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Abstract: The Yangtze River Delta (YRD) is China’s largest urban agglomeration with a rapid
urbanization process. This paper analyzes the dynamic relationship between urbanization rate,
energy intensity, GDP per capita, and population with CO2 emissions in YRD over 1990–2011 based
on the extended STIRPAT model, impulse response function, and variance decomposition. A support
vector machine model was constructed to further predict the scenarios of YRD’s CO2 emissions
from 2015–2020. The results show that YRD’s CO2 emissions continuously increased during the
sample period and are predicted to increase over 2015–2020. Energy intensity is the most influential
factor, both in the short and long term, and the total population contributes the least. However,
the influencing magnitude of energy intensity tends to decrease in the long term. The increase of
urbanization rate is still accompanied by the increase of CO2 emissions in YRD, but an inverted-U
shape relationship between them may exist in the long term. The contribution of GDP per capita to
CO2 emissions is higher than the population and urbanization rate, and its contribution rate for CO2

emissions is growing. The Kuznets curve does not exist in the current YRD.
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1. Introduction

1.1. Research Background

Cities are the center of energy consumption, and environmental pressure will become more severe
during the urbanization process (Al-Mulali et al., 2013; Chikaraishi et al., 2015) [1,2]. According to
IEA (2008) [3], more than 66% of the world’s energy is consumed by urban demand and 70% of CO2

emissions are contributed by cities.
China, one of the largest developing countries, is experiencing rapid urbanization. From 1978–2017,

its urbanization rate rose from 17.92–58.52 percent (NBS, 2018) [4]. This may be the main reason
for and background behind the sharp increase of energy consumption and related CO2 emissions in
China. Gregg et al. (2008) [5] pointed out that China had become the largest emitter of CO2 emissions
in 2006. To address the severe environmental problems, the National Development and Reform
Commission released China’s new urbanization plan (2014–2020), which advocates the concept of an
ecological civilization and calls for the formation of low-carbon production mode and lifestyle during
the urbanization process.

However, the regional urbanization process is very imbalanced in China, and CO2 emissions
present different characteristics in different regions because of different urbanization rates and the
regional development model (Shen et al., 2005; Zhang and Lin, 2012; Lin et al., 2017) [6–8]. That means
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the country-level recommendations are not very instructive for regional low-carbon development.
Therefore, it is necessary to choose a specific region as the research object so as to realize the dual
strategies of urbanization and the transition to a low-carbon economy in China.

This paper aims to explore the influencing factors and characteristics of YRD’s CO2 emissions
during its urbanization processes. YRD was selected for the following reasons. First, as China’s largest
urban agglomeration, YRD plays an important strategic role in the national economic development and
urbanization process. In 2017, YRD contributed 20.5 percent of national GDP and nearly 35.3 percent
of China’s imports and exports (NBS, 2018) [9]. President Xi declared at the China International
Import Expo in 2018 that YRD’s regional integration has risen to the national strategy. According
to the Outline of the Yangtze River Delta Regional Integration Development Planning issued in 2019, the
regional integration of YRD mainly refers to regional cooperation in some key areas such as coordinated
regional development, collaborative innovation, infrastructure, ecological environment, public services,
opening-up, and unified market. Second, YRD’s ecosystem function and environmental quality have
been deteriorating during the urbanization. The fast-growing economy and energy-intensive industries
resulted in huge energy consumption. Its total primary energy consumption reached 643.19 million
tons of standard coal equivalent in 2017, which accounted for 14.33 percent of the whole nation (NBS,
2018) [9]. Such a huge energy consumption brings about considerable CO2 emissions and serious air
pollution. According to the “Development plan of Yangtze River Delta Urban Agglomeration” issued by
the State Council in 2016, the number of days in which air quality reached the healthy standard was
less than 250 days in the whole year. Therefore, analyzing the characteristics of emissions and future
potential scenarios during the urbanization can not only help mitigate the tremendous environmental
pressures in YRD, but also have a crucial instructive role in China’s low-carbon urbanization.

1.2. Contributions of this Paper

Research into the relationship between urbanization and CO2 emissions has attracted significant
attention (Chikaraishi et al., 2015; Bekhet and Othman, 2017; Martínez-Zarzoso and Maruotti,
2011) [2,10,11]. These studies mainly focused on answering three questions: influencing factors,
correlation, and magnitude (Shi and Li, 2018) [12]. The influencing factors involve urbanization itself
and its mechanism on CO2 emissions such as the economy, population, technology, lifestyle, industry
structure, transportation, and urban planning (Chikaraishi et al., 2015; Madlener and Sunak, 2011) [2,13].
For example, Yang et al. (2015) [14] found that urbanization would result in population concentration
and a more carbon-intensive urban lifestyle. Wang et al. (2019) [15] adopted a factor-reversible
structural decomposition method to analyze the impact of urbanization on carbon emissions in China.
The results showed that urbanization changed the consumption pattern, and the transportation sector
became one of the largest emission sectors. Azizalrahman and Hasyimi (2019) [16] classified the urban
sector drivers of CO2 emissions into residential, commercial, and industrial factors and examined their
different roles in different income-level countries.

Studies on the correlation and magnitude are mainly empirical research. A variety of approaches
or models are adopted, and the logarithmic division decomposition index method (LMDI), the IPAT or
STIRPAT model, and Kaya and U-Kaya (introducing the urbanization factor into the Kaya Identity) are
the most-used classical models. However, huge differences exist in the research findings in this field
(Wang et al., 2016) [17]. For instance, as for the factor of economic development, Sharma (2011) [18]
and Zhang et al. (2017) [19] both found that GDP per capita had a significant positive effect on CO2

emissions. However, Azizalrahman and Hasyimi (2019) [16] found that GDP per capita only presented
positive correlations with CO2 emissions in upper-middle and lower-middle income countries, and the
correlation was negative in high income countries.

As to the factor of urbanization, Sharma (2011) [18] used dynamic panel data of 69 countries from
1985–2005 and found that the influence of urbanization on CO2 emissions was negative and statistically
insignificant. Yao et al. (2018) [20] employed the threshold regression model and also found that
urbanization can reduce the CO2 emissions in China. However, the reducing role is diminishes with
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the increase of the urbanization rate. In contrast, Zhang and Lin (2012) [7] used the STIRPAT model
based on panel provincial data from 1995–2010 in China and found that urbanization continuously
increased CO2 emissions. Zhu et al. (2012) [21] used a panel of 20 emerging countries from 1992–2008
and found that an inverted U-shaped curve did not exist between urbanization and CO2 emissions.
Shahbaz et al. (2017) [22] found that there existed a U-shaped relationship between urbanization and
CO2 emissions in Malaysia based on the STIRPAT model using the data from 1970–2011.

The related literature review revealed that the influencing factors of CO2 emissions demonstrate
obvious geographical characteristics and country-level differences. Many kinds of effects exist along
with the urbanization process, which bring about different influences on CO2 emissions. Therefore,
further empirical research on urbanization and CO2 emissions is still needed, even if they have
been widely studied. Some scholars further pointed out that countries that are experiencing a rapid
urbanization process should be given more attention (Wang et al., 2016) [17]. In this context, studies on
China, a large and developing country with a rapid urbanization process, have increased in recent
years (Sheng and Guo, 2016; Wu et al., 2017; Yang et al., 2018) [23–25]. However, these studies mainly
focus on the country or industrial levels, and few investigate the influence of urban agglomeration
regions such as YRD (Ouyang et al., 2018) [26]. Ouyang et al. (2018) [26] analyzed YRD’s energy
rebound effect and found that the rebound effect of the industrial sectors was as high as 40.04%. Li et
al. (2018) [27] analyzed YRD’s CO2 emissions efficiency, which is “the ratio of the target CO2 emissions to
the actual CO2 emissions, and the target CO2 emissions can be calculated by data envelopment analysis (DEA)
model”. However, neither of the above two studies comprehensively considered the influencing factors
of CO2 emissions. Song et al. (2015) [28] and Zhu et al. (2017) [29] used the LMDI model to analyze
the influencing effect of energy-related carbon emissions in YRD. However, they did not consider the
impact of urbanization on CO2 emissions and did not analyze the dynamic effects of different factors.
Considering the crucial roles of YRD in the Chinese low-carbon urbanization process, this scarcity
would influence the effectiveness of policies.

To fill in this research gap and contribute to the literature in this field, this paper proposes an
extended STIRPAT model to measure the influencing factors on CO2 emissions under the background
of YRD’s urbanization. Considering data availability and the focus on the fastest urbanization phase,
our study selected the period from 1990–2011. Different from most existing literature, the contributions
of this paper are two-fold: (1) In order to comprehensively analyze YRD’s CO2 emissions, we combine
the STIRPAT model, the vector autoregression (VAR) model, the impulse response function (IRF),
and variance decomposition (VD) to analyze the cointegration and dynamic correlation between CO2

emissions and different factors, as well as the impact magnitude of each factor. (2) We construct
the support vector machine (SVM) model based on the influencing factors to predict the different
emission scenarios of YRD. In order to improve the accuracy of forecasting, the future values of all the
influencing factors are defined based on the government policy goals. The results obtained from the
above models will be useful for YRD’s governments to formulate effective policies and better deal with
the emissions pressure during the urbanization.

The rest of the paper is organized as follows: Section 2 describes the models and methodology of
STIRPAT, VAR, IRF, VD, and SVM. Section 3 introduces the study area and data source. Results and
discussions are presented in Sections 4 and 5. Finally, the conclusions are summarized in Section 6.

2. Methodology

2.1. STIRPAT Model

Ehrlich and Holdren (1971) [30] proposed the IPAT model to explain the impact of human activities
on the environment. The model can be described as I = PAT, where I denotes the environmental
pressure, P represents the population, A represents affluence, and T is technology. This model has been
considered a useful analytical tool to study the relationship between urbanization and environmental
pressure (Shahbaz et al., 2017) [22]. However, it has some limitations, which we will not present here.
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Based on this model, Dietz and Rosa (1997) [31] and York et al. (2003) [32] developed the STIRPAT
model, which can be expressed as:

Ii = αPi
βAi

γTi
δei, (1)

where Ii, Pi, Ai, and Ti have the same meanings as the original IPAT model, α, β, γ, and δ are estimated
parameters, and ei is the random error. After taking the logarithm of both sides of Equation (1), the
model is transformed into a linear equation:

ln(Ii) = α+ β ln(Pi) + γ ln(Ai) + δ ln(Ti) + ei, (2)

where α and ei are the Napierian logarithms of α and ei in Equation (1). β, γ, and δ reflect the elasticity
relationship, i.e., the percentages of environmental change, which are caused by one percentage in one
of the influencing factors when the others stay the same.

The STIRPAT model allows additional factors to be added as long as they are conceptually
consistent with the multiplicative specification described in Equation (1). It has become one of the
classical models to examine the influencing forces of CO2 emissions. To further our analysis, we
extended the STIRPAT model by incorporating urbanization level into it. Referring to previous
literature, the specific extended model is shown as:

CARBONt = αtENERTENβ
t PERGDPγt POPULATIONδ

t URBANλ
t et, (3)

where CARBON denotes the CO2 emissions (environmental pressure), PERGDP is GDP per capita, which
stands for the economic development level or affluence, POPULATION and URBAN represent the total
population size and urbanization rate, respectively, ENERTEN refers to energy intensity (technology
level), and t represents time. Taking logs, Equation (3) can be converted to the logarithmic form:

ln CARBONt = αt + β ln ENERTENt + γ ln PERGDPt + δ ln POPULATIONt + λ ln URBANt + et (4)

2.2. Vector Autoregression Model

The VAR model is formulated by taking every endogenous variable in the system as the function of
lagged values of the endogenous variables themselves (Sims, 1980) [33]. This model is mainly employed
to “analyze and predict the dynamic impact of systematic random disturbance, the magnitude and
nature of the effect and the sustained time” (Hao et al., 2018) [34]. It provides a useful tool for analyzing
the dynamic influence among the variables of one system. The mathematical expression of the VAR
model is as follows (Talbi, 2017; Chi et al., 2017) [35,36]:

Yt = α+ A1Yt−1 + A2Yt−2 + · · ·+ ApYt−p + εt (5)

In this paper, Yt is a vector consisting of 5 endogenous variables as Yt = (CARBONt, ENERTENt,
PERGDPt, URBANt), where A1, A2· · ·Ap are the parameter matrix, and εt is the disturbance vector.

2.3. IRF and VD

In the VAR model, “when the disturbance term of an endogenous variable is plus one-unit or one-unit of
standard deviation while other disturbance terms of endogenous variables remain constant, the corresponding
value of the explanatory variable is called impulse response function” (Olson et al., 2014) [37]. In IRFs, the
shock on one variable will not only influence this variable itself, it also can pass to other endogenous
variables through the dynamic structure of VAR. As such, IRF can measure the current and future
values of variables in the system when there is a standard deviation shock of a random disturbance
term. The vector moving average (VMA) can be obtained from Equation (5) (Wang et al., 2018) [38]:

Yt = ϕ0εt + ϕ1εt−1 + ϕ2εt−2 + · · ·+ ϕpεt−p + · · · (6)
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where ϕp = (ϕp,ij) are coefficient matrixes, p = 0, 1, 2 · · · . The response function of yi, which is caused
by the impulse of yi, is ϕ0,ij, ϕ1,ij, ϕ2,ij · · · .

VD provides another approach to describe the system dynamics compared to IRF. It is mainly
utilized to analyze the contribution of each structural shock to the change of the endogenous variables,
often estimated by variance (Sims, 1980) [33]. By decomposing the mean squared error of the whole
system into the contribution of shocks on each variable, variance can help to understand the relative
significance of each random disturbance’s effect.

2.4. SVM

The SVM was proposed by Cortes and Vapnik (1995) [39], which is a supervised machine learning
approach based on the VC dimension (for Vapnik–Chervonenkis dimension) of statistical learning
theory and the structural risk minimization principle. It can overcome some traditional difficulties
including dimension disaster and over learning (Wang et al., 2018) [40] and thus out-performs
similar methodologies such as the classical statistical model (Mladenović et al., 2016) [41]. For
non-linearly-separable problems, the core idea of an SVM is mapping the input variables of a
low-dimensional space into a high-dimensional feature space to find an optimal hyper-plane. For
mathematical equations of SVMs, readers can refer to Li et al. (2018) [42] and Wang et al. (2018) [38].

3. Study Area and Data Source

3.1. Study Area

YRD, the largest urban agglomeration in China and the sixth largest urban agglomeration in the
world, includes Shanghai city, Zhejiang province, and Jiangsu province. It is one of the most prosperous
regions, and the urbanization process of YRD is very fast. Moreover, its integration development has
attracted more attention recently. However, just as stated in “Development plan of Yangtze River Delta
Urban Agglomeration” issued by the State Council in 2016, the problem of environmental pollution has
become more serious and outstanding in YRD with the rapid urbanization process, and ecological
construction should be put in a prominent position.

3.2. Data Source

Considering the availability of data and the focus of this paper on the analysis between the
urbanization process and CO2 emissions, the period of 1990–2011 was chosen as the main sample
period. The five variables and their data source in the STIRPAT model are described as follows.
All of the data were from the Shanghai Statistical Yearbook (2004–2012), the Jiangsu Statistical Yearbook
(2004–2012), the Zhejiang Statistical Yearbook (2004–2012), and the New China 60 Years Statistics Compilation.

3.2.1. Population

Generally speaking, the population size is the number of populations in a specific geographical
area or an administrative region. Some scholars have long been concerned about the relationship
between population and CO2 emissions (Shi, 2003) [43]. However, the elasticity coefficient of carbon
emissions to population change is different in different regions because it is impacted by many economic
and social factors (Cole and Neumayer, 2004) [44].

This study used resident population as the statistical caliber. As shown in Figure 1, the population
in YRD showed a continuous upward trend, growing from 123.36 million in 1990 to 150.28 million
which accounted for 11.15 percent of the whole nation. One possible reason for such a steady rise may
be its attraction of fast economic development to non-registered migrants.
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Figure 1. Population size of Yangtze River Delta (YRD) from 1990–2011. 
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Considering the availability of data and the comparability of statistics among different regions, 
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2 presents that the urbanization process of YRD was much earlier than that of the whole country. The 
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to that of YRD from 1995–2003. YRD’s urbanization level reached 64.68 percent in 2011. It is worth 
noting that the urbanization rate of Shanghai was already over 80 percent in 2004 and reached as high 
as 89.32 percent. 
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3.2.3. GDP per capita 

The economy of YRD has increased rapidly since 1990. By 2011, its GDP had become 10662.5 
billion CNY and contributed about 21.3 percent to the national GDP. Following previous studies  
(Wu et al., 2017) [24], this paper adopted GDP per capita to measure affluence in the STIRPAT model. 
GDP figures are deflated to 2005 prices.  

As shown in Figure 3, YRD’s GDP per capita has demonstrated a gradual increase trend since 
1990, reaching 51,922.08 CNY in 2011. The average growth rate was as high as 11.79 percent during 
the sample period. 
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3.2.2. Urbanization Rate

Considering the availability of data and the comparability of statistics among different regions,
our study defines the urbanization rate as the proportion of the urban resident population to the total
population, in line with the work of Zhang et al. (2017) [19] and Ouyang and Lin (2017) [45]. Figure 2
presents that the urbanization process of YRD was much earlier than that of the whole country. The
urbanization rate of China rose from 36.22 percent in 2000 to 51.27 percent in 2011, which is equivalent
to that of YRD from 1995–2003. YRD’s urbanization level reached 64.68 percent in 2011. It is worth
noting that the urbanization rate of Shanghai was already over 80 percent in 2004 and reached as high
as 89.32 percent.
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3.2.3. GDP per capita

The economy of YRD has increased rapidly since 1990. By 2011, its GDP had become 10662.5 billion
CNY and contributed about 21.3 percent to the national GDP. Following previous studies (Wu et al.,
2017) [24], this paper adopted GDP per capita to measure affluence in the STIRPAT model. GDP figures
are deflated to 2005 prices.

As shown in Figure 3, YRD’s GDP per capita has demonstrated a gradual increase trend since
1990, reaching 51,922.08 CNY in 2011. The average growth rate was as high as 11.79 percent during the
sample period.
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3.2.4. Energy Intensity

Technology level plays an important role in reducing CO2 emissions in different ways such as
increasing energy efficiency, improving economic structure, and developing decarbonization technology.
Energy intensity, calculated as energy consumption per unit of GDP (taken the year of 2005 as the
GDP base period), is one of the most frequently-used variables in the STRIPT model for measuring
the technology level (Liu and Xiao, 2018) [46]. As illustrated in Figure 4, the overall trend of energy
intensity in YRD was downward, decreasing from 1.71 tce/ten thousand CNY in 1990 to 0.69 tce/ten
thousand CNY in 2011, at an average annual rate of 4.23 percent. The disparity in energy intensity
between the three regions gradually diminished during the sample period.
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3.2.5. CO2 Emission

Many relevant studies adopt the variable of carbon dioxide per capita to describe the environmental
pressure. Actually, in the IPAT model, I refers to total environmental pressure (Ehrlich and Holdren,
1971) [30]. Therefore, we employed total CO2 emission as the explained variable. According to the
actual situation of energy consumption in YRD, this study estimated CO2 emission based on final
energy consumption. Since YRD’s electricity and thermal power consumption are supplied by both
domestic regions and outside neighboring cities, it is not appropriate to simply treat electricity and
thermal power as final energy consumption for the calculation. Thus, in this empirical study, we only
calculated the CO2 emissions from domestic electricity and thermal power production by considering
the fuel input during their production.
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By referring to the China Energy Statistical Yearbook 1996–2012, 11 major fuels (raw coal, washed
coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, LGP, refinery dry gas, and natural gas) were
selected to calculate CO2 emission by multiplying the consumption of each fuel with the carbon
emission factor coefficient and the standard coal coefficient as follows:

G =
11∑

i=1

Gi j =
11∑

i=1

Ei j ×Ci × Fi ×
44
12

(7)

where G is the total CO2 emissions in YRD, Gij represents CO2 emissions by the ith fuel in j region, Eij
denotes the consumption of the ith fuel in j region, Ci is the carbon emission factor coefficient of the
ith fuel, and Fi is the standard coal coefficient of the ith fuel. The values of Ci and Fi are presented in
Table 1.

Table 1. Carbon emission factor and standard coal coefficient.

Fuel Ci (t/tce) Fi

Raw coal 0.7559 0.7143 kgce/kg
Washed coal 0.7559 0.9000 kgce/kg

Coke 0.8550 0.9714 kgce/kg
Crude oil, 0.5857 1.4286 kgce/kg
Gasoline 0.5538 1.4714 kgce/kg
Kerosene 0.5714 1.4714 kgce/kg

Diesel 0.5921 1.4571 kgce/kg
Fuel oil 0.6185 1.4286 kgce/kg

LPG 0.5024 1.7143 kgce/kg
Refinery dry gas 0.4602 1.5714 kgce/kg

Natural gas 0.4483 1.330 kgce/m3

Source: Ci comes from the IPCC National Greenhouse (2006). Fi comes from the China Energy Statistical
Yearbook 2008.

YRD’s CO2 emissions are presented in Figure 5. It indicates that the emissions continuously
increased from 272.45 million metric tons (MMT) in 1990 to 1238.06 MMT in 2011 at an average
annual growth rate of 7.47 percent. The growth rate from 2001–2011 was much higher than that from
1990–2000, and the corresponding rate gap was as much as 4.79 percent. Moreover, Figure 5 shows the
obvious regional disparities of CO2 emissions among Shanghai, Jiangsu, and Zhejiang, although they
all showed an increasing trend. Specifically, the annual increase rate of CO2 emissions in Shanghai was
only 5.03 percent (the lowest) during the period over 1990 and 2011, while the annual increase rate of
CO2 emissions in Jiangsu and Zhejiang was as high as 7.37 and 9.92 percent (the highest), respectively.
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4. Empirical Results

4.1. Unit Root Test

It is necessary to test the stationarity of time series before we conduct the cointegration analysis,
in order to avoid some problems like spurious regression. One commonly-applied approach to do the
unit root test is the augmented Dickey–Fuller (ADF) test. Usually, the ADF test can be described as
Equation (8):

∆xt = α+ βt + δxt−1 +

p∑
j=1

λ j∆xt− j + ut (8)

in which the subscript t is the tth period, and t in Equation (8) is a time variable, representing a
deterministic trend (if any) defined by t. ∆xt = xt-xt-1, where x is the first-order differencing variable, α
is the constant term, ut is the error term, and δ, β, and λ are all the regression coefficient.

In the ADF test, the null hypothesis is H0: δ = 0, which represents that there are unit roots and
series are nonstationary; the alternative hypothesis is H1: δ < 0, which stands for that there are no unit
roots and series are stable. The test results are shown in Table 2.

Table 2. Results of the augmented Dickey–Fuller (ADF) test.

Series ADF Statistics Result First Difference ADF
Statistics Result

lnCARBON 0.50 (0.98 *) nonstationary D(lnCARBON) −2.61 (0.047 *) stationary
lnENERTEN −1.19 (0.65 *) nonstationary D(lnENERTEN) −3.31 (0.03 *) stationary
lnPERGDP −2.64 (0.1 *) nonstationary D(lnPERGDP) −2.31 (0.049 *) stationary

lnPOPULATION 2.0 (0.99 *) nonstationary D(lnPOPULATION) −3.44 (0.02 *) stationary
lnURBAN −1.41 (0.55 *) nonstationary D(lnURBAN) −5.03 (0.007 *) stationary

* indicates the statistical significance at the level of 5%.

It turns out that all variables were nonstationary series, but were stable at a significance level of
5% with the first difference. Therefore, time series were considered stable after taking the first-order
difference, which met the necessary conditions of constructing the cointegration model.

4.2. Johansen Co-Integration Test

The validity of the regression analysis will be influenced if the time series is nonstationary.
Co-integration theory indicates that stationarity may occur when two or more non-stationary time
series are specially combined. Thus, equilibrium relations can be found among these nonstationary
time series. The Engle–Granger test and Johansen cointegration test are frequently adopted methods
to test the long-term equilibrium relationship. We chose the Johansen cointegration test to analyze the
long-term equilibrium relationships between CO2 emissions and the four variables described, because
it is a multivariate cointegration method and can precisely determine the number of cointegration
relationships through the trace statistic test. To save space, interested readers can refer to Johansen and
Juselius (1990) [47] and Ouyang and Lin (2017) [45] for a detailed description.

Table 3 shows the results of the Johansen cointegration test. According to the trace statistic test,
there was four cointegrations among LNCARBON, LNENERTEN, LNPERGDP, LNPOPULATION,
and LNURBAN since the trace statistics were greater than critical value at the 5% significance level.
Thus, it can be confirmed that there exist long-term equilibrium relationships between CO2 emission
and energy intensity, economic development, population, and urbanization in the YRD.

Considering the standardized cointegration coefficients in the assumption of existing cointegration
relations, we extracted a cointegration equation as follows:
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ln CARBON = 2.5 ln ENERTENt + 0.61 ln PERGDPt + 1.16 ln POPULATIONt + 2.2 ln URBANt − 14.59
(0.074) (0.056) (0.44) (0.16)
[33.96] [11.05] [2.65] [13.55]

(9)

Each number in the parentheses of Equation (9) represents the standard deviation of the explanatory
variable above it, and each number in the square brackets of Equation (9) represents the t-statistic of
the explanatory variable above it. All coefficients were positive, and this is in line with the economic
interpretation, which means the increase of the four explanatory variables will result in the further
increase of CO2 emissions in YRD. Specifically, CO2 emissions will respectively increase by 2.5%, 2.2%,
1.16%, and 0.6%, with a 1% increase in energy intensity, urbanization level, population, and GDP
per capita.

Table 3. The results of the Johansen cointegration test.

Hypothesized No. of CE (s) Eigenvalue Trace Statistic 0.05 Critical Value Prob. **

None * 0.981936 155.4233 69.81889 0.0000
At most one * 0.846057 75.14633 47.85613 0.0000
At most two * 0.617977 37.72283 29.79707 0.0050

At most three * 0.602754 18.47736 15.49471 0.0172
At moss four * 0.000668 0.013365 3.841466 0.9078

* represents the rejection of the hypothesis at the 0.05 level. ** MacKinnon–Haug–Michelis (1999) p-values.

4.3. IRF Results

To describe the duration of the impacts and the dynamic disturbance of whole system when one
variable changes, IRF is employed in this section. Figure 6 depicts the results of IRF, which was carried
out using a horizon of ten-year periods. The horizontal x-axis represents the duration period of the
impacts (unit: year), and the vertical y-axis represents the impact magnitude of a shock. It can be
seen that:

1. One standard deviation shock in energy intensity will result in a sharp increase of CO2 emissions,
reaching its maximum in the second period. After that, CO2 emissions ill decrease rapidly and
finally stagnate after the eighth period.

2. CO2 emissions in YRD showed a positive response to GDP per capita both in the short and long
term; however, the intensity of response reduced over time. The response trajectory was similar
to the shock in energy intensity on CO2 emissions. However, the duration of impact was longer
than that from energy intensity. The CO2 emissions level did not achieve stagnation before the
tenth period.

3. In response to shocks coming from the population, the CO2 emissions increased in the first
two periods and then decreased, with the reaction turning to a negative response in the third
period, slightly fluctuating between the fourth period and fifth period, and eventually stagnating
after that.

4. The reaction of CO2 emissions to shock in urbanization maintained a positive response state
firstly and reached its maximum in the second period. Then, the response gradually decreased
and reached its largest negative value at the end of the third period, then maintained a very small
negative value between the fourth and fifth period and eventually stagnating.

It can be seen that all reactions eventually converged, indicating that the VAR system was stable
and could improve the robustness of the estimation results.
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Figure 6. Response of CO2 emission to the influencing variables in YRD.

4.4. VD Results

In order to further examine the relative importance of the four variables to CO2 emissions in YRD,
VD analysis was used. It decomposes the mean squared error of one endogenous variable into the
contribution proportion of the shocks to all variables so as to understand the impact magnitude of
these variables. The results are reported in Table 4 and the variance decomposition for a ten-year
period was chosen to reflect both the short- and long-term effects.

Table 4. Variance decomposition of CO2 emissions.

Period S.E. CARBON (%) ENERTEN (%) PERGDP (%) POPULATION (%) URBAN (%)

1 0.048120 100.0000 0.000000 0.000000 0.000000 0.000000
2 0.056295 89.35247 7.132033 2.020358 0.132983 1.362158
3 0.059040 86.22024 9.546842 2.740183 0.179444 1.313292
4 0.060342 84.82223 10.11490 3.603223 0.190561 1.269086
5 0.060947 84.33591 10.18274 4.039191 0.193422 1.248743
6 0.061263 84.09282 10.14689 4.327790 0.194559 1.237940
7 0.061418 83.98242 10.10953 4.471183 0.204946 1.231927
8 0.061495 83.92371 10.08601 4.547782 0.212359 1.230137
9 0.061531 83.89404 10.07416 4.583483 0.219036 1.229288

10 0.061547 83.87862 10.06894 4.600212 0.223048 1.229182

For CO2 emissions in YRD, energy intensity shock contributes most to its variability. Its
contribution rate was 7.13% in the second period and then grew rapidly in the first five forecast periods,
reaching the maximum value of 10.18% in the fifth period. Then, the contribution rate decreased
slightly and reached 10.07% in the tenth period and overall represented an inverted U-shaped curve.

GDP per capita shock was the second contributor. At the two-year forecasting horizon, it accounted
for 2.02% of the forecast error variance and continuously increased to 4.6% at the ten-year horizon.

Urbanization ranked third in its relative importance. However, different from energy intensity
and GDP per capita, its contribution rate to the variability of CO2 emissions represented a slightly
decreasing tread, from 1.36% in the short term to 1.23% in the long term.
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Population had the least ability to explain the variability of CO2 emissions. It could only explain
0.13% of the forecast error variance in the short term, while slightly increasing to 0.22% in the long term.

4.5. Prediction of CO2 Emissions in YRD

4.5.1. Construction of the SVM Model

SVM is a method that can deal with small samples, nonlinearity, and high-dimensional pattern
recognition. CO2 emission time series in YRD are characterized by nonlinear processes, multiple
influencing factors, and short historical data, as described in Section 3. Therefore, an SVM model
will be constructed to predict YRD’s CO2 emission level from 2015–2020 in this section. The specific
procedure is as follows.

Step 1: Selecting the input and output variables. To ensure the uniformity and comparability of
the research, the influencing factors were still based on the extended STIRPAT model described in
the above sections. Then, CO2 emissions in YRD from 1990–2011 and its influencing factors could be
combined into a sample set (xi

0, yi
0), where xi is the input and yi is the output.

Step 2: Normalization of data. To eliminate the dimensional effects in the historical data, we
carried out the normalization processing of all input and out variables as following, so that all the data
were in the range of [0,1].

xi j =

x0
il − minx0

i j
i=1,2,··· ,n

maxx0
i j

i=1,2,··· ,n

− minx0
i j

i=1,2,··· ,n

, i = 1, 2, · · · , n; j = 1, 2, 3, 4 (10)

yi =

y0
i − miny0

i
i=1,2,··· ,n

maxy0
i

i=1,2,··· ,n
− miny0

i
i=1,2,··· ,n

, i = 1, 2, · · · , n (11)

Step 3: Selecting the kernel function. Mapping low-dimensional vectors into a higher-dimensional
space will increase the complexity of computing; therefore, the kernel function is needed, which is
considered a good solution to this problem. Selecting the right kernel function is the key to SVM. It
provides four basic kernel functions, and the radial basic function (RBF) is considered to be better
because of its simplicity, reliability, and efficiency (Mladenović et al., 2016). Hence, in this study, the
RBF was adopted.

Step 4: Determining training samples and parameter tuning. Before predicting the CO2 emission
level in 2020, it was necessary to test the validity of the SVM model. The test (learning) procedure
had two steps: selecting the training sample out of the sample dataset and estimating the separating
hyperplane based on this; evaluating the model’s performance in the left subset of the sample dataset.
Based on the study of Papadimitriou et al. (2014) [48], 80–95% of the whole sample dataset was needed
for evaluating the model’s performance. Therefore, we selected the historical data from 1990–2007 as
the training sample to obtain the SVM model, and this model was used to forecast the CO2 emissions
from 2008–2011. Then, the effectiveness of the SVM model could be verified by comparing the predicted
and actual values from 2008–2011.

During the training and predicting process, optimally choosing the SVM penalty parameter (C)
and the RBF kernel function parameter ơ2 was the key. The error of the prediction results was taken
as the evaluation criterion, and the appropriate values of C and ơ2 were determined according to the
performance of the verification set. After repeated tests, we can see that when C = 5.8 and ơ2 = 0.1, the
prediction results were satisfactory.

Step 5: Constructing the SVM model. After the parameters were optimally chosen, YRD’s CO2

emissions from 2015–2020 could be forecasted based on the SVM model.
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4.5.2. Prediction Results of CO2 Emissions

In order to improve the accuracy of forecasting, the future values of the four influencing factors in
this paper were all defined based on the government policy.

Energy intensity by 2020: The Comprehensive Work for Conserving Energy and Reducing Emissions for
the Twelfth Five-Year (2011–2015) Planning has explicitly set the goal that YRD’s energy intensity by
2015 should decrease by 18% compared with 2010. Further, the Comprehensive Work for Conserving
Energy and Reducing Emissions for the Thirteenth Five-Year (2016–2020) Planning stated that, at the end of
2020, energy intensity should further decrease by 17% on the basis of 2015. This paper adopted the
goals set by the two government documents as the benchmark scenario (0.49 tce/ten thousand CNY)
and further set the value floating up and down 0.5%.

Urbanization rate by 2020: According to the Regional Planning for the Yangzi River Delta Region, the
share of urban population in total will be up to 72% by 2020. This article adopted this goal by 2020 as
the benchmark scenario (72%) and further set the value floating up and down 0.4%.

GDP per capita by 2020: The Regional Planning for the Yangzi River Delta Region clearly put forward
the aim of YRD’s GDP per capita by 2020, that is 0.11 million CNY. This article adopted this goal as the
benchmark scenario and further set the value floating up and down 0.5%.

Population by 2020: According to the 13th Five-Year Planning for Population Development in Jiangsu
and Zhejiang Province issued in 2017, the permanent population in the two provinces will reach about
82 million and 57.5 million by the end of 2020, respectively. As for Shanghai, the government tends to
control population, and its National Economic and Social Development Outline for the Thirteenth Five-Year
Planning clearly indicated that the permanent population in Shanghai should not exceed 25 million by
2020. This article adopted these goals as the benchmark scenario (164.5 million) of YRD’s population
by 2020 and further set the value floating up and down 0.5%.

CO2 emissions prediction: By applying the above future values of the influencing factors into the
SVM model, we can get the predicted CO2 emissions from 2015–2020 (baseline scenario), as shown in
the second column of Table 5. The results were renormalized based on Equation (12):

∧
ys f (xs)

maxy0
i

i=1,2,··· ,n
− miny0

i
i=1,2,··· ,n

+ miny0
i

i=1,2,··· ,n
(12)

Table 5. Prediction of the impact of influencing factors on CO2 emissions in YRD under different
situations (MMT).

Year Baseline
Scenario

Energy Intensity Urbanization Level Per Capita GDP Population

+0.5% −0.5% +0.4% −0.4% +0.5% −0.5% +0.4% −0.4%

2015 1323.8 1324 1323.6 1325.3 1322.3 1325.9 1324 1328.8 1318.8
2016 1370.8 1370.9 1370.8 1372.3 1369.4 1372.9 1370.9 1375.5 1366
2017 1416 1416.1 1415.9 1417.4 1414.6 1418.1 1416.1 1420.4 1411.5
2018 1458.7 1458.8 1458.6 1460 1457.4 1460.7 1458.8 1462.8 1454.6
2019 1497.7 1497.7 1497.6 1498.9 1496.4 1499.5 1497.7 1501.3 1493.9
2020 1534.1 1534.2 1534.1 1535.3 1533 1535.7 1534.1 1537.3 1530.9

The result showed that CO2 emissions in YRD presented an observed increase from 2015 (1323.8
MMT) to 2020 (1534.1 MMT) under the baseline scenario, increasing by 37.2% compared with 2010.
Moreover, CO2 emissions increase compared to the baseline scenario, whichever influencing factor is
fine-tuned upward, as shown in Columns 3–10 of Table 5. However, when the four variables were
fine-tuned downward, the effects on CO2 emissions were different. A 0.5% increase in energy intensity
and per capita GDP had little impact on CO2 emissions. In contrast, the downward fine-tuning on the
urbanization rate and population caused an obvious decrease of CO2 emission level. Whether it was
fine-tuned upward or downward, the change impact of energy intensity on the baseline scenario was
the smallest among the four factors, and the impact of population, in contrast, was the largest.
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5. Discussion

5.1. The Overall Change in CO2 Emission Level

From 1990–2011, CO2 emission levels in YRD presented a continued growth trend. According
to the prediction, CO2 emissions will still increase by 2020. However, if we take ten years as an
observation period, we can find that the growth rate of CO2 emissions will show an inverted-U shape.
The growth rate between 2000 and 2010 was as high as 145.89%, which was the highest among the
three periods. By contrast, the growth rate from 2010–2020 was the lowest, which was only 37.2%, far
below that of 1990–2000 (66.93%).

Figure 7 illustrates the growth rate change trending of CO2 emissions from 1991–2011. It can be
divided into five parts: a slowing increase of the growth rate from 1991–1994 (except 1993), followed
by a sharp decrease in 1994–1997, then a significant increase in 1997–2004, followed by another obvious
decline from 2004–2009, and then a slight increase in 2009–2011.

The reason for a lower growth rate of CO2 emissions in 1994–1997 may be the relatively low
growth rate of the economy. From 1994–1997, China implemented a moderately tight fiscal and
monetary policy to tackle serious inflation. With these policies, the infrastructure investment slowed
down, and so did the energy consumption, which in turn resulted in the low growth rate of CO2

emissions. However, the outbreak of the Asian financial crisis in 1997 and the great flood in 1998
produced large shocks on the slowed domestic economy, which led the Chinese government to change
the previous policies into pro-active fiscal and sound monetary policies. These stimulated the domestic
market needs and accelerated the economic development, which in turn led to a huge increase in the
growth rate of energy demand and the related CO2 emissions. The reason for the decreasing growth
rate in 2004–2009 in Figure 7 was similar to that of 1994–1997. The government implemented sound
fiscal and monetary policies to tackle the inflation pressure and the increasing energy prices, which
curbed the growth rate of CO2 emissions. As for the increasing growth rate from 2009–2011 in Figure 7,
the reason may lie in China’s four trillion CNY investment plan after the global financial crisis in 2008.
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5.2. The Relationship between CO2 Emission and Urbanization Rate

The correlation between urbanization rate and CO2 emissions had a significant spatial heterogeneity
(Yao et al., 2018; Xu and Lin, 2015; Al-mulali et al., 2012) [20,49,50]. This paper revealed the urbanization
and CO2 emissions had a positive correlation in YRD. However, its shock effect on CO2 emissions was
not significant, far below the energy intensity. This is consistent with the study of He et al. (2017) [51].
Further, the shock effect was positive only in the short term. After getting the highest value, the
effect tended to decline and eventually became negative in the long term (see Figure 6). Moreover, its
contribution rate also showed the decline trend in the long term (see Table 4). These results indicated
that there may exist an inverted U-shaped relationship between urbanization and CO2 emissions in
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YRD in the long term. This is consistent with the study of Shi and Li (2018) [12], which revealed that
the relationship between urbanization rate and CO2 emissions may become negative in China, when
the urbanization rate reached the turning point (about 73%).

Structural transformation is considered to be a critical factor to understand the impact mechanism
of urbanization on CO2 emissions (Madlener and Sunak, 2011) [13], and the reason for high carbon
emissions in Chinese cities mainly lies in the industrial sector. This study calculated CO2 emissions of
YRD’s industrial sector from 1995–2011 based on Equation (7) and found that this sector accounted for
over 80% of total CO2 emissions in each year. This indicates that the initial stage of urbanization in
YRD required large investment in infrastructure and mainly depended on high energy-consuming
manufacturing. Therefore, related CO2 emissions increased with the increase of the urbanization rate.
Just as shown in Figure 8, the annual growth rate of CO2 emissions from the industrial sector increased
from 1.3% in 1996 to 25.7% in 2004, during which the urbanization rate increased from 37.14–53.5%
(see Figure 2). However, with the acceleration of the urbanization process, the increasing rate of CO2

emissions from the industrial sector decreased gradually, as shown in Figure 8. This may be due to the
low-carbon technology development and the transfer of energy-consuming industries to other regions
during the urbanization process. These results are consistent with the study of Shi and Li (2018) [12],
which pointed out that in the provinces where the urbanization rate and the proportion of service
sector were both high, such as Shanghai, Jiangsu, and Zhejiang, the carbon emissions increased with
the acceleration of the urbanization process at the beginning; however, the increasing rate of carbon
emission will gradually decrease after the urbanization rate reaches a relative high point.Sustainability 2019, 11, x FOR PEER REVIEW 16 of 20 
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5.3. The Relationship between CO2 Emission and Energy Intensity

The change of economic structure and the development of low-carbon technology can influence
energy intensity and thus exert an effect on CO2 emissions. This paper revealed that the impact of
energy intensity on YRD’s CO2 emissions was the greatest among all the influencing factors (see
Figure 6 and Table 4). According to the IRF research, the maximum value of the energy intensity’s
shock effect was the highest compared to other factors. The shock effect remained positive both in
the short and long term. The contribution rate of energy intensity to the change of CO2 emissions
was over 10%, both in the short and long term, which was also the largest compared to other factors
(see Table 4). According to the study of Wang and Zhao (2015) [52] and Shi and Li (2018) [12], the effect
of energy efficiency largely depended on the economic development and urbanization level. YRD, the
fastest growing economy with a high urbanization level, has an advanced technical level and high-tech
industries, which can greatly improve energy efficiency and reduce energy-related CO2 emissions.
In addition, the economic structure is gradually changing, and the tertiary industry increased from
33.4% in 1995 to 45.9% in 2011, which would significantly improve the energy intensity and reduce the
related CO2 emissions.
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However, after getting the highest value, the shock effect began to decline in the long term
(see Figure 6); so did the contribution rate, which became relatively stable in the long term (see
Table 4). This situation represents an inverted U-shaped curve and implies that the decreasing effect of
energy intensity may become relatively smaller in the long term. The small change of the simulation
results under different scenarios also verified the result (See Table 5). Some reasons can explain this.
According to the study of Lin and Zhu (2017), the industrial structure is an important factor influencing
energy intensity; however, the influence tends to be stable in the long term. This means the room
for improvement of YRD’s industrial structure was relative smaller in the long term, which in turn
influenced the continuous improvement of energy intensity. In addition, the impact of energy intensity
on CO2 emissions may become relatively stable once the energy structure achieves fundamental
transformation in the long term. The energy rebound effect may also restrain the decreasing effect, since
lower energy prices and extensive economic growth caused by improvement in energy efficiency will
in turn stimulate more energy consumption [45]. According to the study of Ouyang et al. (2018) [45],
the direct energy rebound of the YRD’s industrial sectors is approximately 40.04%.

5.4. The Relationship between CO2 Emission and GDP per Capita

It seems that most literature studies agree that GDP per capita has a positive influence on CO2

emissions, and this paper also demonstrated this. However, the studies differed in the magnitude
of this effect due to the regional difference. This paper showed the dynamic impact of GDP per
capita ranked the second among all the influencing factors, relatively smaller than energy intensity
(see Table 4). In contrast, the shock effect of GDP per capita on CO2 emissions lasted longer than all
other factors (See Figure 6). Moreover, the contribution rate of GDP per capita had the fastest growth
rate, increasing from 2.02 in the second period to 4.6 in the tenth period (see Table 4). The fine-tuning of
GDP per capita also had surprising and interesting results. Upward fine-tuning can obviously increase
the CO2 emissions; however, downward fine-tuning had almost no impact on CO2 emissions. These
all demonstrate that the fast growth of the economy in YRD was still accompanied by increasing CO2

emissions, and the turning point of the Kuznets curve has not yet appeared. The finding supports the
results obtained by Alam et al. (2016) [53].

5.5. The Relationship between CO2 Emission and Population Size

It is generally recognized that population size is an influencing factor for CO2 emissions. This
paper also revealed that total population had a positive influence on YRD’s CO2 emissions. As for
the magnitude of influence, however, its contribution was not significant. According to the results
of variance decomposition, the contribution rate of the total population to CO2 emissions was the
least compared to other factors, both in the short and long term. This finding is consistent with the
studies of Song et al. (2015) [28] regarding that population plays a negligible role in YRD’s CO2

emissions compared to economy scale and energy intensity. Wang and Zhao (2015) [52] also presented
that the effect of population on CO2 emissions is smallest in China’s developed regions and largest
in developing regions. The main reason might lie in the slow growth of population in YRD, which
may restrain its influencing force on CO2 emissions (Song et al., 2015) [28]. YRD, one of the most
developed regions in China, has a relatively higher cost of living and stricter population control
measures compared to the developing regions, which may influence the population inflow. In contrast,
the developing regions have a faster economic growth than the under developed ones and a lower
living cost than the developed ones, which make them more attractive for many people.

6. Conclusions

1. Johansen cointegration test results provided evidence of the existence of the cointegration
relationship among urbanization, population, economy growth, energy intensity, and CO2

emissions.
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2. During the urbanization process, YRD’s CO2 emissions continued increasing and was predicated
to further increase in the long term. However, the contribution of urbanization to emissions
continued to decline in the long term. The dynamic shock of urbanization on emissions in the long
term even changed to negative. These findings mean that there may exist an inverted U-shaped
relationship between urbanization and CO2 emissions when the turning point comes. Therefore,
there is no need for YRD’s government to sacrifice the urbanization process for emission reduction.
This is different from the suggestion that China should slow down the process of urbanization in
order to combat CO2 emission (Zhang and Lin, 2012) [7].

3. All the model results indicated that energy intensity had the greatest impact on YRD’s CO2

emissions. Therefore, increasing low-carbon technology levels and lowering energy intensity
is still the main task of the transition to a low-carbon economy in YRD. First, the efficiency of
energy utilization should be enhanced. YRD can fully take advantage of high-level foreign
investment itself to accelerate the introduction, digestion, and absorption of advanced low-carbon
technologies, establish bilateral or multilateral energy efficiency cooperation plans, and promote
the improvement of energy efficiency. Second, the energy structure should be further adjusted
by increasing the proportion of non-fossil energy consumption. The coal consumption should
be controlled, and economic and effective clean coal technologies should be applied. Moreover,
clean and renewable energy sources, such as wind, solar, biomass, geothermal, and water, should
be vigorously developed. The governments should actively promote the construction of nuclear
energy in Zhejiang and Jiangsu.

4. The contribution of GDP per capita to CO2 emissions is higher than the population and
urbanization rate. However, the finding related to GDP per capita, which needs to be emphasized
most, is its fastest growth rate contribution. This indicates that the economic development in
YRD is always accompanied by large emissions, and this trend is predicted to last in the future.
The Kuznets curve does not exist in the current YRD.

5. The results showed that population contributed the least to YRD’s CO2 emissions, far below
the three other factors, and the impact was negligible. This means that the policies related to
population control in YRD can hardly achieve emission reductions.
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