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Abstract: Based on the single pricing method of the high-speed railway (HSR) in China, a pricing
strategy without flexibility leads to the problem of extreme fluctuations in passenger flow and
difficulty in increasing revenue. In order to achieve sustainable development of the HSR from the
perspective of pricing, in this study, we divided the passenger market according to the different
factors affecting passengers’ choice behavior, maximized ticket sales revenue with expected travel
cost as the reference point, and used prospect theory to construct a differentiated pricing model under
elastic demand. A simulated annealing algorithm was used to solve this model under two passenger
flow intensities. Taking the Beijing–Shanghai corridor as an example for analysis, the results show
that differential pricing can be implemented on the basis of passenger decision-making, and price
reductions at off-peak periods will attract passenger flow which will increase ticket sales revenue
by 10.41%. During the peak period, prices can be increased to maintain passenger flow, and ticket
sales revenue will increase by 7.98%. We also found that increasing passenger expectations have a
greater impact on ticket sales. This study provides theoretical and methodological support for the
sustainable development of the HSR.

Keywords: differential pricing; price discrimination; passenger expectation; prospect theory;
simulated annealing

1. Introduction

With the continuous expansion of the high-speed railway (HSR) in China [1], the formulation of
passenger ticket strategies has attracted more attention. The single pricing policy of the HSR is facing
flexible and diverse price competition from other modes of transportation, which leads to unbalanced
capacity utilization with fluctuations in passenger flow. Since most of the HSR in China was in a state
of loss for a long time, it is important to study the pricing strategy to change the revenue problem [2].
At the same time, HSR pricing is also key to achieving sustainable development. From the perspective
of improving the quality of people’s lives [3], we can meet more people’s travel needs and ensure
smooth and sustainable HSR lines. Differential pricing is a method of setting prices with the willingness
to pay. Due to the strong substitutability of trains in the same origin–destination (OD) between the
same lines, passengers can be subdivided into several parts with different price elasticity [4]. That is,
the differential pricing concept can be applied in this situation. In order to develop a better pricing
strategy for the HSR to meet more travel needs, prospect theory is introduced for the first time to
analyze the psychology of passengers when they are purchasing tickets, with the aim of adjusting the
ticket price for each train to meet their expectations, so as to achieve the goal of balancing passenger
flow and improving revenue.

This paper has four points. First, we would like to understand the travel choice behavior of
different passengers by analyzing the data of their ticket purchasing. By doing this, we can divide the
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passenger market into several groups to make sure that they all have the same or similar travel choices.
Second, we confirm the effectiveness of differentiated pricing for the HSR passenger market in China,
which has led to a significant increase in ticket revenue. Third, we use prospect theory to simulate
the real decision-making process of passengers and prove the feasibility of its application to the HSR
pricing model. Fourth, we provide a theoretical basis for the sustainable development of the HSR to
achieve the goal of balanced passenger flow and market regulation.

The differences in people’s travel choices motivate our interest in developing an empirical
analysis to understand how passenger expectations affect decision-making. Our hypothesis is that the
psychology of passengers when they purchase tickets can be used to achieve HSR price discrimination.
We use a real dataset to address the research question, which includes all ticket purchase records of
HSR passengers from 2016 to 2017 in China. From these data, we analyze the differences in passengers’
decision-making behaviors and classify them into several categories to apply price discrimination
strategies for different passenger markets.

Our results confirm the applicability of price discrimination in the HSR market and the impact
of passenger expectations on ticket revenue. By formulating different prices for passenger markets,
revenue will be greatly improved regardless of the density of passenger flow, which will have a positive
effect on guiding and regulating passenger flow.

This paper is organized as follows. In Section 2 we survey relevant studies in the literature.
In Section 3 we analyze the differential pricing problem of the HSR and Section 4 proposes the model.
In Section 5 we build the algorithm, and Section 6 provides examples and results. We offer our
discussion and conclusions in Section 7.

2. Literature Review

HSR pricing is a critical factor in the competitiveness of transportation operations, which helps to
maximize revenue and achieve sustainable development [5]. Following the main points of this paper,
we start with a review of studies that analyzed the development and application of price discrimination.
Then, we focus on research that studied the application of differentiated pricing in the transportation
industry. Finally, we discuss the feasibility of applying prospect theory to HSR pricing.

2.1. Development and Application of Price Discrimination

Dupuit [6] explained in 1894 that price discrimination refers to companies requesting different prices
from customers according to different needs when selling identical or differentiated products of the same
type. Then, in 1932 Pigou [7] categorized it into three types according to the degree of discrimination.
Price discrimination, which has been extensively studied in various fields such as airlines [8,9], retail [10]
and so on, is shown to have a positive effect on earnings to increase profitability [11]. Both theoretical
and empirical studies show that the premise of price discrimination is to have a flexible market that
can be segmented. Asplund [12] confirmed the authenticity of price discrimination in an oligopoly
from regional newspapers. Puller [13] analyzed the price discrimination adopted by airlines based on
the time of ticket purchase. In order to maximize revenue, operators use this method to achieve price
discrimination for different markets.

Among the three levels, second-degree and third-degree price discrimination are more practically
applied to commodity pricing [14]. In first-degree discrimination, the price of a product equals the
buyer’s maximum willingness to pay, which is hard to realize. For second-degree discrimination, which
has been applied in the mobile communication market, the price depends on the number of units to
be purchased. David [15] used examples from Japanese newspapers to confirm that second-degree
price discrimination increased social welfare. Third-degree discrimination reflects that pricing policy,
according to the price elasticities of demand in different markets, is changed to adapt to relevant segments
of the market. Holmes [16] analyzed the third-degree price discrimination effect in an oligopoly as early
as 1989. In general, while a series of pricing strategies through price discrimination have a strong impact
on revenue, price discrimination is used less in the HSR according to existing research.
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2.2. Development and Research of HSR Pricing

Since its existence, the HSR has brought great convenience for people’s travel, and has gradually
become the main means of long-distance travel, with the advantages of comfort, speed, and security [17].
As a result, it’s pricing policy has attracted more attention. HSR pricing strategies vary from country
to country, mostly based on floating prices, including base fares and additional fares. Taniguchi [18]
studied the pricing model of the Japanese Shinkansen. Voss [19] discussed pricing models for different
types of fares, such as student tickets. Zhou [20] proposed a pricing model of railway passenger
transportation under competition. Although the HSR developed rapidly in China, the research on
fares started late. It is still in the exploratory stage of learning from the experience of airline pricing.
The research mainly includes dynamic pricing and differentiated pricing [21].

HSR pricing draws on the concept of revenue management in airline pricing, including research
on differentiated pricing, demand forecasting, and seat allocation. Bitran [22] reviewed the pricing
model of revenue management. Sibdari [23] studied the application of revenue management in practice
and confirmed the feasibility of the model. Jiang [24] proposed a demand forecasting model for
HSR, which provides a basis for effective railway revenue management. In some studies, the trains
are priced according to the rules of passenger ticket purchasing, and the fares are determined by
considering the change in demand under different passenger flow intensity [25,26]. Some have studied
the impact of advanced time for ticket purchasing, with reference to the floating fares of airlines [27].
Other studies include setting several types of fares according to different seat levels, adjusting prices
based on remaining seats [28], and so on. Although demand forecasting and pricing issues have been
studied, the reasons for changes in passenger flow and pricing are still unclear, with a lack of research
that combines passenger analysis with the market.

2.3. Applicability of Prospect Theory to HSR Pricing

In order to explain the real decision-making process, Kahneman and Tversky [29] first proposed a
famous prospect theory through a series of psychological analysis and found that people have reference
dependence in actual decision-making. When faced with choices, the decision maker will pre-set
a reference point to weigh the effectiveness of each option to judge its gains or losses [30], and the
reference point reflects the person’s psychological expectations [31]. Prospect theory provides a good
description of the decision characteristics of people under uncertain conditions, which can be used to
analyze the characteristics of travelers’ choice behavior in various environments [32,33].

Schwanen and Ettema [34] proved that the characteristics of travel behavior in a transportation
system are consistent with the theory of cumulative prospects, which has certain applicability. Based on
prospect theory, one study established a travel selection model for travelers [35]. Another confirmed
the influence of prospect theory on the departure time selection mechanism of passenger groups [36].
Theoretical research confirms the volatility of utility and loss aversion in prospect theory, which can be used
to judge passenger travel decisions [37]. Although prospect theory can be used to study the psychology
of passengers, the research is still only on the study of passengers and does not apply to pricing.

From the existing literature we see the limitations of HSR pricing and a lack of research on
the combination of passenger analysis and marketization. Therefore, we propose, for the first time,
applying the analysis of passengers’ psychological activities and behaviors when purchasing tickets to
the pricing system. Through the combination of prospect theory and differentiated pricing, we can
achieve the goal of balancing passenger flow and improving profit, which proposes a new direction for
future research.

3. Problem Analysis

The factors affecting the choice behaviors of HSR passengers, can be divided into subjective
and objective [38]. Objective factors affect passengers’ choice of travel modes and subjective
factors determine the choice behaviors of passengers as individuals. Due to individual differences,
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passengers will focus on significantly different ticketing decisions. Passenger groups with the same
or similar subjective factors tend to exhibit similar travel choice behaviors, and there are differences
in choices among multiple groups. Prospect theory holds that people’s judgments of gains and
losses have reference dependency, which means the choice of reference points has a greater impact
on decision-making. A passenger’s evaluation of the trip is relative to the change of the reference
point. Therefore, applying prospect theory to passenger travel choices requires solving two problems:
passenger classification and the selection of reference points.

3.1. Passenger Classification

Passenger classification divides passengers who exhibit the same or similar travel choice behaviors
into the same group. In addition to the impact of fares, time is also an important factor affecting passenger
travel choices. According to sensitivity to fare and time, passengers are divided into three types in this
paper, classified as class I. The characteristics of class i(i = 1, 2, . . . , I) passengers are shown in Table 1.

Table 1. Passenger categories by price and time sensitivity.

Passenger
Type i Time

Sensitivity
Price

Sensitivity Elasticity Elastic
Coefficient Choice

Economy 1 Weak Strong Large >1 Price priority
Middle 2 Medium Medium Single =1 Comprehensive

Business 3 Strong Weak Small <1 Time priority

3.2. Selection of Reference Point

According to the differentiated pricing of trains, differences in prices directly affects passengers’
choice behavior. After learning information about train fares, departure times, and travel time,
passengers will imagine an expected price based on their travel experience, that is, as a reference
point for this travel decision. For different groups of passengers, the differences between reference
points should be reflected in the importance of fares, departure times, and travel time. In this paper,
passenger flow history data are used. Statistically in travel history, the proportion of passengers on
various trains reflects the passengers’ preference for particular departure times, and the theoretical
expectation after differential pricing is calculated accordingly. Combined with travel costs history and
subjective deviations, this forms the reference point for the travel decision. The difference between
the actual travel cost and the reference point can be described by the value function, reflecting the
passenger’s lack of aversion to the loss.

In this paper, the subjective probability weight function is used to weight the value function to
determine the passenger’s choice behavior. A person will choose the option of maximum utility, which
makes the research of prospect theory closer to the selection behavior of HSR passengers. At the same
time, combined with the expected travel cost as a reference point, it is more in line with the passenger’s
actual decision-making process, as shown in Figure 1. After the passenger conceives of a reference
point, that is, the expected travel cost, compared with the actual travel cost of the selected train, he or
she will purchase ticket if the actual cost is lower, otherwise, some passengers will decline.
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Figure 1. Passenger decision-making process when purchasing tickets.
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4. Methodology

For a clear analysis of the problem, we suppose that train tickets are sold in a fixed amount,
regardless of over-sale, changes or refunds. Furthermore, regardless of the influence of external factors
such as delays, the train will be sent to the station according to the schedule.

Suppose we set the EMU (Electric Multiple Unit) trains on a HSR line to H. For any train h ∈ H, the train
capacity is C(h). The train running line includes k stations, W =

{
(r, s)|r = 1, 2, . . . , k− 1, s = r+ 1, 2, . . . , k

}
means the origin–destination (OD) pair set from r stations to s stations, and the train set serving the OD
pair (r, s) is expressed by Hrs.

In the point pair (r, s), for any train h ∈ Hrs, the actual travel cost of the class i passengers on the
train h can be expressed in terms of a generalized cost chi

rs, which is affected by many factors, mainly the
fare, travel time, and departure time [39]:

chi
rs = ph

rs + vhi
rst

h
rs + mhi

rs (1)

Among them, for any pair of points (r, s), ph
rs is the fare for the train h, vhi

rs is the value of class i
passengers in terms of travel time, th

rs is the time taken by the passengers of train h, and mhi
rs represents

the conversion cost of the departure time for class i passenger on train h.
Since different types of passengers have different travel time preferences, the expected departure

time is usually fixed, indicated by θi
rs =

{
θ1

rs, . . . ,θn
rs, n ∈ N

}
between point pair (r, s). The departure

time of train h is θh
rs, and the conversion cost mhi

rs is a function of the degree of deviation between the
departure time and the passenger’s preferred travel time; the larger the deviation in time, the faster the
conversion cost increases, which is in line with the exponential function rising trend:

mhi
rs = vhi

rs exp
{
µi

rs ∗min
∣∣∣θh

rs − ∀θ
i
rs

∣∣∣} (2)

Here, µi
rs is the adjustment coefficient, and the sensitivity difference of various passengers to

time can be realized by adjusting the coefficient. The closer the departure time is to the passenger’s
expectation, the lower the ticket cost.

Based on travel history data, the estimated number of tickets distributed by train h to pair (r, s) can
be represented by nhi

rs, wherein the expected number of tickets for class i passenger is nhi
rs. The statistics

of each train can be used to get a more accurate average of fares and time. The average price prs of
all trains between the pair (r, s), the average travel time value vi

rs of the class i passengers, and the
average conversion cost mi

rs of trains at that time are expressed as

prs =

∑
h∈Hrs nh

rsph
rs∑

h∈Hrs nh
rs

(3)

vi
rs =

∑
h∈Hrs nhi

rsvhi
rsth

rs∑
h∈Hrs nhi

rs
(4)

mi
rs =

∑
h∈Hrs nhi

rsmhi
rs∑

h∈Hrs nhi
rs

(5)

Therefore, for class i passengers, the average travel cost for all trains serving point pair (r, s) is

ci
rs = prs + vi

rs + mi
rs (6)

Based on the generalized cost, the travel cost expected by a passenger is

Ei
rs = ρci

rs + (1− ρ)p̃i
rs + ξi

rs (7)
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where ρ is the weighting factor, p̃i
rs represents the generalized cost of passengers’ travel history, and ξi

rs
is the deviation value.

Taking the passenger’s expected travel cost as the reference point for travel choice, ∆xhi
rs can be

used to indicate the deviation between actual and expected travel cost after class i passengers choose
train h:

∆xhi
rs = −nhi

rs(c
hi
rs − Ei

rs) (8)

When the actual travel cost is higher than expected, ∆xhi
rs is negative, which means passengers

purchase the low-value product at a high price, which is not good value. When the actual travel cost
is lower than expected, ∆xhi

rs is positive, and passengers enjoy the service at a lower price, which is
a benefit.

Since travel decision makers tend to be more sensitive to increments than to losses, the value
function V(∆xhi

rs) can be used to indicate the impact of cost deviations on travel decisions:

V(∆xhi
rs) =

 (∆xhi
rs)

α
∆xhi

rs ≥ 0

−λ(−∆xhi
rs)

β
∆xhi

rs ≤ 0
(9)

Among them, α, β (0 < α ≤ 1, 0 < β ≤ 1) measures the degree of reduced sensitivity away from
the reference point. Larger α, β indicates that the traveler is more sensitive to risk, λ indicates a loss
avoidance coefficient, and λ > 1 always holds, reflecting that the individual is more sensitive to loss.
The subjective probability weight function π( f hi

rs ) is used to describe people’s responses to objective
risk probability.

When decision makers face benefits, it is calculated as follows:

π+( f hi
rs ) =

( f hi
rs )

γ

[( f hi
rs )

γ
+ (1− f hi

rs )
γ
]
1/γ

(10)

When decision makers face loss, it is calculated as follows:

π−( f hi
rs ) =

( f hi
rs )

δ

[( f hi
rs )

δ
+ (1− f hi

rs )
δ
]
1/δ

(11)

where f hi
rs is the probability of class i passengers selecting train h, π+( f hi

rs ),π−( f hi
rs ) represent the

subjective perception probability when facing benefits and loss, respectively. Parameters γ, δ determine
the curvature of the weight function, and the smaller the corresponding value, the greater the degree
of curvature.

According to the weight function and the value function, the utility of selecting train h can be
obtained as follows:

Uh
rs =

∑
i∈I
π( f hi

rs ) ∗V(∆xhi
rs) (12)

Urs =
∑

h∈Hrs
Uh

rs (13)

where, Uh
rs represents the utility of each train, and Urs represents the sum of the utility of all trains,

that is, the utility of passengers choosing HSR as a mode of travel.
Due to the strong substitutability of different trains in the same OD pair, the demand for flexibility

of the HSR is generally an elastic demand for all railway passenger trains serving the same point pair.
U0

rs =
∑

h∈Hrs

∣∣∣Uh
rs

∣∣∣ is defined as the sum of the absolute values of all trains’ utility. As the utility reflects
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passengers’ willingness to choose HSR and take a train, the elastic demand of HSR passengers between
point pair (r, s) can be described as a function of the utility [40]:

qrs(Urs) = q0
rs exp(η0

rs ∗

∑
h∈Hrs Uh

rs∑
h∈Hrs

∣∣∣Uh
rs

∣∣∣ ) = q0
rs exp(η0

rs ∗
Urs

U0
rs
) (14)

Between the point pair (r, s), q0
rs represents the demand corresponding to the generalized travel

cost c0
rs, and η0

rs is the elastic coefficient. As above, when Urs is positive, the utility is positive, that is,
the selection of HSR showing the overall value of passengers increases, prompting more passengers
to choose HSR and increasing the passenger flow. If it is negative, the overall value of passengers is
reduced, and some passenger flow is lost.

For train h ∈ Hrs serving the same pair (r, s), the function of passenger travel demand can be
obtained by decomposing the elastic demand qrs(Urs) of all trains. According to the different utility of
each train, the elastic demand qh

rs(Uh
rs) of train h ∈ Hrs is divided by using logit distribution, which is a

discrete selection method used in passenger flow distribution:

qh
rs(Uh

rs) = qrs(Urs)A(h, Urs) = qrs(Urs)
exp(ωUh

rs)∑
j∈Hrs exp(ωU j

rs)

= q0
rs exp(η0

rs ∗
Urs
U0

rs
) ∗

exp(ωUh
rs)∑

j∈Hrs exp(ωU j
rs)

= q0
rs

exp(η0
rs∗Urs/U0

rs+ωUh
rs)∑

j∈Hrs exp(ωU j
rs)

(15)

where ω is the adjustment factor. The passenger flow of each train not only depends on its own utility,
but also is also affected by the overall utility of all trains on the HSR.

The main purpose of considering a differentiated pricing strategy is to realize revenue management
for the HSR. Therefore, it is realistic to optimize ticket sales revenue. The differentiated pricing strategy
is reflected in the fact that each train is regarded as a product. Appropriately raising and lowering the
price of certain tickets creates a price difference, and the appropriate tickets are sold to passengers
who need them more to improve the overall passenger load rate and maximize profit. The ticket sales
income is expressed by R(p). The optimization model is as follows:

maxR(p) =
∑

(r,s)∈W

∑
h∈Hrs

ph
rs ∗ qh

rs(U
h
rs) (16)

s.t. ∑
(r,s)∈W

qrs(Uh
rs) ≤ C(h) (r, s) ∈W, h ∈ Hrs (17)

_
p

h
rs ≥ ph

rs ≥
^
p

h
rs (r, s) ∈W, h ∈ Hrs (18)

qh
rs(U

h
rs) ≥ 0 (r, s) ∈W, h ∈ Hrs (19)

ph
ij > ph

mn ∀(i, j), (m, n) ∈W, h ∈ Hrs, li j > lmn (20)

ph
ij + ph

jk ≥ ph
ik ∀(i, j), ( j, k) ∈W, h ∈ Hrs (21)

ph
rs ∈ N (r, s) ∈W, h ∈ Hrs (22)

Among them, Formula (17) is the capacity constraint, and it represents that the total ticket sales of
all OD pairs in any section shall not exceed the maximum transport capacity of the train. Formula (18)
is a fare constraint, which indicates that the fare of each section shall not exceed the published fare,
nor shall it be lower than the lowest limit of the fare, guaranteeing reasonable HSR ticket prices.
Formula (19) indicates that the demand is not negative, and Formula (20) means the fare is increased
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with the OD distance. Formula (21) is an upside down constraint, showing that the sum of fares of
each section on an OD should be no less than the OD fare, and Formula (22) is an integer constraint of
the fare.

5. Solution Algorithm

Since the model of this paper is large in scale and has certain randomness, a heuristic algorithm
is needed to obtain the optimal solution rather than the exact solution. Simulated annealing (SA) is
a kind of optimization algorithm based on the Monte Carlo iterative solution strategy. It uses the
probability jump feature to randomly find the global optimal solution of the objective function in the
solution space, that is, it can jump probabilistically when it falls into the local optimum and tends
toward global optimality eventually [41].

5.1. Generate Initial Solution

The SA algorithm is based on the initial solution for optimal iterative calculation. Therefore,
the first feasible solution to the problem needs to be obtained when using the algorithm. The initial
solution of the problem can be generated stochastically within the upper and lower limits of the fare

(
^
p

h
rs,
_
p

h
rs), and each OD fare ph

rs for each train is generated freely, which satisfies Formulas (20)–(22),
so fare combination p of the initial solution is obtained, as shown in Figure 2. The elastic passenger flow
of each OD is calculated according to Formulas (1)–(14), and logit distribution is performed according
to Formula (15) to judge whether each train meets the capacity limit of Formula (17). If the passenger
flow exceeds the capacity of the train, the excess is unloaded and reloaded onto other trains until the
capacity constraints are met. Finally, through Formula (16), the ticket sales revenue R(p) is obtained as
the initial solution.
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5.2. Neighborhood Structure

In order to improve the search efficiency of the SA algorithm, it is necessary to design an efficient
neighborhood construction method so that each search is carried out as far as possible toward the
optimal solution. In terms of fares, a new range of fares can be constructed based on the current fare
combination to find a better one. Focusing on the current solution p, we reduce or increase the OD
fare of each train and construct a neighborhood (p− ∆p, p + ∆p) that satisfies the constraint condition.
The ticket price of each train changes slightly, and a neighborhood solution p◦ of the current solution p
is obtained, as shown in Figure 3.

Sustainability 2019, 11, x FOR PEER REVIEW 8 of 18 

Among them, Formula (17) is the capacity constraint, and it represents that the total ticket sales 
of all OD pairs in any section shall not exceed the maximum transport capacity of the train. Formula 
(18) is a fare constraint, which indicates that the fare of each section shall not exceed the published 
fare, nor shall it be lower than the lowest limit of the fare, guaranteeing reasonable HSR ticket prices. 
Formula (19) indicates that the demand is not negative, and Formula (20) means the fare is increased 
with the OD distance. Formula (21) is an upside down constraint, showing that the sum of fares of 
each section on an OD should be no less than the OD fare, and Formula (22) is an integer constraint 
of the fare. 

5. Solution Algorithm 

Since the model of this paper is large in scale and has certain randomness, a heuristic algorithm 
is needed to obtain the optimal solution rather than the exact solution. Simulated annealing (SA) is a 
kind of optimization algorithm based on the Monte Carlo iterative solution strategy. It uses the 
probability jump feature to randomly find the global optimal solution of the objective function in the 
solution space, that is, it can jump probabilistically when it falls into the local optimum and tends 
toward global optimality eventually [41]. 

5.1. Generate Initial Solution 

The SA algorithm is based on the initial solution for optimal iterative calculation. Therefore, the 
first feasible solution to the problem needs to be obtained when using the algorithm. The initial 
solution of the problem can be generated stochastically within the upper and lower limits of the fare 
( h

rsp
 , h

rsp
 ), and each OD fare h

rsp  for each train is generated freely, which satisfies Formulas (20)–(22), 
so fare combination p  of the initial solution is obtained, as shown in Figure 2. The elastic passenger 
flow of each OD is calculated according to Formulas (1)–(14), and logit distribution is performed 
according to Formula (15) to judge whether each train meets the capacity limit of Formula (17). If the 
passenger flow exceeds the capacity of the train, the excess is unloaded and reloaded onto other trains 
until the capacity constraints are met. Finally, through Formula (16), the ticket sales revenue )(pR  
is obtained as the initial solution. 

 
Figure 2. Initial fare for each origin–destination (OD) train. 

5.2. Neighborhood Structure 

In order to improve the search efficiency of the SA algorithm, it is necessary to design an efficient 
neighborhood construction method so that each search is carried out as far as possible toward the 
optimal solution. In terms of fares, a new range of fares can be constructed based on the current fare 
combination to find a better one. Focusing on the current solution p , we reduce or increase the OD 
fare of each train and construct a neighborhood ( pppp Δ+Δ ，- ) that satisfies the constraint 
condition. The ticket price of each train changes slightly, and a neighborhood solution °p  of the 
current solution p is obtained, as shown in Figure 3 

 
Figure 3. Neighborhood structure of high-speed rail fare.

5.3. Specific Steps of SA Algorithm

In addition to initial solution and neighborhood construction, the SA algorithm also includes
cyclic iteration and algorithm termination. The detailed steps of the SA algorithm are as in Algorithm 1.
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Algorithm 1. Get the best solution for each train fare through simulated annealing, maximizing HSR revenue.

Input: initial temperature T0, temperature drop ratio α, final temperature t, price range (
^
p

h
rs,
_
p

h
rs)

Output: R(p), p
for Ti+1 = T0 to Ti+1 = t do

Set R(p)←0;
for K = 1 to K = L do

Generate initial solution R(p)←p;
Construct a neighborhood solution of the current solution p◦→R(p◦);
Update the global optimal solution:

if R(p) ≥ R(p), p← p◦, R(p)← R(p◦), p← p◦, R(p)← R(p◦);
if R(p) < R(p), acceptance probability P(A) = exp(−∆R/Ti), generates a random number ζ from (0,1),
satisfy ζ < P(A), p← p◦, R(p)← R(p◦);

Ti+1 = κ · Ti

6. Examples and Results

The model proposed in this paper can be applicable to the pricing systems of all HSRs, and the
Beijing–Shanghai corridor in China is only used as an example to prove the validity and practicability
of the model. In order to study the impact of departure time on differentiated pricing, eight trains of the
G2, G4, G6, G8, G12, G14, G16, and G18 lines were selected as the research objects. As shown in Figure 4,
stations including Shanghai, Changzhou, Nanjing, Xuzhou, Jinan, and Beijing generated 15 OD pairs
in total. The same stations for each train include Shanghai, Nanjing, and Beijing. The departure times
of the stops, from morning to night, are shown in Table 2. The maximum number of people in all trains
was 1005.
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Table 2. Departure times of trains.

Starting Station Shanghai Changzhou Nanjing Xuzhou Jinan

G2 09:00 10:09
G4 14:00 15:09
G6 07:00 08:09 10:23
G8 19:00 20:09
G12 08:00 08:42 09:16 10:33 11:44
G14 10:00 11:09 13:23
G16 11:00 12:09 14:23
G18 15:00 16:09 18:23

Regarding the parameter values, according to many experiments, the general values of the
parameters in prospect theory are α = β = 0.88, λ = 2.25, γ = 0.61, and δ = 0.69. Based on the
classification of passengers, the time sensitivity adjustment coefficient is set as µ1

rs = 0.8, µ2
rs = 1.0,

µ3
rs = 1.2. Since there are many economy tourists, accounting for 80% of the passenger market,

the elasticity coefficient is taken as η0
rs = 1.33 and the passengers’ imagined price is assumed to be a

rational expectation (i.e., ξi
rs = 0).
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6.1. Differential Pricing

The effect of travel history on passenger travel choices is represented by a weighting factor ρ,
which impacts travelers differently. Therefore, the influence of the coefficient on the yield of HSR in
different periods is studied, as shown in Figure 5. An increase in the coefficient means that passengers’
travel history has a greater impact, and their judgment on the expected travel cost is more dependent on
past experience. As can be seen from the figure, as the coefficient increases, ticket sales revenue shows
a downward trend in peak periods. Due to the increased ticket sales during peak hours, passengers
are affected by past experience, and high fares tend to curb their desire to purchase tickets. Increased
ticket sales revenue during the off-peak period with the increased coefficient is due to the decrease in
fares stimulating passengers’ purchasing desire. However, in general, total revenue is almost a straight
line, and there is no significant change with increased coefficient. It can also be said that the coefficient
has little effect on total revenue.
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Figure 5. The impact of historical travel on revenue.

Algorithm 1 is used to optimize the fares of each train and OD. By reducing price in off-peak
periods to attract passenger flow and increasing them in peak periods, the integrated passenger flow
from Beijing to Shanghai can be significantly improved, while also maximizing ticket sales revenue.
On the basis of statistical data, peak and off-peak periods of passenger flow were optimized at the same
time. The optimized fares after differential pricing are shown in Tables 3 and 4. It can be seen that at the
peak period, except for G18, the fares of other trains increased. The largest increase is for G12, which is
18.9% higher than the initial price. After the implementation of differentiated pricing, the difference
between the highest and lowest price is more than 20%, and the difference in fare between trains is
obvious. By raising train fares, HSR revenue increased by 7.98%, which is double the 3–5% of earnings
in previous studies.

As shown in Table 4, during the off-peak period, the train fares (except for G6) were reduced in
order to attract more passengers. Among them, G14 has the lowest fare, which is 16.4% lower than
the initial price, and 20.5% lower than the highest price after differential pricing. Through the price
reduction, income can be increased by 10.41%, and increased attendance and balanced passenger
flow can be achieved. At the same time, lower fares can promote more travel demand and achieve
sustainable development of the HSR.
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Table 3. Train fares during the peak period, in RMB.

Starting Station Terminal G2 G4 G6 G8 G12 G14 G16 G18 Initial Price

Shanghai Changzhou – – – – 89 – – – 74.5
Shanghai Nanjing 144 133 147 137 160 154 142 132 134.5
Shanghai Xuzhou – – – – 332 – – – 279
Shanghai Jinan – – 435 – 474 458 422 392 398.5
Shanghai Beijing 593 547 604 561 658 635 585 544 553.5

Changzhou Nanjing – – – – 71 – – – 59.5
Changzhou Xuzhou – – – – 249 – – – 209
Changzhou Jinan – – – – 397 – – – 334
Changzhou Beijing – – – – 587 – – – 493.5

Nanjing Xuzhou – – – – 178 – – – 150
Nanjing Jinan – – 305 – 332 320 295 274 279
Nanjing Beijing 475 439 484 450 527 509 469 436 443.5
Xuzhou Jinan – – – – 154 – – – 129.5
Xuzhou Beijing – – – − 368 – – – 309

Jinan Beijing – – 201 – 219 211 195 181 184.5

Note: − indicates that the train does not stop at this station.

Table 4. Train fares during the off-peak period, in RMB.

Starting Station Terminal G2 G4 G6 G8 G12 G14 G16 G18 Initial Price

Shanghai Changzhou - - - - 68 - - - 74.5
Shanghai Nanjing 126 118 136 116 122 113 133 123 134.5
Shanghai Xuzhou - - - - 253 - - - 279
Shanghai Jinan - - 402 - 361 333 393 363 398.5
Shanghai Beijing 517 485 558 478 502 463 545 504 553.5

Changzhou Nanjing - - - - 54 - - - 59.5
Changzhou Xuzhou - - - - 190 - - - 209
Changzhou Jinan - - - - 303 - - - 334
Changzhou Beijing - - - - 448 - - - 493.5

Nanjing Xuzhou - - - - 136 - - - 150
Nanjing Jinan - - 281 - 253 233 275 254 279
Nanjing Beijing 415 389 447 383 402 371 437 404 443.5
Xuzhou Jinan - - - - 117 0 129.5
Xuzhou Beijing - - - - 280 0 309

Jinan Beijing - - 186 - 167 154 182 168 184.5

Note: - indicates that the train does not stop at this station.

6.2. Elastic Passenger Flow

Due to differential pricing, the passenger flow of each OD changes accordingly. A comparison
between peak and off-peak passenger flow before and after optimization is shown in Table 5. Regarding
the OD pairs in Changzhou and Xuzhou, since only G12 operates without any competitions, it is
regarded as just needed, that is, the utility is 0, which means the passenger flow remains stable. In other
ODs, since the original off-peak passenger flow is small, the price reduction greatly increases the OD
passenger flow, so that the utility is positive. The growth of passenger flow not only compensates for
the loss of fares, but also increases ticket sales revenue by 10.41% compared with fixed fares. During the
peak period, the original passenger flow is close to the limit of each train’s capacity, so the fluctuation of
OD passenger flow is small. In this case, ticket sales revenue increased by 7.98% by raising the prices.

At the peak period, there was no significant change in total elastic passenger flow relative to
fixed fare. However, due to differentiated pricing, passengers are still affected by the choice of trains.
The changes between elastic and initial passenger flow of ODs are shown in Figure 6. As can be seen
in the figure, the peak hours of passenger flow among ODs are not the same: elastic passenger flow
is closer to the peak time of the initial passenger flow. The farthest OD, Shanghai–Beijing, has the
least fluctuation in passenger flow, and a higher fare in the morning with fewer passengers in the
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distribution of passenger flow in one day. The change trend of passenger flow from Nanjing to Jinan
and Jinan to Beijing, which have the second and third shortest distances, is the biggest. Generally
speaking, increased ticket prices in the peak period have little influence on the choice of travel time
expected by passengers.

Table 5. Changes in passenger flow of ODs during off-peak and peak periods.

Starting
Station

Terminal
Off-Peak Period Peak Period

q0
rs qrs(Urs) Urs/U0

rs q0
rs qrs(Urs) Urs/U0

rs

Shanghai Changzhou 161 161 0 183 183 0
Shanghai Nanjing 1485 1536(+51) 0.0606 1858 1904(+46) 0.0392
Shanghai Xuzhou 50 50 0 55 55 0
Shanghai Jinan 404 509(+105) 0.3968 504 468(−36) −0.0979
Shanghai Beijing 4151 5109(+958) 0.3475 5187 5143(−44) −0.0114

Changzhou Nanjing 37 37 0 41 41 0
Changzhou Xuzhou 17 17 0 19 19 0
Changzhou Jinan 13 13 0 14 14 0
Changzhou Beijing 102 102 0 113 113 0

Nanjing Xuzhou 23 23 0 23 23 0
Nanjing Jinan 95 101(+6) 0.1392 117 98(−19) −0.2001
Nanjing Beijing 1443 1758(+315) 0.3339 1811 1993(+182) 0.1448
Xuzhou Jinan 10 10 0 11 11 0
Xuzhou Beijing 51 51 0 57 57 0

Jinan Beijing 377 469(+92) 0.3713 463 537(+74) 0.2239

Original income 3,499,017 4,359,156
Current income 3,863,277 4,706,952

Growth ratio 10.41% 7.98%
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Compared with the peak period, passenger flow in the off-peak period greatly increases, and
the distribution of each period is more in line with the situation of differentiated pricing. Most of
the time, when ticket prices are relatively cheap, passenger flow increases significantly, as can be
seen from Figure 7. The two longest ODs, Shanghai to Beijing and Nanjing to Beijing, have the
largest passenger growth because of the great benefits of lowering prices. The shortest OD, Shanghai
to Nanjing, cannot attract more passengers due to the low initial fare, despite the price reduction.
The passenger flow of other ODs changes little, and the time distribution of passenger travel selection
also change little compared with the initial passenger flow. In general, lowering fares has a great
positive impact on increasing off-peak passenger flow, so differentiated pricing should be adopted to
deal with the bleak season of ticket sales.Sustainability 2019, 11, x FOR PEER REVIEW 14 of 18 
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Figure 7. Changes in passenger flow of ODs at off-peak period.

From the perspective of sustainable development, passengers are diverted through differential
pricing, achieving the goals of balanced passenger flow and increased attendance on the HSR. While
attracting more people to travel on the HSR, it also limits the outbreak of passenger flow to a certain
extent. In the long run, the price strategy will use the market adjustment mechanism to continue to
meet the travel needs of more people and ease the burden at peak periods.
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6.3. Impact of Passenger Expectations on HSR Revenue

In addition to increased HSR revenues from differentiated pricing based on prospect theory,
other factors, such as passenger expectations, can work together to further increase revenue. Passengers
expect travel costs to be affected by a variety of factors, including prices for previous travel, expected
travel time, service experience, and perception of HSR’s corporate image. This paper considers the
impact of the most important factors in passenger expectations: fares and time. It is assumed that
passengers fully understand market information, and reasonable travel costs for various types of
passengers are obtained from the general and historical travel cost of each train. Although the rational
passenger expectation in the study is a fixed value, to a large extent it is susceptible to rapid changes
due to external factors. If passengers’ acceptable expenses for travel improves their perception based
on known rational expectations, which means ξi

rs > 0, that is, they are willing to pay higher prices and
have a better understanding of the value of traveling by HSR, this will further increase HSR income,
as shown in Table 6.

Table 6. Impact on revenue by increasing passengers’ expected travel costs, in RMB.

Expected Travel Cost

ξi
rs = 0 Increase by 1% Increase by 2% Increase by 3%

Off-peak period
Original income 3,499,017
Current income 3,863,277 4,241,360 4,521,127 4,807,496

Growth ratio 10.41% 21.22% 29.21% 37.40%

Peak period
Original income 4,359,156
Current income 4,706,952 4,850,718 5,004,958 5,145,175

Growth ratio 7.98% 11.28% 14.81% 18.03%

As can be seen from Table 6, during the off-peak period, when passengers’ expected travel costs
increased by 1%, ticket sales revenue increased by 9%. At the peak, when passengers accepted a 1%
increase, the HSR had a 4% increase in ticket sales revenue. This is expected to be significant for the
realization of profitability management of HSR. By cultivating a good corporate image and improving
service quality, the HSR can gain the loyalty and travel intention of passengers and can further enhance
passengers’ expectations and achieve continuous growth to realize revenue management. At the same
time, figuring out how to improve passengers’ expectations and studying changes in expectations are
future research directions and key concerns for the sustainable development of HSR.

7. Discussion and Conclusions

This paper studied the differential pricing problem of HSR. Considering the impact of passengers’
expected travel cost on their selection behavior, a fare optimization model is established based on
prospect theory and uses the SA algorithm to solve it. The Beijing–Shanghai corridor in China is taken
as the example for analysis, and some valuable research results were obtained. The results show that
by applying prospect theory to differentiated pricing strategies, the goal of balancing passenger flow
and improving revenue can be achieved.

First, the results indicate that based on optimizing the prices of trains during peak and off-peak
periods with passenger flow data, there is a trend of lower prices during off-peak and higher prices
during peak periods. The differences of fares among the trains make the distribution of passenger flow
more balanced, and revenue increases of 7.98% and 10.41% under peak and off-peak passenger flow
intensity, respectively, are achieved, which is double the 3–5% of earnings in previous studies. From
the pricing of each train, G6 and G12 have higher prices, indicating that passengers prefer to travel
between 7 and 8 am. That is to say, for HSR pricing, closer to passengers’ expected price rather than
the lowest price, HSR revenue can be maximized.
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Second, in terms of passenger flow, not only does the passenger flow at off-peak periods increase
under the stimulation of low prices, but also the decrease due to rising fares at peak periods is not obvious,
and even some segments of passenger flow are seen to rise. This shows that passengers are greatly
affected by low prices, and increased fares are still acceptable. On the whole, although the passenger flow
fluctuates under the differentiated pricing, the overall trend is guaranteed to be stable, and a large number
of demands are stimulated during the off-peak period, thus solving the problem of wasted energy.

Third, by studying the impact of passengers’ expectations on ticket sales, it is found that if passengers
expect a 1% increase, ticket sales revenue can increase by 4% during peak periods and reach 9% during
off-peak periods from the example of the Beijing–Shanghai corridor. Since passengers’ expectations have
a huge impact on revenue, how to improve their expectations is a future research direction.

These results have important implications for HSR pricing strategies in the future. Actually,
from our study, we see the impact of passengers’ expectations on passenger flow and revenue, that is,
increased expectations will directly increase HSR revenue. Research on passengers’ expectations should
be included in the formulation of pricing strategies, especially in the implementation of differentiated
pricing. Differentiated pricing is a shortcut to achieve HSR revenue management and is the only way
for the HSR to achieve sustainable development in China and the world. Therefore, the study in this
paper offers some new thinking on future research directions. On the one hand, the in-depth study of
passenger ticketing behavior and psychology should continue to develop a more comprehensive HSR
pricing policy. On the other hand, research on how to evaluate and enhance passenger expectations is
of great significance to the sustainable development of the HSR.

The study first proposes applying prospect theory to the HSR pricing system, and examples indicate
that it achieved good results, but there are still some limitations in the study of passenger travel costs.
This paper mainly considers the two important factors of time and fares, and other factors such as refunds
and services are not considered. These factors should also be fully considered in future research.
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