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Abstract: With the growing interest in healthy living worldwide, there has been an increasing demand
for more accurate measurements of the concentrations of air pollutants such as NO2. In particular,
analyzing the characteristics and sources of air pollutants by region could improve the effectiveness
of environmental policies applied in accordance with the environmental characteristics of individual
regions. In this study, a detailed nationwide NO2 concentration map was generated using the
cokriging interpolation technique, which integrates ground observations and satellite image data.
The root-mean-square standardized (RMSS) error for this technique was close to 1, which indicates
high accuracy. Using spatially interpolated NO2 concentration data, an administrative unit map was
generated. When comparing the data for four NO2 data sources (observation data, satellite image
data, detailed national data interpolated using cokriging, and NO2 concentrations averaged by an
administrative unit based on the interpolated NO2 concentration data), the average concentrations
were highest for remote sensing data. Land use regression (LUR) models of urban and non-urban
regions were then developed to analyze the characteristics of the NO2 concentration by region using
NO2 concentrations for the administrative units.

Keywords: urban forest; nitrogen dioxide; interpolation; cokriging; NO2 concentration map; satellite
image; land use regression model; county level

1. Introduction

The air quality is deteriorating globally at an alarming rate due to increasing industrialization
and urbanization. In particular, the concentration of nitrogen dioxide (NO2) is increasing significantly
due to anthropogenic activities [1,2], with most NO2 being generated by road vehicles and industrial
activities [3–7]. As the global population becomes more health conscious, various studies have been
conducted to determine the effect of NO2 concentration on human health [8]. High NO2 concentrations
in urban areas cause bronchial and lung cancer [9] and have severe effects on asthmatic patients [10].
In 15 EU countries, the average social medical costs due to NO2 pollution were estimated to be
approximately US $4.85 billion per ton [11].

To reduce these social costs, many countries regulate NO2 concentration levels using environmental
policies that target NO2 reduction. For example, the EU has established an integrated environmental
policy agreement for the transport, industrial, and energy sectors to improve air pollution at national,
regional, and local levels [12]. In addition, since 2013, China has sought to install selective catalytic
reduction (SCR) equipment in power plants to establish emissions standards to reduce NO2 levels
through the Air Pollution Prevention and Control Action Plan [13].

To establish effective environmental regulations that reduce the impact of NO2, accurate data on
NO2 concentrations within administrative units on a county scale is essential. Because environmental
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regulations are applied to these units, it is important to be able to accurately predict the effect of these
regulations and monitor their effect. In addition, population and NO2 emission source data is collected
by administrative units, and this data is necessary for decision-making related to environmental
policy. In China, the same guidelines regarding NO2 regulations are applied nationwide [14] and
several studies have analyzed changes in NO2 concentration and regulatory effects in administrative
units [14,15].

However, there is lack of accurate NO2 concentration data for administrative units. Three types
of data have been used to produce NO2 concentration maps for administrative units: spatial data
predicted using actual observed point-type data, spatial data from satellite images, and statistical models.
Observational data is highly accurate, but information is only available for the area surrounding an
observatory [16]. To overcome this restriction, some researchers have used satellite data of lower spatial
resolution rather than observational data, as it offers the use of a wider range of cell-based data [17].
However, the accuracy of remote sensing data is weakened by the assumptions associated with satellite
calculation algorithms, cloud and surface reflections, and the absence of vertical distribution data [16].
Another method for predicting the distribution of NO2 concentrations uses air quality modeling and
statistical interpolation based on observation point data [18–20]. Air quality models are also used to
overcome the limitations of observational and satellite data [16,21]. However, atmospheric modeling
is disadvantageous in that although the spatial resolution is high, it is difficult to judge the level of
uncertainty [22] and it is expensive. As a result, an increasing number of studies have investigated the
spatial interpolation of observational and satellite data using cost-effective geostatistical methods, with
highly accurate results [23].

The aim of this study is to generate NO2 concentration data for administrative units and analyze
NO2 characteristics based on this data as a means to effectively monitor the effects of environmental
regulations. To achieve this, detailed NO2 concentration data was generated for each map cell along
with observational data and satellite images. Based on this data, an accurate NO2 concentration map
for administrative units was constructed, and seasonal concentrations were predicted using land use
regression analysis. The LUR model is a statistical method that is widely used for analyzing the
characteristics of air pollutant concentrations, because it has the advantage of being able to grasp the
environmental influence on the NO2 concentration spatially [24–26].

2. Method

2.1. Study Area

Asia is developing rapidly and as a consequence, high levels of air pollutants are emitted in this
region [27,28]. In Asia, especially in China, Korea and Japan, NO2 concentrations are higher than in
other regions. The Republic of Korea (hereafter, South Korea), located in East Asia at 33◦–43◦N and
124◦–132◦E (Figure 1) has a population of ~51,696,216 people (based on data from the Ministry of
Government Administration and Home Affairs in 2017) and has a land area of ~99,720 km2. Due to
the North Pacific high-pressure system in the summer, southeast and/or southwest winds are strong.
Based on this atmospheric circulation, the amount of air pollutants from neighboring countries is very
high [1].
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In South Korea, policies aim to precisely measure the concentration of air pollutants and reduce
the volume of air pollutants, including NO2. Previous government policies have focused on the
accurate measurement of NO2 levels; however, the government has recently made efforts to reduce
NO2 levels by actively legislating mitigation measures. Based on the Clean Air Conservation Act
(Law No. 14532, revised on November 17, 2017), the government has selected carbon monoxide (CO),
nitrogen oxides (NOx), sulfur oxides (SOx), dust (e.g., PM2.5 and PM10), volatile organic compounds
(VOCs), and NH3 (ammonia) as target air pollutants, and the Korea Environment Corporation (KEC)
operates and manages a national air pollution monitoring network that monitors these substances. In
terms of air quality management, the KEC manages air quality based on the overall air quality and the
remote monitoring of the type and amount of pollutants discharged into the chimney. In addition, the
Seoul Metropolitan Government and the national government have introduced a low-pollution project
for old vehicles, while the Ministry of Environment revised the laws and regulations related to the
Clean Air Conservation Act No. 35 (the collection of emission levies) in June 2018 to impose levies
on nitrogen oxide (NOx) emission from industrial sites. There are many policies related to fine dust
in Korea, but “Comprehensive Measures for Fine Dust Management” jointly announced by various
ministries on 26 September 2017 is representative. However, to link observed data with these policies,
it is necessary to analyze NO2 levels based on detailed national NO2 concentration data and the spatial
characteristics of observational data.

2.2. Generation of NO2 Concentration Data

2.2.1. Monitoring NO2 Levels

In South Korea, the KEC has installed observation stations at specific locations to measure NO2

levels. We used 2010 data for this study, at which time 240 stations had been installed, fewer than the
264 stations available in 2016 [29]. By 2010, KEC had installed 19 stations in the suburbs (compared
with 19 stations in 2016), 2 stations as part of the national background concentration network (3 stations
in 2016), and 33 stations as part of the roadside monitoring network (38 stations in 2016). In this study,
monthly average NO2 concentration data from December 2009 to November 2010 was downloaded
from the Air Korea website (http://www.airkorea.or.kr/index).

http://www.airkorea.or.kr/index
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2.2.2. Satellite Images Used to Monitor NO2

The vertical column (VC) density of NO2 is measured using three different satellite sensors: the
Global Ozone Monitoring Experiment-2 (GOME-2), the Ozone Monitoring Instrument (OMI), and
the Scanning Imaging Spectrometer for Atmospheric Chartography (SCIAMACHY) [30]. We used
GOME-2 images from the Meteorological Operational–A (MetOp-A) satellite because they provide
data for various time periods. The ground pixel size of this satellite data is 80 × 40 km, and the global
revisit time is 1.5 days. GOME-2 produces both monthly and daily images. We used the monthly
average NO2 concentration data from GOME-2 for the period from December 2009 to November 2010,
which were provided by the National Aeronautics and Space Administration (NASA) (See Figure A1).

Monthly data from December, January, and February were used for the winter season and data
from June, July, and August were used for the summer season. Because NO2 emissions vary between
seasons, seasonal analysis is needed [31]. In order to minimize the influence of weather, correlation
analysis between observational data and satellite images was performed first, and satellite images with
high correlations were used in this research. Pearson correlation analysis was performed between the
observed monthly data and satellite imagery data from 2009 and 2013. Based on the results, we decided
to use February 2010 to represent winter data (a correlation coefficient of 0.674, p = 0.001) and August
2010 to represent summer data (a correlation coefficient of 0.673, p = 0.001).

2.2.3. Geostatistical A Spatial Analysis: Cokriging

To generate detailed nationwide NO2 concentration data, we used the cokriging method, which
is a form of geostatistical spatial analysis. It can improve the accuracy of estimations by employing
spatial interpolation based on the relationship between environmental data and a particular reference
value [32,33]. The final product derived from the cokriging method is a raster, which has pixel values.
In this study, spatial interpolation was conducted based on observational data using satellite images as
supplementary data. Daily and monthly NO2 levels in the suburban atmosphere, country background,
roadside atmosphere, and urban atmosphere provided by Air Korea were used as the primary data
for interpolation.

Before implementing the cokriging method, a semivariogram was constructed to see whether
the data was skewed and to confirm spatial autocorrelation. A semivariogram is a measure of the
similarity between data points at a certain distance based on spatial correlation [34]. When the number
of data points spaced apart by separation distance h is n, a semivariogram can be calculated using
Equation (1), where r is the value of the semivariogram, z is the value of the data at arbitrary point x,
and h is the distance between the data points [35]:

r(h) =
1

2n

∑n

i=1
[z(xi) − z(xi + h)]2 (1)

Since only satellite image data is used as a sub-parameter based on the observation data, it can
be represented as a simple cokriging equation like Equation (2) by using the main variable Zi and a
secondary variable ui. m is the number of data points for the secondary variable, and kj and λ are the
weights of the data used [24,32]:

Z =
∑n

i=1
λiZi +

∑m

j=1
k ju j (2)

Cross-validation can be used to judge prediction performance [31]. The accuracy of the estimates
was verified using the root-mean-square standardized (RMSS) error between the observed values
and distributions generated through cokriging. In Equation (3), P and O represent the estimated
and observed values at point i, respectively, and Q is the mean. The total number of samples is
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represented by n. The closer the RMSS value is to 1, the more accurate the difference between the
original observation and interpolated value.

RMSS =

√
1
n

∑n

i=1

{
(Pi −Oi)/Qi

}2 (3)

2.3. Comparison of Data Characteristics by Spatial Unit

NO2 levels may differ from season to season due to differences in demand for automobiles
and heating, which directly affect the concentration of NO2. According to this, the accuracy of the
concentration data and the differences between sources was analyzed for data from both summer
and winter. To compare the spatial seasonal differences in NO2 concentration, the mean, maximum,
minimum, median, variance, and standard deviation of the NO2 concentration were calculated by
region and season using the zonal statistic function of ArcGIS 10.2. The datasets from satellite images,
observations, spatially interpolated NO2 concentrations, and the reprocessing of spatially interpolated
NO2 concentrations by administrative unit were compared and statistically analyzed by comparing
the data range and standard deviation.

2.4. Prediction of NO2 Concentrations by Administrative Unit Using A Land Use Regression Model

To analyze the sources of NO2 in each region, land use regression (LUR) models were developed
using the relationship between NO2 concentration and environmental variables. The LUR models were
developed for urban and non-urban areas in order to identify the factors with major influence on the
increase in NO2 concentrations in the administrative units. We classified urban and non-urban areas
using land cover categories as administrative units. The NO2 levels in urban regions are more variable
than in rural areas due to micro-meteorological factors [36] and a high proportion of artificial surfaces
in urban settings. Based on the land cover data, residential, industrial, commercial, recreational,
traffic, and public areas were all classified as artificial surfaces. The non-urban area was divided into
agricultural areas (rice fields, fields, facility plantations, orchards, and other plantations), artificial
grasslands, natural grasslands, forest areas (broadleaved forest, coniferous forest, and mixed forest),
wetlands (inland wetland and coastal wetland), natural springs, and inland waters were classified as
non-urban areas.

South Korea is divided into 252 administrative districts (referred to as gu in Korean). Urban areas
contain a total of 51 of these districts, and it has the highest ratio of impervious areas compared to
other regions (Figure 2). Most of the metropolitan administrative districts are in Seoul and Busan.
Some parts of Gyeonggi, Daegu, Incheon, Gwangju, Ulsan, Mokpo, and Gwangyang that are highly
industrialized are considered metropolitan cities. These cities are classified as high-density, developed,
urban areas. Non-urban regions contain a total of 201 administrative districts. Although there is
human activity in these non-urban districts, it is much less intensive than that in urban areas.
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Figure 2. Administrative units in urban areas within South Korea.

LUR modeling predicts air pollutant concentrations based on surrounding land use and
environmental properties [24–26,37,38]. To develop this model, we used spatialized environmental
databases as predictor variables. In this study, linear regression equations were developed using the
enter procedure, as shown in Equation (4). The environmental factors affecting the concentrations of
NO2 are indicated by relation between y and x. αn are the correlation coefficients (n = 1 . . . n) between
the environmental factors and NO2 concentrations, Xn is an environmental factor (n = 1 . . . n), and c is
a constant. The linear regression model is able to explain the effect of the environmental variables on
NO2 concentrations because the correlation between the two is clear. The LUR models were developed
according to the regional characteristics of the NO2 concentration.

y = a1 × x1 + a2 × x2 + a3 × x3 + . . .+ an × xn + c (4)

Previous studies have used spatial data on traffic, population, land use, and physical geography
as predictor variables [4,5,35–43]. A total of 18 environmental variables have been used as predictor
variables (Table 1). Because the normalized difference vegetation index (NDVI) and NO2 concentrations
exhibit significant seasonal variation, they were divided by season using a dummy variable that bears
the value of 1 for summer and 0 for winter. This is because the purpose of this study is to quantitatively
analyze the differences in the seasonal and regional characteristics of NO2 concentrations. The emission
of air pollutants varies depending on land use [39], and the concentration and mechanisms of NO2

emission may vary depending on the source [4,5,39]. In previous studies, NO2 has been considered a
traffic-originating pollutant [40–42], so the length of the roads within a district was used as a variable
(Road_Length) in this study.

In relation to human activity, including power consumption and industrial activities [5], we used
the proportions of residential area (R_Res), industrial area (R_Ind), commercial area (R_Com), cultural
and sports recreation area (R_Cul), public facility area (R_Pub), and urban area (R_Urban) as prediction
variables. Population is an indicator of urban growth [38], and air quality is closely related to
urbanization and population growth, so population was used as an indicator in this study (R_Pop).
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Because the population and road length have a significant effect on NO2 concentrations, road length
per unit of population was also used as a variable (RL_Pop).

In South Korea, forests accounted for about 63.7% of the total national land area [43] in 2010.
Because the topography of the country is complex, and the influence of monsoons on the temporal and
spatial variability of most meteorological factors is significant, it is necessary to consider topographical
variables when quantitatively analyzing climate characteristics [44,45]. Therefore, a digital elevation
model (DEM) was used as an environmental variable (DEM_std) [46]. Forest and green spaces do not
generate NO2 because they contain almost no emission sources, and they promote less turbulent air
flow in the surrounding areas. These areas are thus necessary to prevent deterioration to air quality [47].
In this study, the proportion of coniferous forest (R_Coni), deciduous forest (R_Deci), mixed forest
(R_Mixed), and whole forest (R_Forest) as dominant species and the NDVI (NDVI) as a measure of
live vegetation cover were used as predictor variables. Because the NDVI is pixel-based, averages
were used for each administrative area. The NDVI is useful as a representative indicator of green areas
because only vegetated areas have values of 0 or more.

Table 1. Description of potential predictor variables.

Predictor Variable Name Effect Other Comments

Seasonal factors

Season Season Summer = 1, winter = 0

Emission factors

Percentage of
residential area R_Res +

Residential area by administrative
district/Area of each administrative
district *100

Percentage of
industrial complex
area

R_Ind +
Industrial complex area by
administrative district/Area of each
administrative district *100

Percentage of
commercial area R_Com +

Commercial area by administrative
district/Area of each administrative
district *100

Percentage of cultural
recreation area R_Cul +

Area of cultural recreation area by
administrative district/Area of each
administrative district *100

Percentage of public
facilities area R_Pub +

Area of public facilities by
administrative district /Area of each
administrative district *100

Percentage of
urbanization area R_Urban +

Area of urbanization by
administrative district /Area of each
administrative district *100

Length of roads Road_Length +
Length of roads (km)/Area of each
administrative district (km2)

Percentage of
population R_Pop +

Population/Area of each
administrative district *100

Road length per unit
population RL/Pop + Road_Length/R_Pop

Reduction factors

Percentage of paddy
field R_Paddy -

Area of paddy fields within an
administrative district /Area of each
administrative district *100

Percentage of field R_Field -
Area of fields within administrative
district /Area of each administrative
district *100
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Table 1. Cont.

Predictor Variable Name Effect Other Comments

NDVI NDVI -

Using zonal statistics of ArcGIS, we
derive the monthly average NDVI
data of the Moderate Resolution
Imaging Spectroradiometer (MODIS)
in the cell using the average for the
administrative district

Coniferous forest ratio R_Coni -
Coniferous forest area by
administrative district / Area of
administrative district *100

Deciduous forest ratio R_Deci -/+
Deciduous forest area by
administrative district /Area of
administrative district *100

Mixed forest ratio R_Mixed -/+
Mixed forest area by administrative
district /Area of administrative
district *100

Forest ratio R_Forest - Forest area by administrative district
/Area of administrative district *100

Topographical factors

DEM DEM_std -

Using the zonal statistics of ArcGIS,
we derive the standard deviation
value of the DEM for each cell as the
average value by administrative unit

The zonal statistics of ArcGIS 10.1.3 were used to calculate the averages within the districts. After
that, Pearson correlation analysis was performed using SPSS 16.0 to determine the correlations between
NO2 concentrations and the 18 predictor variables and thereby ascertain the final proxy variables to be
used in the LUR models. The variables were selected on the following bases: 1) There are correlations
between NO2 concentration and the environmental variables at a p < 0.01 significance level, as per
a Pearson correlation analysis; Pearson’s correlation coefficients were calculated to demonstrate the
linear relationship between two variables with a significance level of <0.05 [48]. 2) When the correlation
between the variables is high (correlation coefficients over 0.5), a parameter having a high correlation
with the NO2 concentration was selected. Pearson correlation coefficients are used widely to examine
the correlation between criteria [49]. R ≥ ±0.5, ±0.25 ≤ R < ±0.5, and 0 < R ≤ ±0.25 indicate strong,
moderate, and weak positive correlations respectively [50].

3. Results

3.1. Nationwide NO2 Concentration

The NO2 levels based on spatial interpolation for February (winter) and for August (summer)
are presented in Figure 3A,B, respectively. The NO2 concentration data generated using the spatial
interpolation method is also reproduced for individual administrative units in Figure 4. Comparing
Figures 3 and 4, it can be seen that the trends in NO2 levels were consistent irrespective of whether
they were measured by grid or administrative units.

When the spatial distribution of NO2 was compared by season, it could be seen that high NO2

concentrations were more common in winter than in summer. NO2 concentration exceeding 40 parts
per billion (ppb; the limit according to WHO’s 2005 standards) was found over about 26.14% of the
total land area in February, but only over about 0.01% of the land area in August. In February, the
concentration of NO2 was higher than 40 ppb in the metropolitan areas of Seoul, Busan, Gwangju,
and Daegu (in Figures 3 and 4). In August, it was higher than 40 ppb only in Seoul. These cities are
high-density metropolitan areas with a high population density, few green areas, a high road density,
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and a high proportion of urbanized areas. In contrast, areas with low NO2 concentrations, regardless
of the season, were mainly in high altitudes and faced low developmental pressure.Sustainability 2019, 11, x FOR PEER REVIEW 9 of 18 
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To produce the NO2 cell unit data that was used to construct the NO2 map for administrative units,
spatial interpolation was conducted using satellite images based on observation information. Before
implementing the cokriging process, a semivariogram was obtained using the NO2 concentration data
taken from 281 ground stations and satellite data taken via GOME-2 and DEM. Since the data were not
biased, spatial interpolation was performed without any data conversion. The lag size for the February
data was 0.258, while that for the August data was 0.241; both had a nugget of (0,0). Because the
accuracy of the interpolation methods did not differ significantly, the most common method, ordinary
cokriging, was used.

According to the cross-validation results with the observed and interpolated data, the slope of the
regression line for the winter NO2 concentrations was 0.661 and that for summer was 0.574 (Figure 5).
The RMSS values were 0.917 (in Figure 5, left side) in winter and 0.775 in summer (in Figure 5, right
side) (The closer the RMSS error is to 1, the higher the accuracy of spatial interpolation). As a result
of cokriging, the coefficient of the regression line was 0.5 or more for both seasons (summer: 0.574,
winter: 0.661; See Figure A2 for semivariograms).
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3.2. Analysis of the Accuracy of Nationwide NO2 Concentrations Measured by Administrative Unit

To compare the difference between the observed and interpolated values using the cokriging
method, their statistical differences were compared. NO2 concentration values were found to be
4.82−76.75 ppb in winter (average 29.48 ± 11.62 ppb) and 2.01−76.05 ppb in summer (average
20.65 ± 10.96 ppb). The satellite image values were 0–65.71 ppb in winter (average 36.44 ± 17.91 ppb)
and 0–63.60 ppb in summer (average 32.79 ± 17.11 ppb). The results of spatial interpolation with
cokriging were 0–57.32 ppb NO2 in winter (average 33.50 ± 11.12 ppb) and 0–48.69 ppb NO2 in summer
(average 25.14 ± 10.65 ppb). When the spatial interpolation results were converted into those for
administrative units, the NO2 concentration was 0–52.10 ppb in winter (average 32.52 ± 11.41 ppb)
and 0–48.30 ppb in summer (average 24.52 ± 10.80 ppb).

To assess the accuracy of the NO2 concentration maps constructed by administrative unit, we
statistically compared the maps produced using the following data sources: (a) observations, (b) satellite
images, (c) interpolated data via cokriging, and (d) cokriging data averaged by administrative unit.
It was found that the map produced using cokriging data averaged by administrative unit reduced
the uncertainty in the observation data and the satellite images and increased the accuracy. For all
four data sources, the winter NO2 concentrations were higher than the summer levels because the
use of fossil fuels increases in winter due to the need for heating. The highest standard deviation
(17.91 ppb) was observed for the remote sensing data for winter and the lowest value (10.65 ppb) for
the interpolated data via cokriging for summer. The standard deviation of satellite image data was
larger than those of other data. This is because, since the satellite images were included in the cell type
data for all areas, there was a large difference in values compared with the observation data which were
crowded within the city. Compared with the average value of the observed data, the satellite image
value was higher by about 23.64% in winter and 58.82% in summer. However, the data generated by
the administrative unit was higher by about 10.32% in winter and about 18.75% in summer than the
observation data (Figure 6). The reason the average of the spatially interpolated values is larger than
the average of the observed values is the satellite image values used in the interpolation are larger than
the observed values.
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3.3. Analysis of NO2 Concentration Values Using LUR Models

To determine which environmental variables should be employed in the LUR models, correlation
analysis was conducted for the 18 environmental variables and NO2 concentration. Environmental
variables that showed a high correlation with NO2 concentration and low correlation with other
variables were selected. Of these, 11 variables had a correlation coefficient of ±0.5 or stronger: NDVI,
Road_Length, R_Forest, R_Urban, R_Res, R_Com, R_Cul, R_Pub, R_Coni, R_Pop, and RL/Pop. NDVI
was significantly correlated with R_Forest, R_Field, R_Paddy, R_Coni, and R_Mixed at the 1% level,
while the correlation coefficients between RL_Pop and Road_Length, R_Urban, R_Res, R_Com, R_Cul,
R_Pub, R_Coni, and R_Pop were 0.7 or higher. Therefore, NDVI and RL_Pop, which had little or no
correlation with each other or with the season dummy variable, were selected for use in the LUR model
as an NO2 reduction factor and emission source, respectively.

The performance of the LUR models are summarized in Table 2. The final LUR models consisted
of two predictors: the NDVI as an NO2 reduction factor and road length per unit population (RL_Pop)
as an NO2 source. In a previous study that developed an LUR model for NO2, the R2 ranged from 0.44
to 0.96 [37]. In this study, the adjusted R2 values of the LUR models were 0.335 and 0.526 for urban and
non-urban regions, respectively.

The NDVI was negatively correlated with NO2 concentration in the LUR models for both urban
and non-urban regions. The effect of the NDVI per unit area on the reduction in NO2 levels was
about 2.34% higher in non-urban areas than in urban areas. The average NDVI values for urban and
non-urban areas were 0.39 (± 0.15) and 0.56 (± 0.20), respectively. The reduction in NO2 levels due
to NDVI was similar for urban and non-urban regions based on the standardized beta coefficients of
the LUR models (urban regions: −0.460; non-urban regions: −0.471). However, NO2 concentrations
in urban areas were much higher than those in non-urban areas. Therefore, the unstandardized
beta coefficients for NDVI were −29.385 in the urban and −22.593 in the non-urban areas. Therefore,
if the vitality of urban vegetation increases, then the reduction effect of the NDVI in urban areas will
be higher.

The road length per unit population (RL_Pop) was positively correlated with NO2 levels in the
LUR models. The standardized coefficients for RL_Pop in non-urban regions were 43.51% larger than
those in urban regions. The average road length per unit population was about 8.81 (± 2.41) km/person
in urban regions and about 2.34 (± 2.01) km/person in non-urban regions.
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Table 2. Land use regression model for urban and non-urban regions.

Urban
Regions (Adj. R2 = 0.335)

Model
Unstandardized

Coefficients
Standardized
Coefficients t Sig. Collinearity Statistics

B Std. Error Beta Tolerance VIF

(Constant) 41.360 3.700 11.179 0.000
NDVI −29.385 5.409 −0.460 −5.433 0.000 0.918 1.089

RL_Pop 3.565 1.155 0.261 3.087 0.003 0.918 1.089

Non-Urban
Regions (Adj. R2 = 0.526)

Model
Unstandardized

Coefficients
Standardized
Coefficients t Sig. Collinearity Statistics

B Std. Error Beta Tolerance VIF

(Constant) 28.403 1.184 23.998 0.000
NDVI −22.593 1.689 −0.471 −13.378 0.000 0.954 1.048

RL_Pop 9.185 0.699 0.462 13.131 0.000 0.954 1.048

4. Discussion

To generate a highly accurate NO2 concentration map for administrative units within South
Korea, this study employed the cokriging method, which combines point-type observation data and
satellite images to produce NO2 concentration data for individual cells at the national level. In this
study, the spatial interpolation results using cokriging were accurate because information was not
lacking for any area owing to the combined use of point-based spatial data and cell-unit-based satellite
image data. This method has been used for the spatial interpolation of branch information for large
areas in various fields [16,34]. The ordinary spatial interpolation method that uses only observation
point information tends to overestimate the observation point information because the weights of the
observation points are simply derived based on distance [51]. In addition, since the observation points
are too densely concentrated in the city, information on non-urban area becomes lacking; thus, when
spatial interpolation is performed, the variation in the NO2 concentration distribution may become
distorted. Therefore, spatial interpolation performed using both satellite image data and observation
data yields more accurate results. However, cokriging has not previously been employed for spatial
interpolation that utilizes observation data and satellite images to generate NO2 concentration data.
We confirmed the feasibility of using this method in this study, and we believe that it will be useful for
generating precise spatial data for national or global units.

When we analyzed NO2 levels by season and region to determine the accuracy and applicability
of our proposed approach, the accuracy of the data was found to be high even if the data was processed
by administrative unit. The means and standard deviations of the four data sources (observations,
satellite imagery, spatial interpolation using both observations and satellite imagery, and spatial
interpolation within administrative units) were compared to determine their level of agreement on
NO2 concentrations. The average NO2 concentration by administrative unit was the closest to the
observed values, and the average concentration calculated using spatial interpolation based on the
geostatistical method was slightly larger than that for the administrative units. The observations and
satellite imagery produced the lowest and highest standard deviation, respectively, while the standard
deviations of the spatially interpolated data and the data averaged by administrative unit were similar
to each other. In this study, we used corrected images provided by NASA but on comparing the
measured NO2 concentrations with the satellite images, the difference between the standard deviation
and the mean was found to be larger than that for the other data sources. In other words, the NO2

concentrations calculated based on the geostatistical spatial interpolation method used in this study
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were closer to the observations than when only satellite images were used. It is thus possible to
overcome the limitations of observation data without using homogeneous survey point information.
Previous research has only compared the accuracy of satellite images and observations [30,52,53], and
large variations in R2 values depending on the type of satellite image and spatial scale have been
reported [53]. Therefore, we expect that our proposed method for measuring NO2 concentration using
geostatistical spatial interpolation will provide more accurate information than approaches based on a
combination of observation data and satellite imagery, in regions with insufficient observation points.

To reduce NO2 concentrations at the national level, it is necessary to have access to accurate
information on NO2 concentrations in defined administrative units because decisions are made within
these administrative units (e.g., in prioritizing areas and allocating budgets). The NO2 concentration
map by administrative unit constructed in this study, using NO2 concentrations in cell units derived via
the cokriging method, is potentially useful in this regard because it can overcome the disadvantages of
observation data and satellite images individually. In this study, the differences in NO2 concentration
between the observation data, satellite image data, and spatial interpolation were statistically compared.
Spatial interpolation by administrative unit produced NO2 concentrations that were more consistent
with the observation data, with fewer outliers than seen in the observation data alone. In addition,
although the observation data only reports NO2 concentrations at the observation point, the NO2

concentrations for individual administrative units after spatial interpolation were proven to have
high accuracy because locations that did not have a measurement station nearby were analyzed using
satellite images.

In this study, LUR models were developed using the NO2 concentrations for administrative units
including urban and non-urban areas nationwide. Urban and non-urban areas vary greatly in terms
of land cover, including the proportion of man-made areas, due to the different intensities of human
activity. Therefore, the generation and reduction of NO2 differ for these areas, and the R2 value for
these areas differs. The R2 values of LUR models in previous studies have been reported to vary
greatly depending on the region, but the accuracy for urban regions was always higher than that for
non-urban regions. Bechle et al. [54] developed an LUR model using environmental variables for both
urban and rural areas. The adjusted R2 value for urban areas was 0.76 and that for rural areas was 0.49.
The LUR model was more accurate in urban and suburban regions than in rural regions, which means
that the differences in NO2 concentration caused by environmental variables were not significant in
natural areas. In Reference [55], when the prediction of NO2 concentration was classified by region, the
accuracy was low due to the small number of measuring stations in the suburbs compared with urban
areas. However, in this study, the urban regions were mostly developed areas with a very high density.
Because the NO2 concentrations and predictor variables were all generated within administrative units,
NO2 concentrations across an individual administrative unit were high due to the influence of roads in
the urban area. Therefore, the R2 values of the LUR model for the urban and non-urban regions were
0.335 and 0.526, respectively. The non-urban areas had a higher R2 value because of the variety of land
use rates, and the relationship between the NO2 concentration and the environmental variables was
clear. In the future, if a city is analyzed using a smaller spatial unit than administrative districts (gu),
it is expected that the R2 value will increase further.

In this study, LUR models were developed considering both the factors that reduce NO2

concentration, such as NDVI, and cause NO2 concentration increases, such as RL_Pop, in an
administrative unit. RL_Pop represents the road length per unit population and this variable is
used as a predictor variable to represent emission sources because it has a very strong correlation
with other environmental variables. NDVI indicates the degree of vitality of the vegetation, and in
the LUR model developed in this study, the vegetation with high vitality has the effect of reducing
NO2 concentration. In previous studies that have developed LUR models based on NO2 concentration,
all road-related variables were used and there were also differences in the spatial units analyzed.
In addition, previous LUR models have been developed mostly for cities by collecting data for houses,
blocks, and cells in accordance with the size of the city. Different environmental variables in the same



Sustainability 2019, 11, 3809 14 of 18

city could be classified using data such as road length [1,55], road type [19–22], cell-specific population,
and distance from residence. Because these previous studies were based on observational information,
in many cases, the relationship between NO2 concentration and the environmental variables was
analyzed by generating circular buffers of various radii for the environmental variables [39,56].
The environmental variables used in previous research and in this study thus differed due to the
different spatial scales at which the trends were analyzed. It is therefore necessary to consider data on
both a city and national scale when developing LUR models for the purpose of reducing NO2 levels in
the future.

5. Conclusions

Accurate NO2 concentration maps for administrative units are required for informed policy
decisions regarding air pollution control. In this study, NO2 concentration maps for February and
August 2010 that are based on administrative units were generated using the cokriging method for on
240 observation points and satellite images. Additionally, we have developed LUR models for urban
and non-urban areas using the NO2 concentration data generated. With this model, the influences
of environmental variables (RL_Pop, NDVI) on NO2 concentration was confirmed. If we manage
urban NO2 concentrations using the two environmental variables derived from the LUR model (“road
density per population (RL_Pop)” as an air pollutant source, and “NDVI” as an air pollutant absorption
medium), we can increase the sustainability of the cities.

We developed the LUR model using various environmental variables related to land use, but we
did not consider weather-related variables in this study. In this study, the monthly average NO2

concentration was used; since meteorological variables affect the NO2 concentration in units of seconds,
they were not used because the time scale was not appropriate. However, meteorological phenomena
such as rainfall may have a significant effect on NO2 concentration, so it is necessary to reflect these
environmental variables in the development of future LUR models. In addition, we did not consider
the intermediate production process because we created a detailed NO2 concentration map for the
present NO2 concentration levels. However, since NO2 can be generated by secondary reactions in
addition to in automobile exhaust gas, it should be studied in the future.

Despite this limitation, this study was able to prove the feasibility of producing a highly accurate
NO2 concentration map by administrative unit using satellite images and observation data. It also
demonstrates that NO2 concentrations could be predicted by developing an LUR model based on this
map. This approach can be useful in predicting NO2 concentrations for decision-making related to
environmental policy in countries where NO2 concentration data is lacking.
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Figure A1. Comparison of spatial resolution between remote sensing data and spatial interpolation
data (Left: GOME-2 remote sensing data in winter (Feb.); right: Spatial interpolation with cokriging in
winter (Feb.)).
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