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Abstract: Urban road transport and land use (RTLU) jointly promote economic development by
concentrating labor, material, and capital. This paper presents an integrated RTLU efficiency analysis
that explores the degree of coordination between these two systems to provide guidance for future
adaptations necessary for sustainable urban development. Both a super efficiency Data Envelopment
Analysis model and window analysis were used to spatiotemporally evaluate RTLU efficiency from
2012 to 2016 in 14 cities of Hunan province, central China. The Malmquist index was decomposed into
technical efficiency and technology change to reveal reasons for changes in RTLU efficiency. These
evaluation results show regional disparities in efficiency across Hunan province, with western cities
being the least efficient. Eight cities showed an increasing trend in RTLU efficiency while Yueyang
exhibited a decreasing trend. In 13 of 14 regions, productivity improved every year. At the same
time, five regions had a decline in technical efficiency even though technical progress increased in all
regions. Our analysis shows that greater investment in road transport and urban construction are
not enough to ensure sustainable urban growth. Policy must instead promote the full use of current
resources according to local conditions to meet local, regional, and national development goals.
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1. Introduction

Urbanization in China has accelerated since the implementation of economic reforms in 1978. The
urban population has increased from 388.55 million to 813.45 million and the urban gross domestic
product (GDP) has increased over ten times from 7.60 trillion RMB to 76.17 trillion RMB during the
last 20 years. The scale of road construction in China has expanded dramatically with the rapid
development of the urban economy. During the period of 2000 to 2018, the length of roads in China
increased from 1.403 million km to 4.773 million km. At the same time, land use has also undergone
tremendous changes as the built-up area increased from 39,758 to 55,155 km2. Meanwhile, sustainable
and collaborative development has become a central theme of urban planning and social management
in China.

Land, transportation, and economy are three necessary components for continuous urbanization [1].
Land use and road transport are closely inter-connected and have a mixed interaction on urban economy
by accumulation of labor, material resources, and capital. Urban land is accommodating increasing
numbers of residents and workers attracted to industrial clusters in newly built-up areas, thus creating
more demand for fast and efficient road transport. The large-scale construction of road networks
increases accessibility between different regions, and accelerates the flow of labor and material resources,
which will eventually result in the consumption of more land. Thus, the close connection between
urban road transport and land use jointly promotes the growth of a local economy.
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However, there are side effects from the development of industrial cities, since urban land usually
displays a pattern of disorderly and inefficient expansion, while a road network is often over or under
built and cannot match local travel demands. This has resulted in ineffective use of urban land and
road transport resources, hindering economic growth and sustainability in urban regions. Hence, we
aimed to use a quantitative evaluation of the combined urban road transport and land use (RTLU)
efficiency to identify problems and issues in the allocation of road and land resources, thus providing
rational guidance when planning road networks and land use for a balanced resource utilization and
sustainable urban development.

In this study, the RTLU efficiency refers to the ability to achieve maximum urban economic
output under the conditions of given road transport and land use input. A hybrid efficiency Data
Envelopment Analysis (DEA) framework is proposed to assess efficiency of RTLU for 14 cities in
Hunan province. In our method, super efficiency and window analysis DEA models were used to
spatiotemporally evaluate the efficiency of 14 cities, and the Malmquist index was used to reveal
the reasons for changes in efficiency. In China, Hunan province is one of the targets of the Belt and
Road (B&R) policy. As a massive infrastructure-led economic integration plan, the B&R strategy
advocates investing heavily in the infrastructure projects including roads and urban land in order to
strengthen the economic coordination among the belt-road area [2]. However, our analysis yielded
contradictory conclusions. Investment in land and roads (labor, material, capital) has a negative
effect on RTLU efficiency, indicating an uncoordinated economic development, which is inconsistent
with the original intention of the B&R policy. In addition, even in the same province, there are huge
differences in economic efficiency among different cities, due to regional variations in the road transport
and allocation of urban land resources. Furthermore, given continuous technological progress, the
optimal allocation of human, capital, and material resources, together with the implementation of
a corresponding level of management, have become drivers for productive efficient growth. Our
conclusions will be a useful reference for policy-makers when coordinating economic development
strategies in Hunan province as well as other belt and road areas. In theory, the RTLU efficiency
evaluation framework including the indicators and hybrid models as proposed in this study can be
applied to other parts of China as well as to foreign research areas. Findings from this study also may
apply in areas where the road transport and land use context is similar to those in our research area.

The rest of this paper is organized as follows. Section 2 reviews the research both on the integration
of road transport–land use and efficiency analysis with DEA models. Section 3 introduces the super
efficiency DEA and window analysis as well as the Malmquist index. Section 4 presents the study area,
data, and variables. Section 5 presents the analysis of the road transport–land use efficiency of 14 cities
in Hunan province from 2012 to 2016. Conclusions are drawn in the final section.

2. Related Work

The interaction and integration between land use and road transport is considered an integral
element for sustainable urban development. Various theoretical frameworks and models have been
proposed for the integration of the two. For example, Dur and Yigitcanlar [3] assessed land use and
transport integration via a spatial composite indexing model. Hrelja [4] explored how management
and working practices among local authorities affected implementation of integrated land use and
public transport planning. These theories and frameworks are qualitatively driven.

Various methods have been developed to evaluate efficiency, including the Analytic Hierarchy
Process (AHP) [5], the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) [6],
regression analysis [7], etc. Among these methods, one of the most widely used is the DEA model.
In 1978, Charnes et al. [8] developed a novel methodology named Data Envelopment Analysis
(DEA) to assess relative efficiencies of multi-input and multi-output production units, and then
established improved DEA models to deal with the shortcomings of the basic model. The DEA
model does not require any assumptions about the specific function form, and avoids inaccuracy
caused by subjectivity during weight determination. In the past decades, DEA has gained popularity
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as a powerful methodology for evaluation of efficiency in various fields, including agricultural
production [9], environment and energy [10], transportation [11], and education systems [12].

DEA models have been improved in different aspects to overcome the shortcomings existing
in the traditional model [13]. In the basic Charnes–Cooper–Rhodes (CCR) DEA model [8], efficient
decision-making units (DMUs) are simultaneously on the production frontier and thus share the
same score of one, which leads to difficulty in further distinction and comparison. To address this
problem, Andersen and Petersen [14] proposed an improved method called Super Efficiency DEA
(SEDEA) to discriminate frontier DMUs and rank them. The SEDEA method has been applied in many
studies [15–17]. Qiu et al. [18] used SEDEA to evaluate urban land use efficiency in 13 districts of
Wuhan, China and sorted the 13 districts from a spatial perspective based on efficiency results.

Another problem in the basic DEA model is that it evaluates the performance of DMUs for one
given timeframe and fails to measure the trend in efficiency of DMUs over time. To address this defect,
a variation of the basic DEA approach called DEA window analysis [19] brings a reasonable solution
to efficiency monitoring on time series. According to Asmild et al. [20] and Wang et al. [21], the major
advantage of DEA window analysis is that it can make the efficiency comparable throughout the whole
period and reflect the efficiency trend. Window analysis has been used in several studies to achieve
dynamic efficiency assessment [22–24].

The Malmquist productivity index has been used for identifying the reason for change of efficiency.
The Malmquist index was first introduced by Malmquist [25] for analyzing consumption efficiency.
Improved by Cave et al. [26] and Fare et al. [27,28], the Malmquist productivity index refers to an
index representing total factor productivity (TFP) growth of a DMU and consists of two components:
technology frontier change (TC) and technology efficiency change (TEC) between two time periods.
The former reflects the change in the technologic progress. The latter reflects progress or regression in
technical efficiency and can be further decomposed into pure technical efficiency change (PEC) and
scale efficiency change (SEC), reflecting managerial level and scale utilization, respectively.

Recently, DEA models have been applied to study urban transport and land use from the view
of economic efficiency. DEA models have been widely used to evaluate the performance of the
transportation system in transport applications, including highway, air, port and maritime, and
railway transportation [29]. Russo et al. [30] proposed the DEA approach to comparatively analyze
the effectiveness of hub ports in the Mediterranean Sea. Wey and Huang [31] used the Taipei Metro
Transit system as an empirical example to illustrate the application of DEA methods for transportation
planning. Liu et al. [32] assessed construction level and investment efficiency of the municipal
public infrastructure using the entropy method and a DEA model. Egilmez and McAvoy [33] used a
DEA-Malmquist model to assess the relative efficiency and productivity in decreasing the number of
road fatalities in the US from 2002 to 2008. Fancello et al. [34] compared performances of different
urban road networks in Italy by using a DEA model. As for urban land use efficiency, Liang et al. [35]
used a DEA model to analyze the spatial distribution characteristics of land use efficiency of 287
prefecture-level cities in China in 2011. Chen et al. [36] used a DEA model to analyze the changes in
built-up land efficiency in 336 cities in China from 2005 to 2012 during the implementation of National
General Land Use Plan (2006–2020). Yang et al. [37] employed DEA to obtain land use efficiency
from an economic perspective in China. In addition, there are also many qualitative studies on the
interaction between land use and road transport [38–40]. Zondag [41] even proposed an analytical
instrument for the integrated modeling of land use, transport, and economy.

Although many theories and frameworks for the integration of urban road transport and land use
have been established, little work directly addresses the efficiency of integrated urban road transport
and land use quantitatively. The application of DEA in the field of transportation and land use
is independent and separate, with little research on integrated efficiency. In addition, the RTLU
efficiency analysis framework must be assessed in both the time and space dimensions; thus, exploring
potential causes behind outcomes. Hence, this study aims to quantitatively explore the efficiency of
the integration of road transport and land use from an economic perspective and an RTLU analysis



Sustainability 2019, 11, 3826 4 of 18

framework based on the DEA methods is proposed. Our DEA-based efficiency assessment method
combined with Geographic Information System (GIS) analysis will provide new ideas for integrated
research on urban transport and land use.

3. Methodology

In our research, super efficiency DEA, DEA window analysis, and the Malmquist index are
integrated to build a new evaluation model. Figure 1 shows an overview of the model structure in
three steps. Section 3.1, Section 3.2, and Section 3.3 introduce these three steps in our methodology.

Figure 1. The urban road transport and land use (RTLU) efficiency evaluation models. DEA: Data
Envelopment Analysis.

In the first step, we used the super efficiency DEA model to evaluate the efficiency of different
cities in Hunan province each year. In the second step, the window analysis model was applied to
reflect the efficiency trend over time. In the last step, the Malmquist index was decomposed into three
parts to understand the reasons for efficiency changes.

3.1. Super Efficiency DEA Model

DEA is a non-parametric efficient frontier technique for evaluating the relative efficiency without
any assumptions about the weights of the indicators. DEA usually deals with a unit k that has multiple
inputs and multiple outputs,

Xk = (x1k, x2k, . . . , xmk) (1)

xik refers to the ith input, where i = 1, . . . , m

Yk = (y1k, y2k, . . . , ysk)

y jk refers to the jth output, where j = 1, . . . , s
These were incorporated into an efficiency measure: a ratio (Ek) of weighted outputs to weighted

inputs [30].

Ek =

∑
u jy jk∑
vixik

(2)

Ek means the efficiency score of DMUk. This definition requires a set of factor weights v and u.

v = (v1, v2, . . . , vm)
T (3)

v indicates the importance weight of m inputs

u = (u1, u2, . . . , us)
T

u indicates the importance weight of s outputs
In the basic DEA model, known as the DEA-CCR model, the goal is to maximize the efficiency

score Ek of the DMU. The basic CCR models can be divided into two types: input-oriented and
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output-oriented. Both can be used to evaluate efficiency. The results of the assessment are generally
the same [42]. This study focuses on how to adjust the inputs of road transport and land resources
to achieve constant high efficiency outputs. Therefore, the input-oriented model was chosen. The
following formula shows the basic DEA-CCR model, used to assess DMU k0, where 1 ≤ k0 ≤ n.

maxEk0 = uTY0
vTX0

s.t. uTYk
vTXk

≤ 1, k = 1, 2, . . . , n

u ≥ 0, v ≥ 0, u , 0, v , 0

(4)

The meaning of each symbol in Equation (4) is consistent with that in Equations (1)–(3). To
simplify the calculation, we use Cooper–Cooper transformation to get an input-oriented form, as
shown in Equation (5).

minθ

s.t.



n∑
j=1

X jλ j ≤ θXk

n∑
j=1

Y jλ j ≥ Yk

λ j ≥ 0, j = 1, 2, . . . , n

(5)

where λ is the weight of each DMU, and θ refers to the efficiency score of DMUs. The efficiency score
ranges from 0 to 1 where 1 refers to the efficient evaluated DMU relative to the other DMUs, while a
DMU with a score less than 1 is identified as inefficient.

Based on the CCR model, super efficiency DEA (SEDEA) has been proposed to further distinguish
among those DMUs sharing the same score of one and rank them. The difference from the traditional
DEA-CCR model is that SEDEA evaluates the kth DMU by the linear combinations of all DMUs except
the kth DMU. Thereby, an efficient DMU may increase the input proportionally while keeping its
efficiency score unchanged, thus this DMU will have an efficiency score above one.

The input-oriented super-efficiency-CCR model is expressed as in Equation (6):

minθ

s.t.



n∑
j = 1
j , k

X jλ j ≤ θXk

n∑
j = 1
j , k

Y jλ j ≥ Yk

λ j ≥ 0, j = 1, . . . , n

(6)

where Xk = (x1k, x2k, . . . , xmk), Yk = (y1k, y2k, . . . , ymk) indicate the input and output vectors,
respectively; λ is the weight of each DMU; and θ refers to the efficiency of DMUs. θ ≥ 1 means that
the DMU will be considered efficient, while 0 < θ < 1 means that the DMU is inefficient.

3.2. Window Analysis

To compare RTLU efficiency over time, DEA window analysis was conducted to demonstrate
dynamic performance in different regions of Hunan province in the period 2012–2016. This model treats
the same DMU at different periods as different units, comparing the DMUs not only with the other
DMUs in the same period but with themselves in other periods [43]. Thus, DEA window analysis can
observe the efficiency from a temporal perspective and provide us more information about efficiency
trends. A three-year window analysis is used as an example in Table 1. Here, Ei j means the efficiency
score of the DMU over the jth period in the ith window.
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Table 1. A three-year window analysis of a decision-making unit (DMU) from 2012 to 2016.

2012 2013 2014 2015 2016

Window 1 E11 E12 E13
Window 2 E21 E22 E23
Window 3 E31 E32 E33

In DEA window analysis, three variables are set to meet the specific experimental conditions, the
time span (t), single window width (w) and the number of DMUs (n). In our study, 14 regions (n = 14)
and a time span of five years (2012–2016) (t = 5) needed to be examined. Based on Charnes et al. [44], a
window width of three or four time periods tends to produce an optimal balance of credibility and
stable measures of efficiency. From this, a three-year window width was chosen (w = 3) and 14 cities
were taken into account in our analysis. Each window contained 42 (n × w = 14 × 3) DMUs and the
efficiency of these DMUs was calculated, w efficiency scores of each DMU were obtained. This model
calculates dynamic efficiency on the principle of moving average. In our case the years of 2012, 2013,
2014 formed the first window. The window then moved on one-year periods and the analysis was
performed on the next three-year set, dropping the original year and adding a new year. Therefore, the
next three-year analytical results included the years 2013, 2014 and 2015. The process finally moved to
the last window containing the years 2014, 2015 and 2016. Then, we calculated the average results of
urban RTLU efficiency of each region in the same year to get an overall efficiency result for the 14 cities.

3.3. Malmquist Index Analysis

In addition to the super efficiency DEA model and window analysis described earlier, we
also employed the Malmquist index to decompose the efficiency change into different factors. The
non-parametric Malmquist productivity index [45] measures the total factor productivity (TFP) changes
of a particular DMU and evaluates the efficiency change between the period t + 1 and the period t
based on DEA. The index can be defined as Equation (7).

M =
[

Dt[xt+1,yt+1]
Dt[xt,yt]

Dt+1[xt+1,yt+1]
Dt+1(xt,yt)

]1/2

=
Dt+1(xt+1,yt+1)

Dt(xt,yt)
×

[
Dt[xt+1,yt+1]

Dt+1[xt+1,yt+1]

Dt[xt,yt]
Dt+1(xt,yt)

]1/2

= TEC× TC = PEC× SEC× TC

(7)

Here, M refers to Malmquist productivity index value, x indicates the input vector that can produce
output vector y. Dt(xt, yt) and Dt+1(xt+1, yt+1) are within-period distance functions. Dt(xt+1, yt+1)

and Dt+1(xt, yt) are the adjacent-period distance functions. In an input-oriented evaluation, M > 1
means the progress is in productivity, M < 1 reflects the regress is in productivity, and M = 1 indicates
the status quo is in productivity. As the overall productivity change, the Malmquist index can be further
decomposed into two exclusive parts: technical efficiency change (TEC) and technology change (TC).

TEC represents the change of technology efficiency from period t to t + 1 and indicates the
degree of efforts the DMU attained to improve its efficiency. TEC > 1, TEC = 1, TEC < 1 represent the
improvement, steadiness or decline of technical efficiency, respectively. TEC can be broken down into
two components: pure efficiency change (PEC) and scale efficiency change (SEC). The pure efficiency
denotes the level of management in utilizing given resources, while scale efficiency assesses the ability
of exploiting scale economies for DMUs [46,47].

TC reflects the change in technology level by measuring the movement of the production frontier
between periods. TC > 1 means a positive shift in frontier and shows the evidence of innovation, TC <

1 means a negative shift in frontier and technical backwardness, TC = 1 means no change in frontier.
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4. Data and Indicators

4.1. Study Area and Data

Hunan province is located in the central south of China at 108◦47′~114◦13′E, 24◦39′~30◦08′N (as
shown in Figure 2), with a total area of 211,800 km2, 2.21% of total land area of China. It covers 14 cities
and 122 counties. Hunan province is the core economic region and main inland transportation hub in
China. As the central province of the Yangtze River Economic Belt, the government plans to make
Hunan an economic affiliation of the “the Belt and Road”, which will have an effect throughout the
central, southern, and western regions in China. At the end of 2017, the population of Hunan province
reached 68.60 million with an urban population of about 37.47 million. Since 2000, Hunan province
has accelerated the construction of its road network and expanded the scope of urban built-up area. By
2017, the built-up region in Hunan province increased to 1709 km2, the total length of road reached
239,724 km, and the GDP reached 3390 billion RMB.

Figure 2. Map of Hunan province, China.

Over the past 40 years of reform and opening up, Hunan has made every effort to promote the
construction of transportation infrastructure, and the road network system has become more optimized
and complete. In 2018, the Hunan Provincial Road Work Conference revealed that the urban roads will
continue to be the “main battlefield” for the province’s transportation construction, with a planned
investment of 46.4 billion yuan. In 2019, the Hunan Provincial Development and Reform Commission
approved seven urban road projects, involving a total of 25.092 billion yuan. These infrastructure
projects will strongly support the further development of the regional economy.

Limited by different terrain conditions, the distribution and development of the built-up area in
Hunan province is uneven. The terrain in Hunan province is mountainous and hilly. The west is mainly
mountainous, and the terrain is relatively high; the east is mainly flat, and the terrain is relatively low.
Thus, the layout of construction land in the hilly and mountainous western areas is scattered, while
in the flat eastern regions such as the Chang-Zhu-Tan urban agglomeration consisting of Changsha,
Zhuzhou and Xiangtan built-up areas are relatively concentrated. The uneven development of urban
land has caused the economic difference between the eastern and western regions.

With the rapid expansion of road transport within urban areas, the unbalanced distribution of
built-up areas will increase disparity and imbalance in development levels between different localities,
thus entail unpredictable consequences. This study used DEA models evaluate integrated RTLU
efficiency in Hunan province to find the direction for road and land resource optimization in this
region. To apply the DEA models described in Section 3, input–output indicators needed to be selected,
which is presented in the following subsection.
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4.2. Indicator System and Data

This study defines the RTLU efficiency as the ability to achieve maximum urban economic outputs
with given road transport and land use inputs. The high RTLU efficiency reflects reasonable allocation
of road–land input resources and the coordinated urban economic development. Hence, the efficiency
is measured from the aspects of road transport–land use inputs and urban economy outputs. Existing
DEA studies on China’s regional sustainability assessment tend to use capital, labor, and material as
inputs and count GDP variables as outputs [15,48,49]. In this study, the road–land input variables are
grouped into four types: capital, road, land, and labor resources. Investment in road construction,
length of road network, and total number of transportation employees are chosen as road network
inputs, while investment in urban land use, expanded built-up area, and total number of urban land
employees are selected as urban land use inputs. The urban economy output variables used in the
study are the GDP of the secondary and tertiary sector of the economy. Table 2 lists the chosen
indicator system.

Table 2. List of input–output variables used in efficiency evaluation.

Types First Level Second Level Third Level

Input
Indicators

Road
Transport

Capital Investment in road (X1)
Road Length of road network (X2)
Labor Number of transportation employees (X3)

Land use
Capital Investment in urban land use (X4)
Land Expanded built-up area of each city (X5)
Labor Total number of employees for land (X6)

Output
indicators

Economy Urban economy Second GDP (Y1)
Third GDP (Y2)

The sample used in this study consisted of 14 cities in Hunan and was collected between 2012 and
2016. The 14 cities in Hunan are considered DMUs in the DEA models proposed in Section 2. The
data were obtained from the annual reports of the Hunan Provincial Bureau of Statistics, including
the Hunan Statistical Yearbooks 2012–2016 [50], Yearbook of Hunan Province Transportation and
Communications 2012–2016 [51]. Descriptive statistics for the input and output variables are shown
in Table 3. ‘Mean’ refers to the average of the 14 DMUs in each variable, ‘Std. dev.’ means standard
deviation measuring how spread out variables are and how far from the normal, ’Max’ and ‘Min’ refer
to the maximum and the minimum value of each variable among 14 DMUs.

Table 3. Summary statistics of inputs and outputs (N = 14).

Year Variable
Road Transport Inputs Land Use Inputs Economic Outputs

Capital Road Labor Capital Land Labor Second GDP Third GDP

billion RMB km 10 k people billion RMB km2 10 k people billion RMB billion RMB

2012

Mean 15.051 16,718.000 5.896 86.381 4.076 82.471 856.556 596.394
Std. dev. 5.273 4899.969 3.716 59.355 2.964 49.365 859.807 584.224

Max 26.330 22,960.000 16.395 193.970 11.000 204.820 3592.520 2535.080
Min 6.880 7799.000 1.617 6.770 0.770 16.770 85.430 180.030

2013

Mean 16.243 16,814.000 6.088 111.078 3.062 87.009 938.913 683.459
Std. dev. 5.044 4902.650 3.985 78.415 2.234 50.550 946.316 671.808

Max 26.180 22,967.000 17.541 282.550 9.650 214.910 3946.970 2911.610
Min 8.140 7788.000 1.619 6.700 1.080 17.620 92.890 207.140

2014

Mean 19.929 16,874.429 6.180 139.641 3.619 89.913 1012.802 777.581
Std. dev. 5.576 4917.560 4.107 91.427 3.263 52.542 1017.240 755.012

Max 28.610 23,022.000 18.060 341.320 12.450 221.090 4241.250 3271.660
Min 6.880 7844.000 1.645 5.810 0.100 14.610 99.680 231.760

2015

Mean 23.600 16,920.286 6.079 183.819 3.860 40.176 1042.105 896.440
Std. dev. 6.972 4926.752 4.109 127.809 5.021 28.824 1038.181 888.753

Max 35.090 23,053.000 18.045 437.550 20.110 130.460 4333.580 3834.770
Min 10.190 7844.000 1.640 18.270 0.320 8.670 101.890 262.870

2016

Mean 30.737 17,019.500 5.882 181.334 3.936 39.430 1070.540 1049.474
Std. dev. 9.309 4934.720 3.588 125.574 3.540 26.429 1078.202 1038.844

Max 52.390 23,166.000 16.094 457.520 11.530 120.930 4513.280 4472.680
Min 16.020 7892.000 1.901 18.920 0.030 8.640 104.760 284.420
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Table 3 shows that the mean investment in the road system and expanded urban land has
experienced a significant increase, with a growth rate of 104.22% and 109.92% in RMB over the five-year
period. The average count of workers employed in road transport and urban land management
departments in Hunan showed a downward trend with a decline of 0.24% in transport and 109.16%
in construction from 2012–2016. Meanwhile, the annual average GDP in the secondary sector grew
by 24.98% and tertiary sector by 75.97% over time. These variables show that as transport and land
use development consumed various resources, the secondary and tertiary sectors became engines of
growth, these variables are the basis for our proposed model and case study of Hunan province.

5. A Case Study of Cities in Hunan Province from 2012 to 2016

The 14 cities in Hunan province from 2012 to 2016 were chosen as the empirical case to evaluate
the proposed model discussed in Section 3, using the input and output data presented in Section 4.
The super efficiency DEA model and window analysis were executed with the DEAP2.1 software.
The EMS1.3 software product was used to calculate the Malmquist index. ArcGIS 10.2 software
and Origin 9.1 software were used to visualize graphically the spatiotemporal distributions. The
following three subsections show and discuss the efficiency results of SEDEA, window analysis, and
the Malmquist index.

5.1. Efficiency Performance of Different Areas Based on SEDEA

The super efficiency scores and ranks for 14 cities in Hunan from 2012–2016 are shown in Table 4.
‘Score’ refers to the RTLU efficiency reflecting the degree of coordination between road transport–land
use and economic development. An efficiency score equal to or greater than one reflects an efficient
development, while less than one indicates an inefficient development. We used the CCR formulation
for SEDEA because the RTLU efficiency for each year was calculated separately. The process is a
constant return to scale each year so the input can be increased proportionally to obtain the same
ratios in the output, regardless of the scale of the input. To make a comparison intuitive, we ranked
the performance of the 14 cities based on their efficiency values. Rank was statistically tested by the
Kendall’s Coefficient of Concordance (W). The test of Kendall’s W showed p < 0.001, rejected the null
hypothesis and was statistically significant. Meanwhile, the score of Kendall’s W was 0.738, indicating
that our five-year efficiency assessment for the 14 cities is highly consistent.

Table 4. Ranking based on the super efficiency DEA model (2012–2016).

Cities 2012 2013 2014 2015 2016

Score Rank Score Rank Score Rank Score Rank Score Rank

Changsha 3.694 1 3.927 1 3.405 2 3.445 1 3.075 1
Zhuzhou 0.894 8 0.890 8 1.028 7 1.723 3 0.779 10
Xiangtan 1.373 4 1.242 4 1.228 4 1.904 2 1.790 3

Hengyang 0.688 11 0.731 10 0.787 9 0.878 9 0.773 11
Shaoyang 0.587 13 0.351 14 0.304 14 0.494 14 0.472 14
Yueyang 1.307 5 1.230 5 1.102 5 1.027 8 0.929 7
Changde 0.972 7 0.900 7 0.920 8 1.181 7 0.848 9

Zhangjiajie 2.135 2 2.372 2 4.996 1 1.691 4 2.054 2
Yiyang 0.610 12 0.794 9 1.082 6 1.640 5 1.490 5

Chenzhou 0.983 6 1.033 6 0.659 11 1.285 6 1.080 6
Yongzhou 2.096 3 0.635 13 1.577 3 0.635 13 0.582 13
Huaihua 0.844 9 1.251 3 0.709 10 0.800 11 1.528 4

Loudi 0.791 10 0.637 12 0.656 12 0.812 10 0.870 8
Xiangxi 0.515 14 0.702 11 0.642 13 0.697 12 0.736 12

Mean 1 1.249 1.192 1.364 1.301 1.215
< Mean 9 9 11 9 9

> 1 5 6 7 8 6
1 ‘Mean’ refers to the average efficiency of the 14 cities each year.
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As shown in Table 4, the percentage of efficient regions (efficiency score >1) in Hunan province
was lower than 50% from 2012 to 2016, indicating an imbalance between these two systems and urban
economic growth. Changsha, Xiangtan and Zhangjiajie kept their RTLU efficiency above 1, indicating
an enhancement in road–land resource conservation and economic growth. Yueyang, which was in
a state of coordinated development in most years, also exhibited high efficiencies above 1 except in
2016. More than nine cities showed low RTLU efficiency below average. Among them, Shaoyang
and Xiangxi showed much lower efficiency than the average. Only Changsha and Zhangjiajie had
efficiencies that were greatly above the average every year.

We further explored the reasons behind these results for Changsha and Zhangjiajie (the top two
cities). As the capital of Hunan, Changsha development policy directs more funding to land and road
infrastructure development. Changsha is a central transportation hub of the country. In 2014, road
transport took up 76.6% of passenger traffic and 89% of freight traffic in Changsha [50]. In 2012–2016,
the average length of road in Changsha reached 15,945km. At the same time, the level of urbanization
in Changsha was far ahead of the other cities in Hunan province, as the built-up area expanded from
319.96 to 350.63 km2 during that period [50]. Convenient transportation and sufficient urban land have
promoted the upgrades of the urban industrial structure, keeping this city’s GDP the highest in Hunan
province. Hence, the input in land and road transport is well matched with the high level of local
economic development, which explains the high efficiencies in Changsha. In Zhangjiajie, the level of
investment in road and land is not as high as that in Changsha, but it is enough to meet the developing
needs of the area. In addition, as the largest tourist city, the rich tourism resources in Zhangjiajie have
driven the growth of GDP, thus this city had a higher efficiency value.

We also analyzed the results of the two cities with lowest efficiency scores, Shaoyang and Xiangxi.
Shaoyang is surrounded by mountains on three sides. Due to terrain restrictions, the city has a slow
expansion rate; local rugged mountains make road construction difficult and costly. Our results show
that the slow urbanization process and inadequate road infrastructure might cause the economy in
Shaoyang to lag behind other cities in Hunan, leading to its low efficiency. Xiangxi is located in the
northwestern edge of Hunan province. The financial input of the road network is actually high in this
city. However, the local population base is small and the labor serving for the efficient construction of
road and land is insufficient, likely resulting in a lack of road transport facilities and the tiny built-up
area, only 35 km2 in 2016 [50], less than 1/10 of that in Changsha.

For brevity, we used the performance of the 14 cities in 2015 as an example, as depicted in Figure 3.
From Figure 3, the Chang-Zhu-Tan urban agglomeration shown in red, had higher efficiency scores
than the other 11 cities, indicating the development of road transport and urban land use is well
adapted to the urban economy, which is consistent with our expectations. However, the western region
including Xiangxi, Huaihua, Shaoyang, Yongzhou, and Loudi had efficiency scores much lower than
0.85, reflecting a development imbalance between RTLU and the local economy.
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Figure 3. Efficiency distribution map of 14 cities in 2015 based on Super Efficiency DEA (SEDEA).

The high efficiency found in the cities of Changsha, Zhuzhou, and Xiangtan in 2015 can be
attributed to scientific road guidance as well as open economic policies. Changsha, Zhuzhou and
Xiangtan form the Chang-Zhu-Tan urban agglomeration along the middle reaches of the Yangtze
River. Since 2012, Chang-Zhu-Tan urban agglomeration has advocated the “Transportation integration”
project [52], promoting road construction between the connected cities. The connecting road forms
a network that extends in all directions, and the transit time between the three cities was shortened
to less than 30 minutes. Convenient transportation promotes close economic cooperation between
the three cities and the coordinated development of urbanization. As for the western regions (such
as Huaihua, Yongzhou, and Shaoyang), mountainous terrain limits the intercommunication of the
area with other areas. Limited passenger and freight traffic means less use of the local road and
land infrastructure. Thus, redundant road and land resource inputs caused local inefficiencies. To
narrow the performance gap between the western region and eastern region in Hunan effectively, and
strengthen cooperation between different cities, local authorities in western regions should focus on
the full use of road transport-urban land resources and economic growth.

5.2. Dynamic Efficiency Performance Based on Window Analysis

Window analysis was used to find the trend in efficiency for the period 2012–2016 (t = 5, w = 3,
n = 14). The initially detailed results of window analysis are shown in the Appendix A (Table A1).
Table 5 shows the average efficiency of window analysis from 2012–2016. The performance trend for
the 14 cities over the five years is depicted in Figure 4, based on the results shown in Table 5.
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Table 5. Average efficiencies of window analysis.

Category Cities 2012 2013 2014 2015 2016 Average

Group
1

Changsha 1.270 1.272 1.244 1.425 1.502 1.343
Xiangtan 1.034 1.007 1.071 1.406 1.299 1.163
Yueyang 1.307 1.221 1.056 0.982 0.929 1.099

Zhangjiajie 0.813 0.872 3.872 1.192 1.913 1.733

Group
2

Zhuzhou 0.894 0.853 0.934 1.178 0.779 0.927
Hengyang 0.600 0.662 0.706 0.762 0.773 0.700
Shaoyang 0.339 0.279 0.292 0.450 0.472 0.366
Changde 0.710 0.771 0.839 1.064 0.848 0.847
Yiyang 0.575 0.703 0.843 1.293 1.132 0.909

Huaihua 0.779 0.857 0.644 0.706 1.528 0.903
Yongzhou 0.595 0.501 0.977 0.573 0.582 0.646
Huaihua 0.779 0.857 0.644 0.706 1.528 0.903

Loudi 0.590 0.606 0.631 0.759 0.812 0.679
Xiangxi 0.463 0.593 0.608 0.663 0.702 0.606

Figure 4. Efficiency trend in 14 cities of Hunan provinces.

Figure 4 shows an improvement in the efficiency for Changsha, Loudi, Zhangjiajie, Hengyang,
Shaoyang, Yiyang, Xiangxi, and Xiangtan. Among them, Changsha can be considered as a steadily
efficient city from 2012–2016 since its efficiencies never fell below 100% (Table 5). It kept growing
over the study period, indicating that the urban road and land use were in a state of coordinated
development and had a positive impact on urban economy. Yueyang had a decreasing trend over
the years, while the efficiency scores for Zhuzhou, Huaihua, Changde, Chenzhou, and Yongzhou
fluctuated. Overall, most cities showed an upward trend in road transport and land use efficiencies,
demonstrating that Hunan province is building a resource-conserving and sustainably developing
society, and has achieved efficient use of road transport and land use resources.

The rows in Table 5 reflected the performance trend of the 14 cities. The column ”Average” in
Table 5 showed a comprehensive performance of each city during the study period. The 14 cities
can be divided into two groups based on the average RTLU efficiency of window analysis. The first
group consisted of four regions (Changsha, Xiangtan, Yueyang, Zhangjiajie) which had high average
efficiencies, higher than 100% during the entire analysis period. The rest of the cities (Zhuzhou,
Hengyang, Shaoyang, Changde, Yiyang, Chenzhou, Yongzhou, Huaihua, Loudi, Xiangxi) that had
lower values ranging from 0.366 to 0.927 formed the second group.

In the first group, the rich tourism resources are the main reason for the efficiency of Yueyang
and Zhangjiajie. A large number of tourists in Yueyang make full use of road transportation resources
and promote local economic development. In 2016, the GDP of Yueyang ranked second to the
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provincial capital Changsha [50]. Zhangjiajie is the kind of city with “less input, less output and higher
efficiency”. It has rich natural resources and is known as the “National Forest City”. In order to protect
regional ecological resources, the city limits the development of urban land and roads. Though it
has insufficient road construction and small-scale built-up areas, relying on tourism resources, the
economy has developed. This city restricts overexploitation, protects natural resources, and adapts
to local natural conditions, which is conducive to sustainable development, while achieving high
efficiency development at the same time. This will provide a reference for the cities that are inefficiently
developed due to natural factors such as the western regions in Hunan. For those inefficient cities in
the second group, redundant input of road resource and low level of economic output are the main
reasons for the imbalances in development. Taking the performance of Shaoyang in 2013 as an example,
the efficiency for 2013 was equal to 0.279, the road investment and employees reached 2.02 billion RMB
with 100,964 people. In both investment and people this city ranked second among the 14 cities, while
its secondary and tertiary industry GDP was only 43.95 and 43.65 billion RMB, ranking 12th and ninth
in these industries, respectively [50,51]. The high input into road construction has not brought about
rapid economic development, so the average efficiency is in a low state.

5.3. Efficiency Change Decomposition Based on the Malmquist Index

In this study, the five-year productivity changes of 14 cities were computed using input-oriented
Malmquist index. The average Malmquist index (MI) was 1.169, and 0.3% resulting from an increase in
technical efficiency and 16.6% from an increase in technology, as shown in Table 6.

Table 6. Efficiency averages of 14 cities in Malmquist index (MI). TEC: technical efficiency change; TC:
technology change; PEC: pure technical efficiency change; SEC: scale efficiency change.

Cities MI TEC TC PEC SEC

Changsha 1.110 1.000 1.110 1.000 1.000
Zhuzhou 0.967 0.966 1.002 0.971 0.995
Xiangtan 1.225 1.000 1.225 1.000 1.000

Hengyang 1.235 1.029 1.199 1.040 0.990
Shaoyang 1.160 0.947 1.226 0.964 0.983
Yueyang 1.075 0.982 1.095 0.984 0.998
Changde 1.140 0.967 1.180 0.984 0.983

Zhangjiajie 1.278 1.000 1.278 1.000 1.000
Yiyang 1.204 1.132 1.064 1.039 1.089

Chenzhou 1.269 1.004 1.264 1.000 1.004
Yongzhou 1.215 0.874 1.390 0.924 0.946
Huaihua 1.281 1.043 1.228 1.031 1.012

Loudi 1.115 1.024 1.088 1.000 1.024
Xiangxi 1.141 1.094 1.043 1.079 1.014
mean 1.169 1.003 1.166 1.000 1.002

This table illustrates the change in Malmquist productivity and its decomposition by city, 13 out of
the 14 cities had an average MI above 1, indicating positive productivity growth. The only remaining
city, Zhuzhou had a negative growth, of which 0.2% resulted from an increase in technological
development and 3.4% from a decrease in technical efficiency related management and scale utilization.
In terms of TC, all the cities showed growth. In terms of TEC, six cities showed an increasing efficiency,
three cities had constant efficiency and five cities exhibited a decline in technical efficiency performance,
which resulted from both decreased technical efficiency and decreased scale efficiency. To improve the
TEC in these cities, the resource allocation capability, management level and scale optimization should
be taken into consideration.

The annual average Malmquist productivity and decomposition change between 2012 and 2016
are shown in Table 7. The average MI was greater than 1, suggesting increasing efficiency. TC also
exhibited a constantly increasing trend for all of the years. However, in terms of TEC, the results
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fluctuated over time, which indicates non-stable performance in the management and scale of the
transport and land systems in Hunan province. Specifically, growth was negative in all periods
except for 2014–2015. The decreasing technical efficiency from 2012 to 2013 was caused largely by
the decreasing scale efficiency, while the decline in technical efficiency from 2013 to 2014 was caused
by decreasing pure technical efficiency. The negative TEC during 2015–2016 can be attributed to
a 4.7% decrease in scale efficiency. Therefore, the decreasing TEC during the three periods could
alert local authorities to a need in these cities for substantial improvement in management and scale
utilization levels.

Table 7. Efficiency averages of Malmquist index against years.

Year MI TEC TC PEC SEC

2012–2013 1.123 0.969 1.159 1.025 0.945
2013–2014 1.117 0.995 1.123 0.906 1.099
2014–2015 1.226 1.078 1.137 1.058 1.019
2015–2016 1.215 0.972 1.25 1.019 0.953

mean 1.169 1.003 1.166 1 1.002

6. Conclusions

In this study, we analyzed the joint efficiency of road transport and land use through a RTLU
efficiency evaluation in a hybrid DEA framework in 14 cities from 2012–2016 in Hunan province, China.
A super efficiency DEA model was built to make a comparison of different cities for each year. We also
compared the trend in efficiency for each city over the entire study period using DEA window analysis.
We explored the changes in efficiency using three components decomposed from the Malmquist index.

Our spatial, temporal, and decomposed efficiency analyses show that coordination between
land use, roads, and economic development is uneven across Hunan province. The spatial RTLU
efficiencies of the 14 cities in Hunan province are unevenly distributed, as the efficiency of cities in
southwestern Hunan was generally lower than that in the eastern region. Changsha, Zhangjiajie,
and Xiangtan had the highest RTLU efficiency scores, implying close coordination between the road
transport–land use pattern and the urban economy, while Shaoyang, Xiangxi, and Loudi show an
uncoordinated development with the lowest efficiency. The temporal RTLU efficiencies show that
eight cities such as Hengyang, Loudi, and Changsha have an increasing efficiency trend while Yueyang
has a continuous decline in efficiency over the five years. The analysis of the Malmquist index shows
increasing technological development in Hunan, but with a decreasing trend in technical efficiency,
pure efficiency, and scale efficiency in five cities including Zhuzhou, Shaoyang, Yueyang, Changde,
and Yongzhou, dispersed across the province.

These results provide a reference for local authorities to balance the development of land and
road systems in Hunan.

(1) The cities with high RTLU efficiency should continue to rely on their own local road transport
and land use resource advantages to create economic benefits.

(2) The western cities with low RTLU efficiency still have great potential for efficiency gains by
exploiting their unique natural resources to help with economic growth.

(3) Excessive investment can cause a decline in efficiency, but scientific allocation of resources and
improved resource utilization can help sustainable development.

(4) In addition to resource inputs, improvements in management sufficiency and scale utilization are
an intangible measure to boost efficiency growth.

The three cities with high RTLU efficiency, Changsha, Xiangtan, and Zhangjaijie, should continue to
rely on their own local road transport and land use resource advantages to attract funds and technology,
thus achieving a steady increase in urban economic through rational development and use of resources.
Reducing regional imbalance contributes to urban sustainability. Inefficient cities are mainly located in
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southwestern Hunan. The local governments in these cities should scientifically allocate resources and
investments, and efficiently exploit their unique natural resources for local economic development
and sustainability. The 14 cities in Hunan province should scientifically allocate road transport and
land use resources according to local conditions to enhance urban RTLU efficiency, rather than blindly
building road networks, expanding urban areas, or aimlessly increasing investment; labor, material,
and capital resources must be balanced based on actual demands. Sustainable urban development is
closely related to productivity, improvement in technical innovation, level of management, and scale
utilization will drive productivity growth.

Although the current study framework only evaluated the integration efficiency of past road
and land use patterns, it could be used for ex-ante evaluation to support transport and land use
planning [53]. By simulating the planning data of transportation and land, we can further calculate the
efficiency under different planning schemes, and explore the optimal scheme based on the evaluation
results. This study currently focuses on the supervision of the regions from labor, capital and material,
but does not consider the impact of local policy. In China, road transport and land use are inseparable
from policies and regulations. In the future, research needs to quantify policy factors and incorporate
them into the evaluation indicator system to provide a more accurate assessment. In addition, we need
to identify the driving factors in inefficient regions, thus some methods such as logistic regression and
multiple linear regression will be integrated in our future research.
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Appendix A

Table A1. Dynamic DEA efficiencies of 14 cities for years 2012–2016 using window analysis.

Cities Window 2012 2013 2014 2015 2016

Changsha 1 1.269 1.266 1.116
2 1.278 1.088 1.803
3 1.527 1.047 1.502

Zhuzhou 1 0.894 0.855 0.900
2 0.851 0.906 1.239
3 0.996 1.117 0.779

Xiangtan 1 1.034 1.006 1.179
2 1.007 1.029 1.821
3 1.005 0.992 1.299

Hengyang 1 0.600 0.668 0.787
2 0.656 0.701 0.858
3 0.629 0.665 0.773

Shaoyang 1 0.339 0.277 0.286
2 0.281 0.287 0.494
3 0.304 0.407 0.472

Yueyang 1 1.307 1.212 1.092
2 1.229 1.084 1.025
3 0.994 0.939 0.929
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Table A1. Cont.

Cities Window 2012 2013 2014 2015 2016

Changde 1 0.710 0.810 0.920
2 0.733 0.853 1.181
3 0.743 0.947 0.848

Zhangjiajie 1 0.813 0.874 4.512
2 0.871 4.512 1.379
3 2.592 1.004 1.913

Yiyang 1 0.575 0.694 0.751
2 0.713 0.863 1.270
3 0.915 1.315 1.132

Chenzhou 1 0.636 0.979 0.659
2 0.794 0.621 1.130
3 0.588 1.034 1.078

Yongzhou 1 0.595 0.515 1.493
2 0.488 0.753 0.635
3 0.684 0.510 0.582

Huaihua 1 0.779 0.792 0.646
2 0.923 0.629 0.800
3 0.656 0.612 1.528

Loudi 1 0.590 0.612 0.656
2 0.599 0.629 0.788
3 0.608 0.731 0.812

Xiangxi 1 0.463 0.557 0.599
2 0.629 0.596 0.697
3 0.630 0.629 0.702
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