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Abstract: Based on a Bayesian Network Model (BBN), we established an ecological service
network system of the Jinghe River Basin in 2015. Our method consisted of using the distributed
eco-hydrological model (Soil and Water Assessment Tool (SWAT) model) to simulate water yield,
the Carnegie-Ames-Stanford Approach (CASA) model to estimate Net Primary Productivity (NPP),
the Universal Soil Loss Equation (USLE) model to calculate soil erosion and the Crop Productivity
(CP) model to simulate agricultural productivity to quantify the four ecosystem services. Based
on the network established, the key variable subset and the visual optimal state subset, which we
visualized, were analyzed and used to provide spatial optimization suggestions for the four kinds
of ecosystem services studied. Our results indicate that water yield, concentrated in the middle
and lower reaches of the mountain and river areas, is increasing in the Jinghe River Basin. NPP is
continuously increasing and is distributed in the middle and lower reaches of the mountain areas on
both sides of the river. Agricultural productivity also shows an upward trend, with areas of high
productivity concentrated in the southern downstream mountain areas. On the contrary, the amount
of soil erosion is declining, and the high erosion value is also declining, mainly in the upper reaches
of the basin (in the Loess Hilly Area). Additionally, we found that a synergistic relationship exists
between water yield, NPP and agricultural productivity, which can increase vegetation cover, leading
to enhanced agricultural productivity. However, water yield can be reduced as required in order
to balance the tradeoff between water yield and soil erosion. Clear regional differences exist in
ecosystem services in the river basin. In the future, the two wings of the middle and lower reaches
of the river basin will be the main areas of optimization, and it is likely that an optimal ecosystem
services pattern can be reached.

Keywords: Bayesian network; optimization; interaction; spatial modeling; joint probability
distribution

1. Introduction

Ecosystem services refer to all benefits obtained from an ecosystem, including direct and indirect
gains [1]. Because these services are closely related to human life and survival, it is important to
study their temporal and spatial changes under natural conditions, and in relation to the activities that
humans have undertaken both for their survival and for the development of the earth [2–5]. In 2001,
the United Nations implemented the Millennium Ecosystem Assessment International Cooperation
Project, which proposed that ecosystem services should be divided into four categories: supply
services, regulation services, support services and cultural services [1,6]. Complex interactions and
feedbacks exist between the ecosystem services, which can be thought of as either synergies or
trade-offs. The relationship between these services is crucial to the development and maintenance
of ecosystems [7]. Recently, research on ecosystems has focused on the relationship between the
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supply and demand of ecosystem services, including spatial trade-off and optimization, ecological
well-being and service flow [8–10]. With the development of different models and methods used in
these investigations, there has been an increase in the number of studies on the spatial pattern of
ecosystem services. Luisetti et al. [4] used a scenario analysis to study carbon storage and carbon
emissions in marine habitats in the UK; Petitgas et al. [10] developed a marine ecological data system
based on multi-table analysis to describe and detect spatial structures in ecosystems; Halouani et al. [11]
employed OSMOSE models and Eco3M-Med Models to develop new indicators to assess the impact of
fishing activity on marine ecosystems; Hong et al. [12] used wavelet power and coherence spectrum,
coupled ecosystem functions and monsoon climates to explore both the carbon and water exchange
in ecosystems under monsoon disturbances; Mao et al. [13] quantified the natural wetland-farm
conversion to study the natural wetland and farmland space-time patterns under the influence of
agricultural activities; Culhane et al. [14] evaluated the ‘risk to ecosystem service supply’ (RESS) of 99
aquatic ecosystems. Vörösmarty et al. [15] proposed ecosystem-based water security and sustainable
development; Vallecillo et al. [16] applied environmental economic accounting system-test ecosystem
accounting (SEEA-EEA) for 2012 nature recreational activities and developed ecosystem service
accounts to measure changes in natural capital; Villarreal et al. [17] used the Ecosystem Functional
Type (EFTS) method to evaluate whether vortex covariance sites are providing adequate representation,
and used their combined core sites to address questions regarding decadal and inter-annual variability
of ecosystem functional heterogeneity across the contiguous United States; Bernués et al. [18] studied
the relationship between farmers and non-farmers on agriculture and the environment in high-value
farmland, and explored the sustainability of farmland ecosystem services; Weitzman et al. [19] analyzed
the status of aquaculture research in recent years, and in doing so, called attention to the application
of the ecosystem services frameworks to promote sustainable development and recognized that
aquaculture is closely related to ecosystems; Ron I et al. [20] used the Bayesian network to simulate
ecosystem services and explored the applicability and flexibility of the model in ecosystem services;
Hooper et al. [21] investigated how the sensitivity assessment can be applied to ecosystem services by
considering the relationship between the sensitivity of the service and the sensitivity of the habitat
in which it is supplied; Firbank et al. [22] explored how closed farm ecosystem services can meet
the needs of humanity in the future; Leung et al. [23] proposed an ecosystem framework for the
sustainable development of shared economic ecosystems; Danilo et al. [24] provided new insights
into the experimental method for assessing the actual size of the ecosystem service by studying the
resistance of bats to agro-ecosystems.

In light of the current status of ecosystems research, the Bayesian network has begun to be applied
to ecosystem services, and optimization of the spatial pattern is in the exploratory stage. For example,
the value of Bayesian networks in water quality and natural resource management was examined
by Fox [25]; Landuyt et al. [26] used Bayesian networks to assess the opportunities and risks of
integrated pond management. Macpherson et al. [27] used a Bayesian network model to analyze
wetland protection decision making and management; Richards [28] applied this model to regional
adaptation adjustment and early warning under climate change; while Stritih [5] used Bayesian
networks to quantify uncertainties in ecosystem services assessment. Jung et al. [29] used Bayesian
spatial regression models to analyze the relationship between urban structure and air pollution in Korea;
Wu et al. [30] applied the Bayesian network and other methods to assess the fire risk at underground
subway stations; Pérez-Sánchez et al. [31] used the Bayesian model to evaluate the hydrological
model of water resources in the Spanish peninsula. In addition to these studies, Bayesian networks
have also been widely used in fishing net construction, water purification, landscape protection and
development, and food security [15,25,32–39]. The Bayesian network, first proposed by Pearl in
1986 is a large-scale data analysis tool that has the powerful ability to perform logical analysis as
a neural network [40]. The powerful analysis of the Bayesian network has led to increased use of
neural networks in research analysis in recent years [28]. This network, using a graphical modeling
method, expresses the interaction between variables in the form of a network, and constructs a system
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probability model. The Bayesian network uses a directed acyclic graph composed of nodes representing
random variables and directed edges connecting these nodes. Directed edges between nodes represent
the relationship between these variables (from parent nodes to child nodes). Conditional probability
is used to express the strength of the relationship and non-parent nodes use prior probability to
express information [41–43]. Because this is a powerful tool for probabilistic reasoning and uncertainty
analysis, this method is widely used in modeling and resource management decision making. It has
previously been applied in medicine, biology, machine learning, as well as other fields, and it has
gradually expanded to the study of ecosystem services [44,45].

Many groups have worked to study the ecological and environmental systems at work in the
Jinghe River Basin, Chen et al. [46] used principal component analysis and correlation analysis to
analyze Normalized Difference Vegetation Index (NDVI) and precipitation in the Jinghe River Basin,
and found that the dynamic change of vegetation is closely related to climate change, flood and
human activities; Gao-di et al. [47] analyzed precipitation–landscape–runoff changes and interactions;
Guo et al. [48] used the sliding partial correlation coefficient method to analyze the variation of rainfall
and runoff relationships, and used the double cumulative curve method to verify their analysis;
Juan et al. [49] used the SWAT model to simulate the hydrological process in the Jinghe River Basin,
and embedded a terrace module inside of SWAT model to simulate river runoff. Under the Budyko
framework, Zhi et al. [50] explored the effects of rainfall and evapotranspiration on the temporal and
spatial variation of runoff at sub-basin scales; Peng et al. [51] analyzed the impact of water and soil
conservation in the basin by using the distributed hydrological model SWIM, and the vegetation
ecosystem model BIOME; Suo et al. [52] investigated the relationship between the vegetation landscape
pattern and runoff dynamics, and explored the relationship between landscape characteristics and
runoff in the Jinghe River Basin; Yang et al. [53] studied the watershed water demand and analyzed
the grain size effect of the landscape index. Zhen et al. [54] analyzed the severity of the Jinghe River
Basin problem through problem matrix and problem tree analysis. They determined that the order of
contributing factors from high impact to low impact is as follows: soil erosion, low land productivity,
natural disasters, vegetation damage, etc. Pan et al. [55] conducted research on ecosystem services in
the Jinghe River Basin, but it is still in the evaluation and quantification stage.

Therefore, it is particularly important to analyze and optimize the spatial pattern of ecosystem
services in the Jinghe River Basin. Our work uses the Bayesian network to analyze the ecological
system service spatial pattern of the study area with probability theory, based on the analysis of the
trade-offs and synergies between the four ecosystem services of water yield, NPP, crop production
and soil erosion in the study area, We explored the following two questions: is it feasible to establish
ecosystem services network in the Jinghe River Basin using the Bayesian network model and, if so, can
it be used to optimize the spatial pattern of the river basin and provide development strategies for the
ecological development of the Jinghe River Basin.

2. Data and Methods

2.1. Study Area

The Jinghe River is the first tributary of the Weihe River, which is the largest tributary of the
Yellow River. This river originates in the eastern foot of the Liupan Mountain in Ningxia. The basin
has a watershed area of 45,421 km2 and is located in the middle of the Loess Plateau, between
Liupan Mountain and Ziwuling Mountain (106◦20′–108◦48′E, 34◦24′–37◦20′N). The annual average
temperature of the study area is 8 ◦C and the annual precipitation is 350–650 mm, with higher rainfall
occurring mainly in the summer. The terrain is higher in the northwest and lower in the southeast,
with an elevation range of 416–2908 m [56]. The study area can be divided into the northern Loess Hilly
area, the central Loess residual area, the southwest mountain forest area and the southeast mountain
river area, as shown in Figure 1.



Sustainability 2019, 11, 4149 4 of 18

Sustainability 2019, 11, x FOR PEER REVIEW 4 of 18 

 

Figure 1. Administrative map of study area. 

2.2. Sources of Data 

Data used in this paper include basic geographic information data on the Jinghe River Basin, 

including information about the administrative region, county, river, road, elevation, land-use type 

and soil type. This information was obtained from the National Basic Information Center; as well as 

from land-use data from 2000, 2005, 2010 and 2015. Meteorological data from 2000 to 2015 is also 

included (comprising data (Temperature, precipitation, radiation and other data) from 17 

meteorological stations including Huajialing, Zhongning, Yanchi, Dingbian and Wuqi stations) and 

was derived from the China Meteorological Data Network. NDVI and evapotranspiration data is 

from NASA. 

2.3. Ecosystem Services Models 

2.3.1. Water Yield Simulation 

Water yield was determined from simulations based on the SWAT model, which uses the water 

yield equilibrium equation. Equation (1) [57]: 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1

 (1) 

where 𝑆𝑊𝑡 is final soil water content; 𝑆𝑊0 is initial soil water content; t is the number of days; 𝑅𝑑𝑎𝑦 

is precipitation; 𝑄𝑠𝑢𝑟𝑓  is surface runoff; 𝐸𝑎  is evapotranspiration; 𝑤𝑠𝑒𝑒𝑝  is the amount of water 

entering the aeration zone through the soil profile; and 𝑄𝑔𝑤  is regression flow. Except for 𝑆𝑊𝑡, all 

variables were measured on day i. 

2.3.2. NPP Estimation 

The CASA model was used to calculate the net primary productivity (NPP) of vegetation [58]. 

This model uses two factors to determine NPP: photosynthetic active radiation (APAR) and actual 

light energy utilization (Ɛ): 

𝑁𝑃𝑃(𝑥, 𝑡) = 𝐴𝑃𝐴𝑅(𝑥, 𝑡)  Ɛ(𝑥, 𝑡) (2) 

𝐴𝑃𝐴𝑅(𝑥, 𝑡)  denotes photosynthetic effective radiation absorbed by pixel x in month t 

(g C 𝑚−2 𝑚𝑜𝑛𝑡ℎ−1); and Ɛ is the actual light utilization rate of pixel x in month t (g C 𝑀𝐽−1). 

  

Figure 1. Administrative map of study area.

2.2. Sources of Data

Data used in this paper include basic geographic information data on the Jinghe River Basin,
including information about the administrative region, county, river, road, elevation, land-use type and
soil type. This information was obtained from the National Basic Information Center; as well as from
land-use data from 2000, 2005, 2010 and 2015. Meteorological data from 2000 to 2015 is also included
(comprising data (Temperature, precipitation, radiation and other data) from 17 meteorological stations
including Huajialing, Zhongning, Yanchi, Dingbian and Wuqi stations) and was derived from the
China Meteorological Data Network. NDVI and evapotranspiration data is from NASA.

2.3. Ecosystem Services Models

2.3.1. Water Yield Simulation

Water yield was determined from simulations based on the SWAT model, which uses the water
yield equilibrium equation. Equation (1) [57]:

SWt = SW0 +
t∑

i=1

(
Rday −Qsur f − Ea −wseep −Qgw

)
(1)

where SWt is final soil water content; SW0 is initial soil water content; t is the number of days; Rday is
precipitation; Qsur f is surface runoff; Ea is evapotranspiration; wseep is the amount of water entering the
aeration zone through the soil profile; and Qgw is regression flow. Except for SWt, all variables were
measured on day i.

2.3.2. NPP Estimation

The CASA model was used to calculate the net primary productivity (NPP) of vegetation [58].
This model uses two factors to determine NPP: photosynthetic active radiation (APAR) and actual
light energy utilization (
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APAR(x, t) denotes photosynthetic effective radiation absorbed by pixel x in month t (g C m−2 month−1);
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2.3.3. Crop Productivity Calculation

The equation from the model of crop productivity was used [59]:

CP = PV × Izrd (3)

where PV represents the climatic productivity of crops; and Izrd is the level of land use, determined by
the classification of agricultural land in China. Pv is calculated as shown below, where V is average
annual evapotranspiration.

PV = 30000
(
1− e−0.000956(V−20)

)
(4)

2.3.4. Estimation of Soil Erosion

The Universal Soil Loss Equation (USLE) was used to calculate the amount of soil erosion [60].
This equation is based on multiple theories and statistical analysis of field observation data and takes
into account multiple different factors. The USLE is expressed as:

A = R×K × L× S× P×C (5)

where A is the amount of soil erosion; K is the soil erodibility factor; R is the rainfall erosivity factor; K
is the factor; L and S are the slope length factor and slope factor, respectively; P accounts for soil and
water conservation measures; and C represents the surface vegetation cover and management factor.

The R value used in Equation (5) was calculated using the following equation [61]:

R =
105.44× P1

1.2

P
− 140.96 (6)

where P1 is the sum of precipitation from June to September; and P is annual precipitation.
The K value was calculated based on the universal equation of Wischmeier [60]:

K =
[
2.1× 10−4(12− a)M1.14 + 3.25(b− 2) + 2.5(c− 3)

]
/100 (7)

In this equation, M is the particle size parameter, calculated as [(percentage of silt and ultra-fine
sand) × (100 – percentage of clay)]; a is the organic matter fraction; b is the number of soil structures;
and c is the profile permeability grade.

The following equation was used to calculate the slope length factor, L, [60]:

L = (λ/22.13)m (8)

where 22.13 is the slope length of the standard plot; λ is slope length (obtained using DEM);
and m is the slope length index, calculated according to the following criteria: m = 0.2 (θ < 1%);
m = 0.3 (1% ≤ θ < 3%); m = 0.4 (3% ≤ θ < 5%); m = 0.5 (θ > 5%).

The slope factor, S, was calculated by combining McCoold’s gentle slope calculation and steep
slope calculation equations, as shown below [62]:

S =


10.8 sinθ+ 0.03(θ < 5%)

16.8 sinθ− 0.50(5% ≤ θ < 10%)

21.9 sinθ− 0.96(θ ≥ 10%))

(9)

where S is the slope factor; and θ is the gradient.
The P value reflects soil and water conservation measures, indicating the ratio of soil lost after

special measures to the amount lost when planting along the slope. In our study, we refer to previous
studies to determine the general P value for different types of land use [63].
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Estimation of the C value was performed using surface vegetation cover and management factors,
which account for the amount of soil loss on farmland under certain conditions compared to that on
continuous fallow land under the same conditions. The equation used is shown below [64]:

C =


1 (F = 0)

0.6508− 0.3436 lgF (0 < F ≤ 78.3%)

0 (F > 78.3%)

(10)

In this equation F is vegetation coverage, which is calculated using the following equation [64]:

F = 108.49 I + 0.717 (11)

where I is the normalized vegetation index.

2.4. Spatial Pattern Optimization of Ecosystem Services Based on BBNs

2.4.1. Bayesian Network Model

The Bayesian network, also known as a reliability network, is an extension of Bayes’ method and
one of the most effective theoretical models in the field of uncertain knowledge representation and
reasoning [32]. Since the method was proposed by Pearl in 1988, it has become a significant area of
research in recent years. A Bayesian network is a Directed Acyclic Graph (DAG), consisting of nodes
representing random variables connected by directed edges representing the relationship between the
parent and child nodes [65]. The strength of the relationship is expressed using conditional probability,
and prior probability is used to express information without a parent node [66].

The conditional probability table expresses the strength of the relationship between parent node,
X, and child node, Y. Each row in the table consists of the state combination of the parent node and
conditional probability p (Yi | Xi), that is, the probability of the occurrence of each Y, where Yi represents
concrete state of the child node, when the discrete state Xi of parent node X occurs. The conditional
probability table can be obtained not only from expert knowledge, but also from actual observational
data. The probability distribution of the child node is determined by the probability distribution
and conditional probability of the parent node. For a node without a parent node, its probability
distribution is determined from a prior probability distribution p(X). The joint probabilities of all
variables in Bayesian networks can be obtained from conditional probability distribution multiplication
of all nodes, enabling Bayesian networks to effectively calculate the probabilistic distribution of any
node in the network. This provides a theoretical basis for optimizing service patterns according to the
probabilities of four ecosystem service nodes [67,68].

p(X1, X2, · · · , Xn) =
n∏

i=1

p(Xi|parents(Xi)) (12)

Based on the quantitative methods of ecosystem services, the relevant impact factors were
selected as nodes, and the Bayesian conceptual network of ecosystem services was constructed,
as shown in Figure 2. The grid layers corresponding to nodes were discretized using ArcGIS software.
According to the actual distribution of variables in the study area, the selected grid data of each
variable was divided into four levels: low, medium, high and highest, designated as 1, 2, 3 and 4,
respectively. For example, “evapotranspiration = 3” means high evapotranspiration, which corresponds
to 5362–9827 mm. Specific classification criteria for all factors are shown in Table S1 (Supplementary
Materials). Evapotranspiration data were derived from 250 m spatial resolution MODIS data in 2015,
watershed water yield data were calculated using the SWAT model, and NPP data of vegetation, crop
production and soil erosion data were determined using the calculation methods described above.
By extracting the value of the discrete raster data layer into a single raster data layer and inputting
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its attribute table into the Bayesian network model, we obtained the probability distribution of all
nodes in the ecosystem services Bayesian network of the Jinghe River Basin in 2015. Based on this,
the conditional probability table of each node in the network was calculated using the conditional
probability formula:

P(B
∣∣∣A) = P(AB)/P(A) (13)

where, P(AB) is the probability of two events A and B occurring together; P(A) is the probability of
event A; and P(B) is the probability of event B.Sustainability 2019, 11, x FOR PEER REVIEW 7 of 18 
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2.4.2. Optimization of Ecosystem Service Pattern

We constructed a Bayesian network model of ecosystem services in the Jinghe River Basin, and the
key state subset of key variables was determined using a conditional probability table and sensitivity
analysis. The subset space was visualized using ArcGIS software [20]. And the region where the key
state subset of key variables corresponding to different levels of the four ecosystem services functions
occurring simultaneously was drawn. The determination of the key state subset of key variables
involved determining the key variables and the key state of each key variable.

By running the Bayesian network model, we were able to determine the probability of each node
state and the joint probability of two or more node state combinations. Based on this, the conditional
probability between each impact factor and each ecosystem service was calculated. The state with the
highest conditional probability for the impact factor was selected as the key state of the variable when
the service levels were at the highest, high, middle and low states. The factor state sets corresponding
to these service levels are called ‘subsets of key state of variables I, II, III and IV’. The higher the
level, the higher the probability of the service capability occurring in the corresponding subset area.
In order to evaluate the relative importance of Bayesian network nodes, we used Netica software to
perform sensitivity analysis, which evaluates whether a service node is sensitive to changes in other
impact factors.
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After determining the subset of the key state of key variables of ecosystem services, the scenario
with the largest ratio of subset I area to total research area was selected as the scenario of optimal
service which can be optimized. The subset I of key variables in this scenario was identified as the
optimal subset of state, and the optimal region was divided according to the optimal subset of state.
The specific process is shown in Figure 3.Sustainability 2019, 11, x FOR PEER REVIEW 8 of 18 
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3. Results

3.1. Validation of SWAT Water Yield

A SWAT model was used to simulate water yield in the Jinghe River Basin [69]. To ensure our
results were consistent with others in the field, our model results were calibrated and validated. Due to
the limitation of available measured data, we used data from 2004 to 2009 as calibration data and
measured data (2010 to 2015) as validation data. We also combined simulated water yield data (2004
to 2015) with the SWAT-CUP software to calibrate and validate our results. Using SWAT-CUP, we
obtained the optimal set of parameters in Table S2 (Supplementary Materials) and the simulation
results, as well as the correlation coefficient (R2) and Nash Sutcliffe efficiency (NSE). The R2 (0.66) and
NSE (0.59) of the rate periodic simulation indicate that the SWAT simulation results were in line with
the actual watershed, as shown in Figure 4. NSE is Nash-Sutcliffe efficiency, which is generally used
to verify the quality of hydrological model simulation results. The value can range from negative
infinity to 1, with values closer to 1 representing a more accurate simulation. The simulation correlation
coefficient (R2 = 0.69) during the validation period also indicated that SWAT results were credible,
as shown in Figure 5. In 2010, due to frequent rainstorms, the peak flow was relatively high, which
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could affect our simulation as the model is affected by the weather, land use, soil and other data. There
is a large deviation, but overall, our model is accurate and credible.Sustainability 2019, 11, x FOR PEER REVIEW 9 of 18 
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3.2. Ecosystem Services

We analyzed four ecosystem services in 2000, 2005, 2010 and 2015, and our observations are
described below. Water yield in the basin recorded an upward trend, and it is concentrated in the
southern part of the middle reaches, the eastern mountain and river areas of the lower reaches. In 2000,
water yield was 24.62 × 106 mm and was concentrated in Ningxian County, Zhengning County, Gansu
Province, Xunyi County and Shaanxi Province. By 2015, it had increased to 34.61 × 106 mm and had
expanded to cover the entire downstream area, including Jingchuan, Chongxin and Lingtai counties in
Gansu Province, Longxian, Binxian and Fengxiang counties in Shaanxi Province. In addition, the water
yield distribution area (previously recording a low value) also increased, particularly in downstream
Chunhua County, Liquan County and Jingyang County, which have transformed into areas with a high
water yield.
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The vegetation NPP also increased significantly, from 430.03 t/ha in 2000 to 855.56 t/ha in 2015.
NPP was mainly distributed in the middle and lower reaches of the mountain areas. The main areas of
NPP distribution change were also concentrated in the mountainous areas on both sides of the river,
spreading from both sides to the interior. In 2000, NPP was mainly distributed in Ningxian, Zhengning,
Xunyi and Heshui, as well as in the Longxian, Linyou and Qianyang counties in the eastern and western
mountainous areas, respectively. From 2000 to 2015, the density of NPP increased in the centralized
distribution area and spread to the central area of the river basin, covering Changwu County, Bin
County, Chunhua County, Yongshou County, Liquan County, Pingliang City and Jingchuan County,
as shown in Figure 6.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 18 
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Crop production increased from 280.94 × 104 t/ha in 2000 to 291.47 × 104 t/ha in 2015. Although the
main distribution areas did not change significantly, the area of high value crop production generally
increased, leading to an overall increase in crop production. The distribution areas were mainly
concentrated in Changwu County, Chunhua County, Liquan County and Jingyang County of Shaanxi
Province, Zhenyuan County, Ningxian County, Jingchuan County, Huating County, Lingtai County,
Xifeng City, Pingliang City and Jingyuan County of Gansu Province.

Contrary to the three ecological services already noted, spatial and temporal distribution of soil
erosion displayed a downward trend, decreasing from 12.76 × 103 t/ha in 2000 to 2.07 × 103 t/ha in 2015.
Soil erosion mainly occurred in the Loess Hilly Area in the upper reaches of the basin. In 2000, soil
erosion was concentrated in the mountainous areas on the southern side of the basin, and in Heshui
County, Ningxian County, Zhengning County, Zhuanglang County, Huating County, Pingliang City,
Guyuan County, Longde County and Jingyuan County in Ningxia, and Jingyang County downstream.
By 2015, Pingliang City, Guyuan County and Jingyuan County in the West wing were still recording
high levels of soil erosion, however erosion declined in Heshui County and Ningxian County in the
East Wing mountain area. In addition, Changwu County, Linyou County, Qianyang County, Fengxiang
County, Jingchuan County and Lingtai County in Gansu Province recorded significant increases in
soil erosion.

3.3. Spatial Pattern Optimization of Ecosystem Services

Based on probability theory, the Bayesian network model obtained the optimal state subset of key
variables in the study area and screened out the regions that need to be optimized. The selected areas
can be optimized for development, which can effectively improve the quality of ecosystem services
in the area studied. According to Tables S3a–d (Supplementary Materials), soil was identified as the
most critical factor for water yield in the Jinghe River Basin, with temperature, land-use type and
precipitation being the next most important factors, as shown in Table S3a. Effective soil management
in the upper and middle reaches provided the most powerful improvement of regional water yield
services. The key factors affecting NPP were vegetation, precipitation and radiation, with vegetation
as the highest probability factor, as shown in Table S3b. Therefore, in Pengyang County and Huachi
County, Guyuan County, central and southern Huanxian County, southern Wuqi County in the east
and northern Heshui County, improving vegetation coverage will have the greatest effect on enhancing
NPP in the basin. Evapotranspiration and land-use level were the key factors affecting crop production
services, as shown in Table S3c. When evapotranspiration and land-use levels were both high, the most
effective way to rapidly improve crop production capacity in the study area was achieved by optimizing
the middle and lower reaches of the river basin. The key factors affecting soil erosion were precipitation,
slope, P (the factor of soil and water conservation measures), vegetation and soil type, with precipitation
probability being the most important factor, as shown in Table S3d. This subset was mainly distributed
in Pengyang and Huachi counties, northern Qingyang and Zhenyuan counties, and southern Huanxian
counties. Soil erosion in these regions improved and the optimization effect was remarkable.

Using a broad analysis of the various factors, we can obtain comprehensive optimization zones.
Figure 7 indicates that soil improvement in Wuqi County of Shaanxi Province, Huanxian County,
Huachi County, and Heshui County of Gansu Province, as well as in Guyuan County and Pengyang
County of Ningxia, can consolidate soil and reduce soil erosion by promoting vegetation growth.
This is also true for Huanxian County, Huachi County and Pengyang County, where the soil can be
developed to improve agricultural practices and increase crop production, as shown in Figure 7.
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4. Discussion

4.1. The Relationship of Trade-Offs Between Ecosystem Services

Based on our results, it is clear that all the optimization areas are concentrated in the Loess Plateau
and the mountainous areas in the northern part of the Jinghe River Basin. The key factors restricting
the development of these areas are soil, vegetation and precipitation, and the impact of these factors
on the four ecosystem services cannot be ignored. Therefore, we further analyzed the relationship
between ecosystem services in regards to the temporal and spatial changes in these services, and also
researched the internal and external forces at work in the formation of these services. We used R to
analyze the correlation between the four ecosystem services in Figure 8.

Figure 8 shows the correlation, ranging from −1 to 1, between water yield, NPP, agricultural
production and soil erosion in our study. Blue and red indicate positive and negative correlation,
respectively. The darker the color, the stronger the correlation, and the closer the absolute value is to
1. Conversely, the lower the correlation is, the closer to the absolute value will be to 0. Overall, it is
clear from our results that the interaction between ecosystem services has a significant impact on the
development and optimization of watershed ecological patterns. Our analysis of water yield, crop
production, NPP and soil erosion in the Jinghe River Basin indicate that trade-offs and synergies exist
between these ecosystem services, as shown in Figure 8. There is a synergistic relationship between
water yield, NPP and agricultural production, and the degree of synergy with NPP is greater than
the synergy with agricultural production services. There is also a cooperative relationship between
NPP and agricultural production services, which is the weakest of all the synergistic relationships.
The relationship between soil erosion and water yield, NPP, and agricultural production service shows
trade-offs. The relationship between soil erosion and NPP is the strongest, followed by water yield
and agricultural production services. Therefore, when undertaking actual ecological environment
optimization, the improvement of one of the ecosystem services will also change the other ecosystem
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services, positively or negatively. Planting trees and undertaking other greening environmental
measures are bound to significantly enhance the vegetation NPP and water conservation ecosystem
services and reduce the amount of soil erosion. However, due to the relatively weak synergy between
NPP and agricultural production, the effect of changes in vegetation types, such as changes in forestation
and crops, on agricultural production must also be taken into account. For the specific optimization of
the river basin ecological service system, we must selectively control the influencing factors according
to the development needs. For example, in order to promote agricultural development, it is necessary
to improve the soil types, change the type of vegetation through planting and other technologies,
increase the conversion of bare land and wasteland to cultivated land and grassland, and protect the
development of existing cultivated land. These measures will inevitably lead to changes in the types of
land use, as well as lead to an increase in soil retention capacity and NPP and a decrease in erosion.
In complex ecosystems, these changes are inextricably linked to each other.
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4.2. Bayesian Network Model

As a graphical modeling tool, the Bayesian network uses probability tables to represent causality
among variables. Its powerful application value lies in its ability to analyze the relationships and
associations behind the data. It uses the existing data and combines prior knowledge to construct
a Bayesian network model. Expert system knowledge is no longer the basis for building a network
structure [68,69]. Because of this, data preparation and selection are very important factors that affect
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the model. This paper quantifies four kinds of ecosystem services based on a number of methods and
principles related to water yield, NPP, crop production and soil erosion in river basins, and then chooses
the influencing factors affecting the comprehensive development of ecosystem services, taking into
account both natural factors and human land use activities. Our work uses GIS tools to process data
and establishes a more complete ecosystem service network. A Bayesian network of these ecosystem
services was constructed in order to explore the trade-offs and synergies between services, analyze
the comprehensive effects of multiple factors, including natural and human influences, on ecosystem
services, and optimize the spatial pattern of ecosystem services. The Bayesian network model has
become a flexible, comprehensive and powerful tool for ecosystem services, as it is able to provide
reliable data support for regional planning.

5. Conclusions

In this study we quantified the water yield service, soil erosion, agricultural productivity and NPP
of the Jinghe River Basin ecosystem using SWAT and CASA, in addition to other models and methods.
Based on probability theory and the Bayesian network model, we constructed an ecosystem service
network model of the basin and studied the relationship between factors and services. The spatial
pattern optimization of ecosystem services in the river basin was also analyzed. Our results show that:

(1) Watershed water yield is positively correlated with vegetation NPP and agricultural productivity,
as both NPP and agricultural productivity increased with increasing water yield. However, water
yield is negatively correlated with soil erosion. In our research, the optimal areas of the four
ecosystem services in Jinghe River Basin are mainly located in the middle reaches.

(2) The Bayesain network model is a powerful neural network tool that can be used to simulate
an ecosystem service network and has an important place in ecosystem service research. It can be
used to guide the optimization of the spatial pattern of ecosystem services and provide policy
support for watershed development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/15/4149/s1,
Figure S1: Bayesian Network, Table S1: State classification of factors, Table S2: Analysis result of sensitivity
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based on BBNs of Net Primary Productivity, Table S3c: The hierarchy of factors based on BBNs of Crop Production,
Table S3d: The hierarchy of factors based on BBNs of Soil Erosion, Table A: State classification of factors, Table B:
the hierarchy of factors based on BBNs of Soil Erosion (%).
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