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Abstract: Drone delivery has a great potential to change the traditional parcel delivery service in
consideration of cost reduction, resource conservation, and environmental protection. This paper
introduces a novel drone fleet deployment and planning problem with uncertain delivery demand,
where the delivery routes are fixed and couriers work in collaboration with drones to deliver surplus
parcels with a relatively higher labor cost. The problem involves the following two-stage decision
process: (i) The first stage determines the drone fleet deployment (i.e., the numbers and types of
drones) and the drone delivery service module (i.e., the time segment between two consecutive
departures) on a tactical level, and (ii) the second stage decides the numbers of parcels delivered by
drones and couriers on an operational level. The purpose is to minimize the total cost, including
(i) drone deployment and operating cost and (ii) expected labor cost. For the problem, a two-stage
stochastic programming formulation is proposed. A classic sample average approximation method is
first applied. To achieve computational efficiency, a hybrid genetic algorithm is further developed.
The computational results show the efficiency of the proposed approaches.

Keywords: drone; fleet deployment; service module; parcel delivery

1. Introduction

With the development of sensing, computing, cognitive radio, and robotic technologies,
the application of drones, originated from military industry, is rapidly extending to service, agriculture,
public safety networks (Sikeridis et al. [1]), and healthcare. It is recognized that drones have a great
potential to change the traditional express transportation, due to the fact that (i) a drone can respond
rapidly to demand and its delivery is not restricted by the road conditions (Hong et al. [2]); (ii) drone
delivery will be more cost-effective to get to places where traditional transportation modes would
be difficult to reach (Zhang and Kovacs [3]); (iii) employing drones in a delivery system is more
environmentally friendly, as drones are powered by electricity and thus lead to less greenhouse gas
emissions. JingDong (i.e., JD.com), China’s second largest e-commerce giant, claimed that deliveries in
underdeveloped rural areas can cost up to six times more than city trips and, thus, the usage of drones
can reduce the delivery cost by 70 percent or more (Aleem [4]).

Drone delivery grows very fast in the service and transportation industry. Amazon founder Jeff
Bezos first announced that Amazon has developed a fleet of drones to deliver lightweight commercial
products in 2013 (Rose [5]). JD.com in China had seven types of delivery drones in testing or operation
across four provinces in 2017 (Aleem [4]). Their drones are now able to delivery packages weighing
between 5 to 30 kg, and the maximum travel distance is about 200 km before recharging. Moreover,
Ele.me, one of the largest food delivery companies in China, announced that they have developed a
fleet of drones to deliver food in a Shanghai industrial park (Hu [6]; Pymnts [7]).
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Existing studies on drone delivery optimization problems usually focus on tactical-level drone
facility location problems (Scott and Scott [8]; Hong et al. [2]; Shavarani et al. [9]), and operational-level
drone routing problems (Murray and Chu [10]; Chow [11]; Tavana et al. [12]; Dorling et al. [13]).
In the drone delivery systems of JD.com and Ele.me, (drone) service routes are designated and fixed
and the optimization of drone fleet deployment and planning (DFDP) decisions can greatly improve
the delivery efficiency. On each service route, to ensure a safe and ordered flow of the air traffic in the
controlled airspace, two consecutive drones departing from the warehouse to deliver parcels must
respect a certain time interval (Furini et al. [14]). According to Amazon’s drone delivery scheme,
the drone operating cost mainly includes the amortized purchasing cost and the maintenance cost,
which depend largely on the drone type and number (Keeney [15]). Specifically, during the planning
time period, the drone deployment cost is calculated based on leasing (or amortized purchasing) and
maintenance cost. Given a fixed number of drones on a route, the drone operating cost is determined
by the planned service frequency or the time interval between consecutive departures. Moreover,
in order to maintain a goodwill, all parcels must be delivered. Thus, surplus parcel demand (i.e.,
the number of parcels over drone transportation capacity) will be delivered by couriers with higher
labor cost.

Moreover, in the literature, the parcel demand is treated as constant or dynamic
(Murray and Chu [10]; Chow [11]; Tavana et al. [12]; Dorling et al. [13]). However, in practice,
the number of parcels to be delivered between any two consecutive customers is stochastic due
to (i) uncertain market environments, (ii) changing commodity prices, and (iii) intensive competition
(Perdikaki et al. [16]). Motivated by the above observations, this paper studies a stochastic drone fleet
deployment and planning (DFDP) problem with uncertain customer parcel demand. Service routes
are designated and fixed, and each route consists of a sequence of customer stations (called customers
for short), which starts from the warehouse and ends at the warehouse, as shown in Figure 1. It is
notoriously difficult to find optimal solutions for general stochastic optimization problems (Birge and
Louveaux [17]). Therefore, to tackle the difficulty, we employ a two-stage stochastic programming
formulation with recourse, which is common in the literature of stochastic problems (Liu et al. [18]).

We borrow the concept of service choice (module) in Francis et al. [19], such that each service
module is associated with a combination of departure time intervals (or service frequency) in the
planning time period. The problem involves a two-stage decision process: (i) The first stage determines
the drone fleet deployment (i.e., the numbers and types of drones) and the drone delivery service
module on each route on a tactical level, and (ii) the second stage decides the numbers of parcels
delivered by drones and couriers on an operational level. Reducing the system cost has always been
an important target to seek from the perspective of company operating. Therefore, the objective in this
work is to minimize the total cost, including (i) drone deployment and operating cost and (ii) expected
labor cost. The contribution of this paper includes the following:

(1) This paper studies a new stochastic DFDP with uncertain parcel demand, which determines (i)
the drone fleet deployment, i.e., the numbers of different types of drones deployed, (ii) the drone
service module, and (iii) the numbers of parcels delivered by drones and couriers under each
scenario of demand.

(2) For the problem, a novel two-stage stochastic programming formulation is proposed and
a classic sample average approximation (SAA) method is first employed. Since SAA is
very time-consuming, a hybrid genetic algorithm (GA) is further developed to achieve
computational efficiency.

(3) A case study based on the delivery service of Ele.me in Shanghai Jinshan industrial park in China
demonstrates the applicability of the proposed methods. Computational results show that, under
a given number of scenarios, the hybrid GA outperforms SAA in terms of total computational
time with high solution quality.
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Figure 1. An illustrative example.

The remainder of this paper is organized as follows. Section 2 gives a brief literature review.
In Section 3, the problem is described and a two-stage stochastic programming formulation is proposed.
In Section 4, a classic SAA method is applied and a hybrid genetic algorithm (GA) is further developed.
A case study is conducted, and the computational results are reported and analyzed in Section 5.
Section 6 summarizes this paper and suggests future research directions.

2. Literature Review

Numerous studies have been conducted to overcome the regulatory and technological difficulties
for the widespread adoption of drones (Guenard et al. [20]; McGonigle et al. [21]; Dunford et al. [22];
Baluja et al. [23]; Herissé et al. [24]; Mozaffari et al. [25]). However, since this study falls within the
scope of the stochastic DFDP in multiple-type parcel delivery service, only the most related studies are
reviewed for brevity. In the following, previous studies on operational-level drone routing problems
are first reviewed. We then review the works on tactical-level drone facility location problems. At last,
as the vessel fleet deployment problem in liner shipping networks is similar to the studied problem,
previous related studies are also briefly reviewed.

2.1. Operational-Level Drone Routing Problem

Existing works on the operational-level drone routing problems usually consider the
generalization of deterministic vehicle routing problems (VRPs). Murray and Chu [10] introduced
a flying sidekick traveling salesman problem (TSP). In the problem, a drone works to collaborate
a traditional delivery truck, where the drone can be launched from the truck to distribute parcels.
Two mixed-integer linear programming formulations are proposed to minimize the total travel time.
Tavana et al. [12] studied a delivery problem where drones can be used for direct transportation and
trucks can be used through a standard cross-docking process. The problem is to minimize the total
cost of allocation and the time of scheduling simultaneously. An epsilon-constraint method is adapted
to solve the problem. Dorling et al. [13] investigated two VRPs for drone delivery by considering
the effect of battery and payload weight, i.e., one minimizing total cost with travel time limited and
one minimizing the total delivery time with weight restricted. Simulated annealing (SA) algorithms
were proposed. Ulmer and Thomas [26] investigated a delivery problem with heterogeneous fleet of
drones and vehicles, where goods are delivered either by a drone or by a regular transportation vehicle.
They revealed that (i) geographical districting is highly effective in increasing the expected number
of deliveries and that (ii) a combination of drone and vehicle fleets may reduce costs significantly.
Campbell et al. [27] studied the hybrid truck-drone delivery with drone delivery as an alternative of
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traditional delivery by trucks. They proposed several models to minimize the travel cost and travel
time of truck-drone delivery and truck-only delivery. They found that (1) hybrid truck-drone delivery
has the potential to provide substantial cost savings, especially in suburban areas, and that (2) the
benefits from hybrid truck-drone delivery depend largely on the operating and stopping costs for
trucks and drones and on the spatial density of customers. Agatz et al. [28] also investigated a flying
sidekick TSP. An integer programming formulation was proposed, and several heuristics based on local
search and dynamic programming were developed. Venkatachalam et al. [29] proposed a two-stage
stochastic programming for routing drones, where the fuel consumed between any two depots is
uncertain. The SAA method was applied, and a heuristic was further proposed for addressing the
large-scale problem instances.

In summary, literature considering the stochastic customer demand is very rare.

2.2. Tactical-Level Drone Facility Location and Drone Fleet Deployment Problem

Studies on the tactical-level drone delivery usually focus on the drone facility location problems,
i.e., locating drone launching and recharging stations and drone fleet deployment (Mozaffari et al. [30]).
Scott and Scott [8] studied some innovative applications of drones in healthcare, and they proposed
two models to locate the central depot of drone deliveries. Hong et al. [2] considered the limited
flight distance of drones that are powered by batteries or fuel, and they investigated the design of
station locations and the delivery routes. A mixed-integer linear programming formulation and a
heuristic were developed. Shavarani et al. [9] investigated a hierarchical drone facility location problem
with limited flight distance. The problem is to optimize the number stations and their locations for
launching and recharging drones to minimize the total system cost.

Mozaffari et al. [25] considered the deployment of drones as a flying base station to provide the
fly wireless communications to a given geographical area. They considered two scenarios, i.e., a static
drone and a mobile drone. Sikeridis et al. [31] considered the public safety networks with drones,
and they presented a user equipments cluster formation mechanism to determine the optimal position
of the drone.

To our best knowledge, the tactical level of the drone fleet deployment and planning (DFDP)
problem has not been studied by previous works.

2.3. Fleet Deployment and Planning Problem

The studied DFDP is similar to the liner ship deployment problem (LSDP), also called
vessel fleet deployment problem (VFDP), in the liner shipping networks (Wang and Meng [32];
Meng and Wang [33]; Wang and Meng, 2015). Wang and Meng [32] studied a liner ship fleet
deployment problem with container transshipment operations, where (1) the shipping routes are
fixed, (2) the voyage between two consecutive ports on a route is denoted as a leg, and (3) ships visit
each port with a weekly service frequency. In this problem, the service frequency is fixed and the
number and speed of ships should be determined. Meng and Wang [33] addressed a liner ship
fleet deployment problem with week-dependent container shipment demand, where the transit time
between a pair of ports is limited. Wang and Meng [34] considered the bunker management for
liner shipping networks, where the ship deployment on each shipping route, the planning sailing
speed, and the bunker fuel quantity loaded at each refilling port should be decided. The objective
of the problem is to minimize the total cost including ship cost, bunker cost, and inventory cost.
The difference between the studied DFDP and the LSDP mainly lies in that (1) the service frequency
and the corresponding time interval depend on the service module, which should be optimized in our
DFDP, and that (2) there are multiple parcel types differing in volumes and weights in our DFDP.

Concluding, to the best of our knowledge, there is no previous study on the stochastic DFDP in
multiple-type parcel delivery service.
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3. Problem Description and Formulation

In this section, we first describe the stochastic DFDP in multiple-type parcel delivery service and
then propose a two-stage stochastic programming for the problem.

3.1. Problem Description

Given a set of service routes R composed of subsets of customers to load parcels, the set of
customers served by route r ∈ R is denoted by Ir = [1, 2, ..., Nr], where Nr is the total number
of customers composing service route r ∈ R. The flight from the ith customer to the (i + 1)th
customer is defined as leg i on route r ∈ R. Note that each service route is a customer rotation,
i.e., leg Nr denotes the flight between the Nrth customer to the first customer. That is, each service
route r ∈ R starts from and ends at the warehouse, which is also considered as the first customer.
There is a set of parcel categories H, and each parcel of category h ∈ H is associated with volume
vh and weight wh. The demand ξh

ri for parcels of each category h ∈ H per time unit on each leg
i ∈ Ir of each route r ∈ R is stochastic. All demands are represented by an uncertain vector
ξ = [ξ1

11, ξ1
12, ..., ξ1

1,N1
, ξ1

21, ..., ξ1
2,N2

, ..., ξ1
|R|,1, ...ξ1

|R|,N|R|
, ξ2

11, ..., ξ2
|R|,N|R|

, ..., ξ
|H|
|R|,N|R|

]>, and ξ ∈ Ξ and

Ξ ⊂ R∑h∈H ∑r∈R Nr .
To better understand the problem, an example is illustrated in Figure 1, where seven customers

are served by three routes. Customer sequences on the service routes can be represented as follows:

r = 1, N1 = 4 : Warehouse→ A→ B→ C →Warehouse

r = 2, N2 = 4 : Warehouse→ C → D → E→Warehouse

r = 3, N3 = 3 : Warehouse→ F → G →Warehouse

There is a set of drone types L with different volume and weight capacities. After the numbers
of different types of drones deployed have been determined, the drone service module on each
route should be then decided. Note that each service module corresponds to a certain time interval
between two consecutive drones. Figure 2, for example, illustrates two different service modules,
where the third route stated above is considered. Figure 2a shows that drones on the route delivery
parcels under a service module that corresponds to a larger time interval between two consecutive
drones, and Figure 2b presents a drone service module with a smaller time interval between two
consecutive drones.

An express company usually first decides (1) the drone fleet deployment, i.e., the number of
different types of drones on each route, and (2) the drone service module on each route. Then, under
the realized scenario of parcel demand, the second-stage decision, i.e., the number of parcels of each
category delivered by drones and couriers, will be determined. The objective is to minimize the sum
of (i) drone deployment and operating costs and (ii) the expectation of the labor cost for couriers to
deliver parcels in a planning time period.

For the problem, during the planning time period, it is assumed that (i) service routes are
designated and fixed, as in line with the practical drone delivery systems of JD.com and Ele.me;
(ii) drones deployed on a route are of the same type, as the same ship type on a route in Wang and
Meng (2015); (iii) two consecutive drones on each route depart from the warehouse in a certain time
interval to ensure a safe and ordered flow of drones; (iv) the time interval or service frequency during
the planning time period depend on the service module; (v) the number of parcels of each category is
uncertain; and (vi) parcels can be delivered by drones and couriers to ensure all parcels are delivered.
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Figure 2. An illustrative example for service module.

3.2. Formulation

In the following, we give parameters (shown in Table 1), define decision variables, and present
the two-stage stochastic programming formulation for the proposed problem.

Table 1. Parameters.

i: Index of legs on a service route.
R: Set of service routes indexed by r.
L: Set of all drone types indexed by l.
K: Set of drone service modules indexed by k.
H: Set of parcel categories indexed by h.
Nr: Number of customers visited by service route r ∈ R.
Ir: Set of customers on service route r ∈ R, and Ir = {1, 2, ..., Nr}.
fk: Service frequency in the planning time period under service module k ∈ K.
tint
k : Time interval between two consecutive drones under service module k ∈ K.

Vl : Volume capacity of a drone of type l ∈ L.
Wl : Weight capacity of a drone of type l ∈ L.
Trl : Total travel time of a drone of type l ∈ L on service route r ∈ R.
Cdrone

l : Fixed leasing (or amortized purchasing) cost in the planning time period of a drone of type l ∈ L.
Coper

l : Variable cost for operating a drone of type h ∈ H per flight on each route.
Ch

ri: Cost for a courier handling a parcel of category h ∈ H on the i-th leg of service route r ∈ R.
ξh

ri: Stochastic demand per time unit of category h ∈ H on leg i of route r ∈ R.
vh: Volume of a parcel of category h ∈ H.
wh: Weight of a parcel of category h ∈ H.
D: Number of time units in the planning time period.
M: A large enough number.

Variables:

- xrl : Number of drones of type l ∈ L deployed on service route r ∈ R, and x =

[x11, x12, ..., x|R|,N|R| ]
>.

- γrl : A binary variable equal to 1 if there is a drone of type l ∈ L deployed on service route r ∈ R,
0 otherwise, and γ = [γ11, γ12, ..., γ|R|,N|R| ]

>.
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- µrk: A binary variable equal to 1 if the service module k ∈ K is selected on route r ∈ R, 0 otherwise,
and µ = [µ11, µ12, ..., µ|R|,|K|]

>.

- yh
ri(ξ): Number of parcels of category h ∈ H transported by drones on leg i ∈ Ir of route r ∈ R

under realized ξ ∈ Ξ.
- νrlk: A nonnegative integral variable used to linearize xrl · µrk, and νrlk = xrl · µrk.
- zh

rki(ξ): A nonnegative integral variable used to linearize µrk · yh
ri(ξ), and zh

rki(ξ) = µrk · yh
ri(ξ),

∀ξ ∈ Ξ.
- Q(x, γ, µ, ξ): The recourse function value, i.e., the labor cost, with given x, γ and µ under realized

ξ ∈ Ξ during the planning time period.

As the done deployment and service module selection are considered as the tactical decisions,
decision variables xrl , γrl , µrk, and νrlk do not depend on the realization of ξ. Two-stage stochastic
programming formulation (P1) for the problem can be expressed as follows:

(P1):

min ∑
r∈R

∑
l∈L

(
Cdrone

l xrl + ∑
k∈K

Coper
l xrlµrk

)
+Eξ∈Ξ [Q(x, γ, µ, ξ)] (1)

s.t. xrl ≥ γrl , ∀r ∈ R, l ∈ L (2)

xrl ≤ M · γrl , ∀r ∈ R, l ∈ L (3)

∑
l∈L

γrl = 1, ∀r ∈ R (4)

∑
k∈K

µrk = 1, ∀r ∈ R (5)

∑
k∈K

tint
k · xrl · µrk ≥ ∑

l∈L
Trl · γrl , ∀r ∈ R (6)

νrlk ≤ xrl , ∀r ∈ R, l ∈ L, k ∈ K (7)

νrlk ≤ M · µrk, ∀r ∈ R, l ∈ L, k ∈ K (8)

νrlk ≥ xrl −M · (1− µrk) , ∀r ∈ R, l ∈ L, k ∈ K (9)

∑
k∈K

tint
k · νrlk ≥ ∑

l∈L
Trl · γrl , ∀r ∈ R, l ∈ L (10)

γrl , µrk ∈ {0, 1}, ∀r ∈ R, l ∈ L, k ∈ K (11)

xrl , νrlk,∈ Z+, ∀r ∈ R, l ∈ L, k ∈ K (12)

where

Q(x, γ, µ, ξ) =min

{
∑

r∈R
∑

i∈Ir

∑
h∈H

(
D · ξh

ri(ξ)− ∑
k∈K

fk · zh
rki(ξ)

)
· Ch

ri

∣∣∣∣
yh

ri(ξ) ≤ ∑
k∈K

tint
k · µrk · ξh

ri, ∀r ∈ R, i ∈ Ir, h ∈ H, ξ ∈ Ξ (13)

∑
h∈H

vh · yh
ri(ξ) ≤ ∑

l∈L
Vl · γrl , ∀r ∈ R, i ∈ Ir, ξ ∈ Ξ (14)

∑
h∈H

wh · yh
ri(ξ) ≤ ∑

l∈L
Wl · γrl , ∀r ∈ R, i ∈ Ir, ξ ∈ Ξ (15)

zh
rki(ξ) ≤ yh

ri(ξ), ∀r ∈ R, i ∈ Ir, h ∈ H, k ∈ K, ξ ∈ Ξ (16)

zh
rki(ξ) ≤ M · µrk, ∀r ∈ R, i ∈ Ir, h ∈ H, k ∈ K, ξ ∈ Ξ (17)

zh
rki(ξ) ≥ yh

ri(ξ)−M · (1− µrk) , ∀r ∈ R, i ∈ Ir, h ∈ H, k ∈ K, ξ ∈ Ξ (18)

yh
ri(ξ), zh

rki(ξ) ∈ Z+, ∀r ∈ R, i ∈ Ir, l ∈ L, k ∈ K, ξ ∈ Ξ
}

(19)



Sustainability 2019, 11, 3871 8 of 18

The objective function of Equation (1) is to minimize the sum of drone deployment and operating
costs and the expectation of labor cost during the planning time period. The constraints of of
Equations (2)–(4) ensure that drones deployed on each route are of the same type. The constraint of
Equation (5) ensures that only one service module can be selected for a service route. The constraint of
Equation (6) guarantees the time interval between any two consecutive drones during the planning
time period. The constraints of Equations (7)–(10) focus on linearizing the constraint of Equation (6).
The constraints of Equations (11) and (12) give the domains of the first-stage decision variables.

Q(x, γ, µ, ξ) denotes the second-stage labor cost under each realized vector ξ of demands,
satisfying the constraints of Equations (13)–(19). The constraint of Equation (13) implies that the
number of parcels of each category delivered by drones should not exceed the demand cumulated
during the time interval. The constraints of Equations (14) and (15) respect the volume capacity and the
weight capacity of each drone. The constraints of Equations (16)–(18) aim to linearize zh

rki(ξ) = yh
ri(ξ).

The constraints of Equation (19) gives the restrictions on the second-stage decision variables.

4. Solution Approaches

It is a challenging task to obtain the optimal solution (Birge and Louveaux, 2011). Besides, as the
set Ξ of all possible vectors of demands can be infinite, it is difficult to solve formulation P1 by calling
the off-the-shelf solvers. Therefore, in this section, based on the idea of SAA, we first propose an
approximated SAA-based formulation, which can be solved by calling commercial solvers. As exactly
solving the SAA-based model is rather time-consuming, a hybrid GA is further developed, to obtain
feasible solutions in a reasonable time for the SAA-based formulation.

4.1. SAA

Sample average approximation (SAA) is a relatively popular and widely applied solution
approach for solving large stochastic programming problems. SAA is based on the Monte Carlo
simulation and deterministic optimization techniques (Kleywegt et al. [35]; Pagnoncelli et al. [36];
Ralph and Xu [37]). Based on the historical data, the empirical mean values and standard deviation
of demands can be calculated. The basic idea is to employ a finite set of scenarios Ω, which
are assumed to be independent identically distributed (iid) sampling of the uncertain vector ξ.
Under the set Ω of scenarios, the SAA approximates the expected demand-related cost by a sample
average estimation such that the transformed problem can be well-addressed by deterministic
techniques (Verweij et al. [38]). Accordingly, an approximated deterministic SAA-based formulation
P2 is proposed, in which the second-stage decisions depend on the first-stage decisions and on the
realized demands under each scenario ω ∈ Ω. SAA method is easy to implement and performs well
under a sufficient number of scenarios (Wang and Ahmed [39]).

In the following, we present a formulation (P2) with the purpose to apply the SAA method,
where ω ∈ Ω denotes the index of scenarios.
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(P2):

min ∑
r∈R

∑
l∈L

(
Cdrone

l xrl + ∑
k∈K

Coper
l xrlµrk

)
+

1
|Ω| ∑

ω∈Ω
∑

r∈R
∑

i∈Ir

∑
h∈H

(
Dξh

ri(ω)− ∑
k∈K

fkzh
rki(ω)

)
Ch

ri

s.t. (2)− (11)

yh
ri(ω) ≤ ∑

k∈K
tint
k · µrk · ξh

ri(ω), ∀r ∈ R, i ∈ Ir, h ∈ H, ω ∈ Ω (20)

∑
h∈H

vh · yh
ri(ω) ≤ ∑

l∈L
Vl · γrl , ∀r ∈ R, i ∈ Ir, ω ∈ Ω (21)

∑
h∈H

wh · yh
ri(ω) ≤ ∑

l∈L
Wl · γrl , ∀r ∈ R, i ∈ Ir, ω ∈ Ω (22)

zh
rki(ω) ≤ yh

ri(ω), ∀r ∈ R, i ∈ Ir, h ∈ H, k ∈ K, ω ∈ Ω (23)

zh
rki(ω) ≤ M · µrk, ∀r ∈ R, i ∈ Ir, h ∈ H, k ∈ K, ω ∈ Ω (24)

zh
rki(ω) ≥ yh

ri(ω)−M · (1− µrk) , ∀r ∈ R, i ∈ Ir, h ∈ H, k ∈ K, ω ∈ Ω (25)

yh
ri(ω), zh

rki(ω) ∈ Z+, ∀r ∈ R, i ∈ Ir, l ∈ L, ω ∈ Ω (26)

Formulation P2 can be exactly solved by calling commercial optimization softwares, such as
CPLEX. The obtained solution includes the first-stage decisions and the second-stage decisions under
given scenarios set Ω. The obtained first-stage solution, i.e., x, γ and µ, can be considered as an
approximately optimal first-stage drone fleet deployment, including the type, number, and service
choice of drones deployed on each route, of the original problem. When the number of given scenarios
|Ω| is sufficiently large and |Ω| → ∞, the optimal objective value of P2 converges to the true optimal
objective value almost surely (Bertsimas et al. [40]).

4.2. Hybrid GA

It can be observed from the computational results that the SAA method is quite time-consuming,
even under a small set of scenarios Ω. Therefore, it is necessary to develop solution methods to achieve
computational efficiency. Metaheuristics such as GA and hybrid GA seem to be quite suited, as they
focus on processing a set of parallel solutions and exploiting similarities between solutions in order
to obtain the (near) optimal solutions in the solution space (Kalayci et al. [41]). In this subsection,
we propose a hybrid GA based on a heuristic rule.

GA is first introduced in Holland [42] and is based on the biological reproduction rules. GA starts
with a set of initial feasible solutions. In each iteration, offspring solutions are generated via crossover
and mutation procedures, and then, the population including the current solutions and offspring
solutions will be renewed according to their objective values. The algorithm stops when a stopping
criterion is reached. In the following, we present the hybrid GA for the studied stochastic DFDP in
multiple-type parcel delivery service.

4.2.1. Coding

In the developed hybrid GA for the studied stochastic optimization problem, each solution is
represented by a chromosome (individual) composed of three parts, as shown in Figure 3, and the
three gene parts denote drone type selection, the drone number, and service module: (i) The first part
is the selection of drone type on each route, where the number at the rth position denotes the type of
drones, (ii) the drone number on each route, and (iii) the drone service module on each route. When the
type, number, and service module of drones deployed on each route are determined, under each
scenario, parcels of each customer on each route are handled by drones and couriers via a heuristic
rule. The heuristic rule is based on the idea that parcels with higher labor cost and smaller volume
and weight are delivered by drones. The heuristic rule consists of the following steps: (1) Sort the



Sustainability 2019, 11, 3871 10 of 18

parcels in decreasing order of
Cj

vj ·wj
, where j denotes the index of parcels, Cj denotes the labor cost for

parcel j delivered by courier, and vj and wj denote the volume and weight of parcel j; (2) assign parcels
to drones in the obtained sequence with respect to the volume and weight capacities of each drone;
and (3) parcels that are not assigned to drones will be delivered by couriers.

Figure 3. Coding (parcels are assigned to drones and couriers via the heuristic rule).

For the generation of an initial individual, firstly the type of drones on each route is randomly
selected. The drone number and drone service module on each route are randomly generated. If the
constraint of Equation (6) is violated for a service route, then the drone number and service module
will be regenerated. Since parcels are assigned to drones and couriers via the heuristic rule under
each scenario, the sum of drone operating cost and the expectation of the labor cost of couriers can be
calculated accordingly.

4.2.2. Crossover and Mutation

During each iteration, offspring solutions are reproduced by current individuals via genetic
operators, i.e., the crossover and mutation operations. For the crossover operation, the identical drone
types of two parent individuals will be copied to the two offspring solutions. For each service route,
if the drone types selected in two parent solutions are the same, then the drone type will be still selected
for the route in the offsprings and the corresponding number and service module of drones will be not
changed in the offsprings. Otherwise, the type, number, and service module of drones deployed on
each route will be reselected randomly for the offsprings. Figure 4 illustrates the crossover procedure.
The identical drone types of two parent solutions are labelled with a circle in dotted line, and the type,
number, and service of drones on this route are copied to the offspring individuals. Moreover, the type,
number, and service module of drones on route 2 and route 3 are randomly generated.

There are two ways for mutation: (1) random modification of the number of drones and (2) random
reselection of the service module of drones deployed on each route. The first mutation method is shown
in Figure 5; the first mutation method consists of (i) copying the type, number, and service module
of drones deployed on each route to the offspring individual; (ii) randomly selecting a service route;
and (iii) randomly modifying the number of drones on this route. The second mutation method is
illustrated in Figure 6 and includes (i) copying the genetic parts to the offspring solution, (ii) randomly
selecting a service route, and (iii) randomly modifying the service module of drones deployed on this
route. Then, under each scenario, parcels are assigned to drones and couriers via the heuristic rule.
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Figure 4. Crossover (reproducing the identical genetic parts between parents to offsprings).

Figure 5. Mutation 1 (random modification of drone numbers).

Figure 6. Mutation 2 (random modification of drone service modules).
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5. Computational Experiments

In this section, we evaluate the performance of proposed solution approaches by conducting a
case study based on the Shanghai Jinshan industrial park network. Both the SAA method and the
hybrid GA are coded in MATLAB_2014b, andthe SAA method is combined with CPLEX 12.6. All
computational experiments are conducted on a personal computer with a 3.60 GHz processor and
8.00 GB RAM under the Windows 7 operating system. The total computational times of both proposed
solution approaches are limited to 3600 s.

For the hybrid GA, a preliminary analysis has been conducted in order to fine-tune the parameters,
which are reported in Table 2. Population size and maximum iteration number are set to be 50 and
20 respectively.

Table 2. Parameters for hybrid genetic algorithm (GA).

Parameter Value (Hybrid GA)

Population size 50
Generation number 20

Crossover probability 0.9
Mutation 1 probability 0.2
Mutation 2 probability 0.8

5.1. Data Generation

We conduct a case study based on the drone delivery information of Ele.me to evaluate the
applicability of the proposed solution methods. Ele.me has developed a fleet of drones to delivery food
on fixed routes in Shanghai Jinshan industrial park. Based on the transportation and the geographical
location information of Shanghai Jinshan industrial park, a network is proposed. The network has
a total of 20 customers, as shown in Figure 7. There are 11 service routes, three types of drones, and
4 categories of parcels, as shown in Tables 3–5, respectively. Note that the total travel time on each
route depends on the drone speed and the total route distance. The planning time period is set to be
one week, i.e., 168 h (10,080 min). There are 4 service modules for drones with departure time intervals,
i.e., 5, 10, 15 and 20 min with corresponding service frequencies calculated as fk = 10080

tint
k

, ∀k ∈ K.

The labor cost for a courier delivering a parcel on each leg of each route depends on the distance of the
leg. Moreover, we assume the total number of scenarios to be 50. Under each scenario, the number of
parcels of each category on each leg of each route per minute is uniformly generated from 1 to 3.

Table 3. Service routes.

ID Service Routes

1 Pingan Square→ Yunhe Village→Wujiazhai→ Zhangjia→ Ting South→ Pingan Square
2 Pingan Square→ Chenjiadai→ Dongfeng→Wujiadai→Yuchi→ Quanxin→ Ting South→ Pingan Square
3 Pingan Square→ Dongfeng→ Xupu Village→ Tuanjie→ Changlou→ Pingan Square
4 Pingan Square→ Changlou→ Hexing Village→ Qiaowan→ Pingan Square
5 Pingan Square→ Changlou→ Fengjiazhai→ Hexing Village→ Taojiayuan→ Qiaowan→ Pingan Square
6 Pingan Square→ Hexing Village→Wujiazhai→ Shijiazhai→ Jiangzhunag Village→ Pingan Square

7
Pingan Square→ Zhangjia→Wujiazhai→ Yunhe Village→ Fengjiazhai→ Changlou→ Dongfeng
→ Chenjiadai→ Pingan Square

8
Pingan Square→ Ting South→Wujiadai→ Xupu Village→ Tuanjie→ Hexing Village→
Qiaowan→ Pingan Square

9 Pingan Square→ Taojiayuan→ Jiangzhuang Village→ Yunhe village→ Pingan Square
10 Pingan Square→ Hexing Village→Wujiazhai→ Shijiazhai→ Tuanjie→ Changlou→ Pingan Square
11 Pingan Square→ Xupu Village→Wujiadai→ Yuchi→ Quanxin→ Chejiadai→ Pingan Square
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Table 4. Drone types.

Drone Type
Capacity

Volume (m3) Weight (kg) Operating Cost Average Speed
(Yuan) (km/h)

1 1 30 350 20
2 2 35 420 30
3 3 40 490 40

Table 5. Parcel categories.

Parcel Category Volume (m3) Weight (kg) Labor Cost Per Parcel
Per kilometer (yuan)

1 0.01 1 0.2
2 0.02 2 0.4
3 0.01 2 0.3
4 0.02 1 0.3

Figure 7. Shanghai Jinshan industrial park drone delivery network.

5.2. Computational Results

The computational experiments are conducted and reported in this part. For the two solution
methods, after the drone fleet deployment is determined, the objective value is calculated as the sum
of the drone leasing and operating costs and the expected labor cost (under all 50 scenarios). Note
that the scenario set Ω comprises 50 scenarios and that we evaluate the objective value based on the
entire Ω.

An illustrative example based on a small network is first studied to compare the proposed two
solution method with the deterministic situation. Note that the deterministic situation is considered
where the demand ξh

ri is fixed and equal to its mean value. In the example, there are 6 customers
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and 3 drone routes, I1 = [1, 2, 6, 5, 1, 2, 1], I2 = [1, 2, 3, 2, 1], and I3 = [2, 4, 1, 2]. The computational
results are reported in Table 6, where Ndrone denotes the number of drones deployed in total. Note that
drones selected by the three methods are of type 3. We can obtain that the number obtained under
the deterministic situation is 5003, which is 103 and 16 larger than those obtained by the SAA and the
HGA. That is, considering the uncertain demand is realistic and cost-saving.

Table 6. An illustrative example.

Route Deterministic Situation SAA HGA
Ndrone Service module Ndrone Service Module Ndrone Service Module

1 2 2 4 1 4 1
2 2 2 3 1 3 1
3 2 2 3 1 3 1

Obj 5003 4900 4987

The performance of the proposed solution methods under different number of scenarios is tested,
and the results are reported in Table 7. Scenarios for the solution methods are randomly selected from
the given 50 scenarios. The number of scenarios for the solution methods range from 3 to 50. From
Table 7, we observe that the SAA obtains a similar objective with the deterministic situation. Moreover,
it can be obtained that the computational time of SAA increases dramatically with the number of
scenarios and that SAA loses its power to solve the problem within 3600 s if there are 25 scenarios. That
is because, when the number of scenarios increases, the number of decision variables and constraints
increase rapidly. The average computational time of SAA is 1424.2 s, which is about 9 times larger than
that of the hybrid GA. Besides, as the scale of the tested instance is not large, the drone deployment
decisions obtained by SAA and the hybrid GA are very similar. The average objective value of the
hybrid GA is 6.9913× 105, which is about 0.98% larger than that of SAA. In summary, (i) for each
test, the quality of solutions obtained by SAA and the hybrid GA is very similar, (ii) SAA is relatively
time-consuming and the computational time of SAA increases rapidly with the number of scenarios,
and (iii) the average computational time of the hybrid GA is quite smaller than that of SAA.

Table 7. Impact of the number of scenarios |Ω|.

|Ω|
SAA HGA

Ndrone Obj (×105) Time (s) Ndrone Obj (×105) Time (s)

3 50 7.3531 56.0 50 7.5165 48.2
5 50 6.3544 119.3 50 6.3795 66.9
10 50 6.8960 462.7 50 7.0713 79.8
15 50 6.9026 2883.2 50 6.9867 89.5
20 50 7.1125 3600.0 50 7.1602 112.4
25 - - - 50 7.0799 138.6
30 - - - 50 7.0001 164.2
35 - - - 50 6.9762 189.4
40 - - - 50 6.8648 249.8
50 - - - 50 6.8782 308.7

Average 50 6.9237 1424.2 50 6.9913 144.8
Lower bound 50 6.3544 56.0 50 6.3795 48.2
Upper bound 50 7.3531 3600.0 50 7.5165 308.7

The impact of the total flight time of drones on each route is examined and reported in Table 8.
Since the flight time of a drone on each route depends on the distance and the average speed,
the increase of average drone speed is set from 0, 5, 10, ..., 30 km/h. Based on the analysis on
the tradeoff between the solution quality and the computational time, the number of scenarios for SAA
is set to be 10 and that for the hybrid GA is set to be 50. For SAA, 10 distinct scenarios are randomly
generated from Ω. After the first-stage decisions, i.e., the drone fleet deployment and drone service
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module, are determined, the expected labor cost is calculated as the sample average of the labor costs
under 50 scenarios. From Table 8, it can be obtained that the number of drones deployed and the
objective values decrease when the average speed increases. That may be because, when the average
drone speed increases, the total flight time of a drone on each route decreases and the number of
drones deployed on each route may decrease in ensuring the constraint of Equation (9). Therefore, the
drone operating cost decreases accordingly. Besides, the average computational times of SAA and the
hybrid GA are 467.7 and 312.7 seconds, respectively.

Table 8. The impact of the total flight time of drones on each route.

Increase of the SAA with 10 Scenarios HGA with 50 Scenarios
Average Drone Speed Ndrone Time (s) Obj(×105) Ndrone Time (s) Obj(×105)

0 50 463.2 6.8960 50 312.7 6.8782
5 44 465.3 6.2485 44 306.3 6.8488

10 42 468.9 6.1849 42 317.9 6.8390
15 39 472.1 6.2458 39 317.2 6.8243
20 35 471.6 6.2346 36 318.3 6.8047
25 34 465.8 6.1793 34 306.6 6.7998
30 30 466.9 6.1345 31 309.9 6.7802

Average 39.1 467.7 6.3034 39.4 312.7 6.8250

The impact of the volume and weight capacities of drones are tested and presented in Table 9.
We increase the volume and weight capacities by four combinations, i.e., (0.5, 5), (0.5, 10), (1, 5), and
(1, 10). It can be observed that the number of drones deployed decreases when the volume and weight
capacities increase. That may be because, when the capacities increases, the number of parcels can
be delivered by a drone increases and thus the time interval may increase. Therefore, the number of
drones deployed may decrease in ensuring the constraint of Equation (9) and the objective value may
decrease accordingly, as shown in Table 9.

Table 9. The impact of the volume and weight capacities of drones.

Increase of Volume SAA with 10 Scenarios HGA with 50 Scenarios
and Weight Capacities Ndrone Time (s) Obj(×105) Ndrone Time (s) Obj(×105)

(0, 0) 50 467.5 6.8960 50 313.3 6.8782
(0.5, 5) 37 472.6 6.7510 37 311.0 6.8145
(0.5, 10) 37 468.9 6.2560 37 309.8 6.8145

(1, 5) 37 469.8 6.2346 36 320.4 6.8047
(1, 10) 37 470.6 6.1793 37 322.7 6.7998

Average 39.6 469.9 6.4634 39.4 315.4 6.8223

The sensitivity of the value of time intervals tint
k of each service module is then tested. We reduce

the time interval of each service module by 1, 2, 3, and 4, respectively. It can be observed from Table 10
that, when the time interval values decrease, the number of drones deployed increases. That may be
because, when the time intervals decrease, the number of drones deployed increases to guarantee the
constraint of Equation (9), the number of parcels delivered by drones decreases, and thus the number
of parcels handled by couriers decreases. With the decrease of the time intervals, the objective value
first decreases and then increases. That may be because there is a tradeoff between the number of
drones deployed and the labor cost; when the number of drones on each route is too large, the drone
operating cost increases rapidly.



Sustainability 2019, 11, 3871 16 of 18

Table 10. The impact of time interval values.

Decrease of SAA with 10 Scenarios HGA with 50 Scenarios
Time Intervals Ndrone Time (s) Obj(×105) Ndrone Time (s) Obj(×105)

0 50 466.1 6.8960 50 314.6 6.8782
1 62 464.2 2.4349 62 310.4 2.9725
2 81 478.1 0.9162 81 313.4 1.2973
3 117 472.9 0.5733 117 319.5 0.5769
4 229 469.8 1.1221 228 320.3 1.1221

Average 107.8 470.22 2.3885 107.6 315.6 2.5694

In summary, from the computational results reported in Tables 6–10, it can be obtained that

(1) with the increase of the number of scenarios, the computational time of SAA increases dramatically;
(2) given the same number of scenarios, the computational time of the hybrid GA is smaller than

SAA with high solution quality;
(3) with the increase of average drone speed and the total flight time, the number of drones deployed

and the total cost decrease;
(4) when the volume and weight capacities of drones increase, the number of drones deployed and

the total cost decrease;
(5) when the time intervals decrease, the number of drones deployed increases; and
(6) the developed hybrid GA outperforms the SAA in terms of the computational time with high

solution quality.

Therefore, for the stochastic drone fleet deployment and planning problem in multiple-type parcel
delivery service, we recommend applying SAA when the number of scenarios is small and applying
the hybrid GA method when the number of scenarios is large.

6. Conclusions

This work studies the stochastic drone fleet deployment and planning problem in multiple-type
parcel delivery service. In the problem, the drone fleet deployment, i.e., the type, number, and
service module of drones deployed on each route, should be decided with uncertain parcel demand.
Under each realized scenario, the number of parcels delivered by drones and couriers should
be determined. The objective is to minimize the sum of the drone leasing and operating costs
and the expected labor cost. A novel two-stage stochastic programming formulation is proposed.
To solve the problem, a classic SAA is applied and a hybrid GA is further developed to achieve
computational efficiency.

Future research directions may include (i) designing heuristics that can solve the problem more
efficiently; (ii) considering more practical conditions, such as the situation where the labor cost function
is more complicated; (iii) considering heterogeneous drones on each drone route; and (iv) studying the
problem with labor cost as a piecewise or convex function.
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