridge
regression is more flexible. This flexibility is the combination of qualitative and quantitative analysis,
which plays an unique role in solving multiple collinearity [58].

4. Empirical Analysis

4.1. Features and Trajectories of Carbon Emissions and Influencing Factors

Carbon emissions were calculated based on Equation (1) for the period from 1990 to 2015. Figure 2
shows carbon emissions have an upward trend from 53.86 to 436.92 million ton during 1990–2015,
with an annual increase of 8.8%. We can see the growth rate has accelerated during 2005–2015, which
means, there must be huge pressures on carbon emissions reduction in the future.

Because the metric of each variable are differences, in order to cancel the metric differences,
the standardized method (subtracting means and dividing by the standard deviations) is used to
handle the data of carbon emissions and influencing factors in Xinjiang. Figure 3 shows the temporal
variation of standardized carbon emissions and influencing factors. The trends of carbon emissions and
influencing factors can be divided into two stages (Figure 3), namely slow growth during 1990–2004
and rapid growth during 2005–2015. During the period of 1990–2004, China fully carried out the reform
and opening up policy. The economic development mode was transformed from planned economy
to market oriented economy, and the growth rate of socio-economic development was relatively
fast. Since the 1990s, Xinjiang implemented the advantage resource transformation strategy, which
accelerated the process of industrialization, and the growth of energy consumption led to sustained
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increase in carbon emissions, with an average annual growth rate of 5.7%. It can be seen that energy
intensity fluctuates obviously from 1990 to 2004. Energy structure and energy intensity increased
slightly during 1994–1996, then continued to decline again after 1996. During the period of 1990–2004,
carbon emissions and other influencing factors showed a slowly growth trend (Figure 3).
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Figure 3. Trend of carbon emission and its driving factors after standardized during 1990–2015
in Xinjiang.

However, carbon emissions have increased relatively faster during 2005–2015, and influencing
factors fluctuated obviously during this period. With the exploration and development of mineral
resources and fossil energy, large numbers of large-scale heavy chemical projects started, the rapid
development of industry led to the fast growth of energy-related carbon emissions in Xinjiang, with
an average annual growth rate of 10.5% during 2005–2015. From 2005 to 2010, energy structure
showed a fluctuating trend of rise and decline. Then after 2011, energy structure and the proportion
of secondary industry output showed a downward trend and energy intensity increased slightly.
China put forward and implemented the “Western Development Strategy” to improve the level of
socio-economic development in the western region after 2001. The socio-economic development in
Xinjiang was rapid after 2005. It can be seen that GDP per capita shows almost an exponential growth,
and carbon emissions also increased rapidly during 2005–2015 (Figure 3). The population growth was
also relatively fast, from 15.3 million persons (1990) to 23.6 million persons (2015), with an increase
of 54%. It is not difficult to find that the urbanization level also showed a trend of sustained growth
during 1990–2015. This is because of the economic development, which attracted much more rural
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people to employment in the urban area. It can also be seen that the proportion of secondary industry
output showed an increasing trend during 1990–2010, but it decreased after 2011. The secondary
industry was mainly composed of coal–chemical industries, iron and steel industries, power plants,
and other industries. They are dominated by high energy consumption and high pollution. The
implementation of coal–chemical industries and coal-power plants increased the consumption of coal.
Due to the high energy consumption in coal–chemical industries and coal-power plants, the fluctuation
of energy intensity was obvious after 2005 in Xinjiang.

4.2. Unit Root Test and Conintegration Test

In order to overcome the hypothesis of pseudo regression that may cause by direct regression of
non-stationary in time series, it is necessary to test the stationarity of time series before establishing a
regression model. The Augmented Dickey-Fuller (ADF) test is an effective method for the stationarity
test of time series. To check whether the residual is stationary or not, if the residual does not have unit
root, it is proved that there is a cointegration relationship between variables, and if there is a unit root,
it is the opposite [59–62]. In the ADF test using Eviews9.0, the options ‘trend’ and ‘intercept’ should be
added, the results show that at their first order difference of Augmented Dickey-Fuller test (Table 1),
the ADF values of LnP, LnA, LnA2, LnT, LnE, LnU, LnS, and LnI are smaller than the critical values at
the 1% significant level, which indicating that the hypothesis can be rejected at least 99% confidence
level. It indicates that data of LnP, LnA, LnA2, LnT, LnE, LnU, LnS, and LnI are stationary at their
first order difference. Therefore, this gives the indication that the variables LnP, LnA, LnA2, LnT, LnE,
LnU, LnS, and LnI are all integrated at the first order. Then, the cointegration relationship between
carbon emissions and influencing factors were tested by Engle–Granger method. Using Eviews 8.0
software to carry out the cointegration test and obtained the unit root test results of the regression
equation. The results show that the ADF test statistics of the residual term’s time series is −5.706,
which is smaller than the critical value of –3.788 at the 1% significance level, the null hypothesis of ‘no
cointegration’ is rejected at 1% level because of trace statistics being more than the critical value of
−3.788. Therefore, there is a cointegration relationship between time series of LnP, LnA, LnA2, LnT,
LnE, LnU, LnS, and LnI.

Table 1. Results of the Augmented Dickey-Fuller (ADF) test at first order difference.

ADF Test Critical Values (1%) Prob. *

LnI −6.79 −4.42 0.00
LnP −7.70 −4.42 0.00
LnA −7.04 −4.42 0.00

(LnA)2 −5.31 −4.42 0.00
LnT −7.65 −4.44 0.00
LnE −8.63 −4.42 0.00
LnU −8.41 −4.50 0.00
LnS −6.60 −4.47 0.00

Note. * at the 1% significant level.

4.3. Ridge Regression Estimation

The regression analysis among variables were carried out by SPSS21.0 (Statistical Product and
Service Solutions) statistical software, linking with carbon emissions and influencing factors from 1990
to 2010. As shown in Table 2, the ordinary least square (OLS) was used to make a regression analysis
of the multicollinearity of independent variables in the model, then to evaluate their variance inflation
factor (VIF). VIF is the most commonly used measurement of the multicollinearity of independent
variables in the regression model. Generally speaking, if the VIF value is greater than 10, serious
multicollinearity among variables is indicated [5,29,57].

Table 2 shows the results between dependent variable and independent variables by Equation (6).
The R2 correlation coefficient is 0.99, and the value of F-statistic is 153.3. Additionally, the VIF of
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all variables are far greater than 10, which means that there is severely multi-collinearity among
independent variables. It further mentions that OLS results are not reliable to reflect the relationship
between carbon emissions and influencing factors in Xinjiang.

Table 2. Ordinary Least Squares results.

B SE T Sig VIF

LnP 1.96 1.53 1.28 0.22 324.31
LnA −0.20 0.50 −0.41 0.69 669.89
LnA2 0.36 0.14 2.55 0.02 220.14
LnT −0.31 0.14 −2.19 0.05 40.55
LnE 0.29 0.36 0.81 0.43 14.88
LnU −1.37 0.93 −1.47 0.17 197.12
LnS 0.45 0.27 1.65 0.12 14.32

Constant 7.68 1.59 4.84 0.00

Note. R2 = 0.99, F = 307.56, Sig. = 0.

Then, we used the ridge regression estimation to carry out regression analysis in this study.
Because the ridge regression is a biased estimate, to retain as much information as possible, the K
value should not be overly large, and the K value at when the ridge trace is basically stable should be
used [5,29]. When the ridge parameter K was equivalent to 0.2, the coefficient of determination R2

was 0.99, the regression coefficient of each explanatory variable was stabilized, and the corresponding
regression analysis results are displayed in Table 3. The coefficients of explanatory variables all passed
the significant test of 5%. We can see R2 is 0.99, and the F value also allow the 1% significant test in
Table 3. This means that the fitting of ridge regression estimation is accurate, and the Equation (6) can
be expressed as:

lnI = −0.72 + 0.80 lnP + 0.19 lnA + 0.28 (lnA)2
− 0.20 lnT + 0.07 lnE + 0.58 lnU + 0.47 lnS (8)

Table 3. The results of ridge regression analysis (K = 0.2).

B SE(B) Beta T Sig

LnP 0.80 0.05 0.20 14.14 0.00
LnA 0.19 0.01 0.21 18.07 0.00
LnA2 0.28 0.04 0.14 5.77 0.00
LnT −0.20 0.02 −0.19 −8.85 0.00
LnE 0.07 0.21 0.01 0.33 0.74
LnU 0.58 0.04 0.18 14.05 0.00
LnS 0.47 0.10 0.14 4.61 0.00

Constant −0.72 1.11 0.00 −0.64 0.52

Note. R2 = 0.99; F-statistic = 143.079; Sig = 0.

As shown in Table 3, population scale is the key factor for the increase of carbon emissions. When
population increases by 1%, carbon emissions will increase by 0.80%. GDP per capita is another key
factor influencing carbon emissions increase. If GDP per capita increases by 1%, carbon emissions
increase by 0.19%. Energy intensity is the key factor contributing to carbon emissions reduction, as
1% decrease in energy intensity will lead to carbon emissions decrease by 0.20%. Energy structure,
urbanization rate, and industrial structure are the other factors influencing carbon emissions, as 1%
changes, 0.07%, 0.58%, and 0.47% will change in carbon emissions, respectively.

Clearly, we can see the (lnA)2 coefficient is positive in Table 3, which confirms that in the study
period or in the most recent stage, there is no relationship between economic development and
carbon emissions based on EKC in Xinjiang. Based on Equation (7) and Equation (8), the predicted
elasticity coefficients for carbon emissions from energy consumption for GDP per capita increase from
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10,000 yuan to 70,000 yuan, as described in Table 4. According to the absolute values of the coefficients,
we can conclude that the elasticity coefficient of energy consumption (EEIA) in Xinjiang increases as
the GDP per capita increases. This is mainly because the increase of GDP per capita introduces higher
levels of consumption per capita. Thus, energy consumption and carbon emissions also increase
accordingly. As shown in Table 4, with the increase in GDP per-capita, the impact on carbon emissions
is gradually increasing, which is determined by the current stage of economic development in Xinjiang.
However, there was less variation in elastic coefficients of carbon emissions, Zhang et al. implies
that the rapid increase in prosperity and the advance of science and technology will contributed
significantly to reducing carbon emissions [11]. Wang et al. indicated that once the society becomes
rich enough, people will pay more attention to the environment and put effort into new efficient
low-carbon technology, so as to effectively use related approaches that greatly improve environmental
issues [57]. Wang et al. suggests that economic growth is both a problem and a solution in terms of
emissions. While emissions tend to increase during the early stages of economic growth, there comes a
point when emissions begin to decrease as income increases [63]. Currently, Xinjiang is still in the stage
of economic growth at the expense of environmental deterioration. As the most potential development
region in western China, fast industrialization and urbanization will still lead to the increase of carbon
emissions in Xinjiang. Therefore, Xinjiang needs to make great efforts to change the mode of economic
growth and take a long way to realize sustainable socio-economic development.

Table 4. Elasticity coefficient of the gross domestic product (GDP) per capita influenced on
carbon emissions.

A 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000
EEIA 5.44 5.67 5.84 5.96 6.07 6.16 6.23 6.30 6.36 6.41 6.46 6.51 6.55

∆EEIA 0.23 0.16 0.12 0.10 0.08 0.07 0.06 0.06 0.05 0.05 0.04 0.04

Note. A is GDP per capita (Yuan/Person, constant prices in 2010), EEIA is elasticity coefficient, ∆EEIA is the variation
value of elasticity coefficient.

4.4. Model Verification

In order to examine the accuracy of the STIRPAT model, the regression analysis among variables
were carried out by SPSS21.0 statistical software, linking with carbon emissions and influencing factors
from 1990 to 2010. Carbon emissions of Xinjiang from 2011 to 2015 were obtained based on Equation (8)
and reserved for model verification. Figure 4 shows the calculated and simulated carbon emissions.
The results illustrate that the simulated values were basically consistent with the calculated values
from 2011 to 2015. The average relative error was 5.3% during 2011–2015. It implies that STIRPAT
model can be used to project carbon emissions in Xinjiang.
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5. Scenario Analysis

5.1. Scenarios Construction

From the regression analysis results, influencing factors have significant effects on the carbon
emissions change. The change rates of influencing factors might lead or delay the emergence of
carbon emissions peak. Therefore, by means of scenario analysis, the effects of different parameter
combinations on the future carbon emissions in Xinjiang were analyzed. Generally, population and
economic growth will cause increase in carbon emissions. In contrast, reducing energy intensity,
optimizing energy, and industrial structure are conducive to carbon emissions’ reduction. Therefore,
we separated influencing factors as two categories: positive factors (population, GDP per capita,
urbanization level) and negative factors (energy intensity, energy structure, industrial structure).
Further, we assembled influencing factors at different change rates for each scenario. In this study,
we divided annual mean change rates of influencing factors during 2020–2050 into three levels: Low
growth rate, medium growth rate, and high growth rate, which is denoted by “Low”, “Medium”, and
“High”, respectively (as shown in Table 5). The data of population and GDP per capita in Xinjiang
during 2020–2050 were extracted from the literature [46,47].

Table 5. Parameters setting for scenario analysis from 2020 to 2050 in Xinjiang.

Growth Rate Time

2020 2025 2030 2035 2040 2045 2050

Population (P)/
(million person)

Low 23.92 24.80 25.44 25.96 26.39 26.66 26.75
Medium 23.94 24.86 25.55 26.16 26.69 27.08 27.32

High 24.07 25.15 26.05 26.88 27.67 28.35 28.93

GDP per capita (A)/
(ten thousand

Yuan/Per person)

Low 4.51 5.55 5.71 5.63 5.73 5.52 5.46
Medium 4.65 5.62 6.50 7.05 7.70 8.38 8.93

High 4.68 5.64 6.67 7.67 8.82 9.89 10.54

Urbanization level
(U)/%

Low 48.33 49.45 50.60 51.77 52.97 54.20 55.46
Medium 49.52 51.91 54.43 57.06 59.82 62.72 65.76

High 50.38 53.74 57.33 61.15 65.23 69.58 74.22

Industrial level (S)/%
Low 38.22 37.83 37.46 37.08 36.72 36.35 35.99

Medium 37.83 37.08 36.35 35.63 34.92 34.23 33.55
High 37.46 36.35 35.27 34.22 33.21 32.22 31.27

Energy intensity (T)/
(ton/ten thousand

Yuan)

Low 1.52 1.37 1.24 1.12 1.01 0.92 0.83
Medium 1.43 1.22 1.05 0.89 0.76 0.65 0.56

High 1.28 0.97 0.74 0.56 0.43 0.33 0.25

Energy structure (E)/%
Low 61.63 57.73 54.07 50.65 47.44 44.44 41.62

Medium 59.48 53.76 48.60 43.93 39.71 35.89 32.44
High 56.21 48.02 41.03 35.05 29.94 25.58 21.86

As the Xinjiang’s urbanization level was significantly lower than the national level during
1990–2015, we referred to the IIASA’s (International Institute for Applied Systems Analysis) projection
of Chinese urbanization rate as the high growth rate of urbanization during 2020–2050 [64]. By
averaging the historical growth rates and with reference to the historical urbanization levels’ change
during 1990–2015, we calculated the medium and low annual growth rates of urbanization level for the
period of 2020–2050 (as shown in Table 5) [45]. The growth rate of industrial structure for the period of
2020–2050 was obtained from literature [65]. By comparing energy intensity and the proportion of
fossil fuel consumption in China, it is found that Xinjiang was much higher than the national level. We
assumed that Xinjiang still has a long way to meet the intended National Determined Contribution
(NDC) made by China at the Paris Agreement. Therefore, we set up Chinese intended NDC about
energy intensity and energy structure at 2030 in the Paris Agreement as the high annual change rates
to energy intensity and energy structure for the period of 2020–2050 in Xinjiang (as shown in Table 5).
The medium and low annual growth rates of energy intensity and energy structure were calculated
from historical data (1990–2015) in Xinjiang Statistical Yearbook [45].



Sustainability 2019, 11, 4220 12 of 18

In consideration of the above assumptions and combination of these influencing factors at different
growth rates, we assembled in 16 scenarios as demonstrated in Table 6.

Table 6. Description of 16 scenarios.

Scenarios
Positive Factors Negative Factors

Population
(P)

GDP Per
Capita (A)

Urbanization
Level (U)

Energy
Intensity (T)

Energy
Structure (E)

Industrial
Structure (S)

L-L Low Low Low Low Low Low
L-M Low Low Low Medium Medium Medium
M-L High High Medium Low Low Low
M-M Medium Medium Medium Medium Medium Medium
M-H Medium Medium Medium High High High
H-L High High High Low Low Low
H-M High High High Medium Medium Medium
H-H High High High High High High

LMHM Low Medium Medium Low High Medium
MHML High High High Medium Medium Low
HML High High Medium Medium Medium Low

LHML Low High High Medium Medium Low
HLMH High Low Low Medium Medium High
MHML Medium Medium High High High Medium
HMLM High Medium Low Medium Medium Medium
LMH Low Medium Medium Medium Medium High

5.2. The Projection of Carbon Emissions

Figures 5 and 6 shows the projection of carbon emissions under 16 scenarios from 2020 to 2050.
It can be summarized in three patterns: Peak scenarios at 2030, peak scenarios at 2040, and scenarios
without peak. It is clear that there are differences about carbon emissions in the peak scenarios, which
could be arranged from small to large as “HLMH”, “L-M”, “LMH”, “L-L” with the peak value of
459.53, 626.21, 636.24, and 662.25 million ton, with the corresponding peak time occurring at 2040, 2030,
2030, and 2040, respectively (Figure 6).
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6. Discussion

Under the development patterns of scenario “HLMH” and “L-M”, carbon emissions will be
small and peak times occur at 2030 and 2040. However, these scenarios demand that Xinjiang should
maintain a certain socio-economic growth rate. Clearly, these development patterns are counter to
the future social and economic development trend of Xinjiang, because it optimizes the environment
at the expense of improving the living standards and industrial structure. Under the development
patterns of scenario “L-L”, carbon emissions will be high and peak time occurs in 2040. However, this
scenario demands that Xinjiang should maintain a low growth rate in socio-economic development.
It is clear that this pattern is in opposition with the trend of economic, social, and environmental
harmony and sustainable development, which is contrary to the trend of economic development
in China. For the development pattern of scenario “LMH”, carbon emissions peak will occur in
2030. This scenario demand that Xinjiang should maintain at a low growth rate in population and
medium-high growth rates in socio-economic development and technological advances. After 2014,
the aging process of population has been obviously accelerated and economic development has entered
the new normal in China. In recent years, Xinjiang has carried out a supply-side structural reform
to change the mode of economic growth through the rational allocation of resources, eliminate high
energy-consuming production capacity, and optimize the industrial structure. Since 2015, the economic
growth of Xinjiang has been dominated by the tertiary industry, the proportion of secondary industry’
output has decreased significantly, and energy consumption structure has gradually transformed from
high-carbon coal to low-carbon natural gas. Therefore, the development pattern of scenario “LMH”
conforms to the requirement of sustainable development of the socio-economic sectors in Xinjiang, and
it is a more feasible development pathway to achieve the peak of carbon emissions. It has been found
that economic growth, population growth, and urbanization are the most influential driving factors to
stimulate carbon emissions increase, the decline of energy intensity, adjustment of industrial structure,
and optimization of energy structure are the effective ways to reduce carbon emissions. From the
perspective of population factors, the influence of population scale is higher than that of urbanization.
While under the condition of reasonably population control, the local government should pay a great
of attention to the process of urbanization, which has its objective law and should not blindly seek
its level. The process of urbanization should develop in harmony with economy and society. At the
same time, Xinjiang should improve the quality of urbanization, especially improve the technical
capacity of the labor force, prepare for the development of energy-saving industries, and improve the
industrial structure.
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Rapid economic growth leads to the increased demand for energy consumption, but economic
growth can also by adjusting industrial structure and developing clean technologies to reduce energy
intensity. Since Xinjiang is an important energy base region of energy production and power export,
its industrial structure depends heavily on energy consumption. It is a key goal to improve the quality
of economic development by promoting the effective transformation and technological progress from
high energy consumption sectors to low energy consumption sectors in the secondary industry. At the
same time, the development level of tertiary industry is relatively low, and the effect on reducing the
intensity of regional carbon emissions is not obvious. Therefore, while on the condition of reducing the
proportion of the secondary industry and increasing the proportion of the tertiary industry, Xinjiang
should pay a great deal of attention to optimizing the internal structure of the tertiary industry, focusing
on the development of the low-carbon industry of tertiary industry, improving the regional industrial
structure, and reducing the energy intensity of industrial carbon emissions. From a technical standpoint,
there is still a large space for the reduction of energy intensity. Therefore, local government can draw
lessons on advanced energy consumption patterns from the developed countries to reduce carbon
emission intensity. Due to the absolute dominant position of coal in energy consumption structure,
the change of energy consumption structure seems to have little influence on carbon emissions, but
in fact it has great potential in carbon emissions’ reduction. In addition, energy structure has little
effect on restricting carbon emissions, promotes the development of non-fossil fuel in the power
plants, especially the development of wind and solar energy, and gradually develops wind and solar
power plants.

7. Conclusions and Policy Implications

In this study, we used the STIRPAT model to explore the relationship between carbon emissions
with population, GDP per capita, energy intensity, urbanization rate, energy and industrial structure in
an energy base, Xinjiang autonomous region, China. On the basis of relevant data, combined with
SPSS statistical software, we used the ridge regression method to fit the STIRPAT model. For the
analysis of the relationship between carbon emissions and economic development, we tested the EKC
hypothesis between carbon emissions and GDP per capita. Finally, based on the reliable fitting results
and comparison verification, scenarios analysis was adopted to project carbon emissions and put
forward relevant policy measures and suggestions to achieve sustainable socio-economic development.

Based on regression analysis, results show that there is non-existence of EKC hypothesis between
economic development and carbon emissions in Xinjiang, the carbon emissions peak testified four
scenarios during 2030–2040. The projection of carbon emissions can be classified into three categories:
Peak scenarios at 2030, peak scenarios at 2040, scenarios without peak. Under the peak scenarios
at 2030, peak value of the scenario “L-M” and “LMH” will emerge at 626.21 and 636.24 million ton,
respectively. Under the peak scenarios at 2040, peak value of the scenario “L-L” and “LMHM” will
emerge at 459.53 and 662.25 million ton, respectively. The carbon emissions peak of scenario “LMH”
will occur at 2030, and it suits the requirement for the sustainable socio-economic development in
Xinjiang. This scenario demand that Xinjiang should maintain at a low population growth rates and a
medium-high growth rate in socio-economic development and technological advances.

In order to narrow the socio-economic gap with other inland provinces and realize leap-forward
development in Xinjiang, Chinese central government asks 19 provinces and municipalities about
“counterpart aid” to Xinjiang by the model of reconstruction on disaster areas after 2010. With the
implementation of “counterpart aid” policy, large amounts of capital will be invested to Xinjiang in
the future. In 2016, China promulgated the population policy of “comprehensive two-child”. The
population growth in Xinjiang is bound to continuously increase in the future. Xinjiang is a typical
underdeveloped energy base in China, and economic development must to be the primary task in
the foreseeable future. Based on the above-mentioned background of socio-economic development,
carbon emissions will increase accordingly. Therefore, the focus of carbon emissions reduction and
sustainable socio-economic development should maintain at a low population growth rate, keeping a
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reasonable growth rate in socio-economic development, reducing the energy intensity, significantly
increasing the share of renewable energy in energy consumption structure, continuously reducing
the percentage of coal consumption in energy consumption, and optimizing the energy consumption
structure. At the same time, Xinjiang should make use of the geographical advantages of Eurasian
center to develop tertiary industry and tourism, so as to optimize the industrial structure and reduce
the dependency on secondary industry.
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Nomenclature

IPCC Intergovernmental Panel on Climate Change
AR5 Fifth Assessment Report (AR5)
USA United States of America
STIRPAT Stochastic Impacts by Regression on Population, Affluence and Technology
EKC Environmental Kuznets Curve
IAMs Integrated Assessment Model
LEAP Long-range Energy Alternative Planning
GM Grey Model
GDP Gross domestic product
CEAD China Emission Accounts and Datasets
CPI Consumer Price Index
OLS ordinary least square
VIF variance inflation factor
IPAT Impact = Population × Affluence × Technology
I carbon emissions
P population
A GDP per capita
T energy intensity
E energy consumption structure
U urbanization rate
S industrial structure
EEIA elasticity of GDP per capita
SPSS Statistical Product and Service Solutions
IIASA International Institute for Applied Systems Analysis
ADF Augmented Dickey-Fuller
NDC National Determined Contribution
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