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Abstract: The majority of bicycle crash studies aim at determining risk factors and estimating
crash risks by employing statistics. Accordingly, the goal of this paper is to evaluate bicycle–motor
vehicle crashes by using spatial and temporal approaches to statistical data. The spatial approach
(a weighted kernel density estimation approach) preliminarily estimates crash risks at the macro
level, thereby avoiding the expensive work of collecting traffic counts; meanwhile, the temporal
approach (negative binomial regression approach) focuses on crash data that occurred on urban
arterials and includes traffic exposure at the micro level. The crash risk and risk factors of arterial
roads associated with bicycle facilities and road environments were assessed using a database built
from field surveys and five government agencies. This study analysed 4120 geocoded bicycle crashes
in the city of Antwerp (CA, Belgium). The data sets covered five years (2014 to 2018), including all
bicycle–motorized vehicle (BMV) crashes from police reports. Urban arterials were highlighted as
high-risk areas through the spatial approach. This was as expected given that, due to heavy traffic
and limited road space, bicycle facilities on arterial roads face many design problems. Through spatial
and temporal approaches, the environmental characteristics of bicycle crashes on arterial roads were
analysed at the micro level. Finally, this paper provides an insight that can be used by both the
geography and transport fields to improve cycling safety on urban arterial roads.

Keywords: urban arterial roads; geographic information system; bicycle–motorized vehicle (BMV)
crashes; spatial; weighted kernel density estimation; temporal; negative binomial; crash severity index

1. Introduction

As a key component of sustainable transportation systems, cycling has been actively promoted
in cities throughout the world [1,2]; however, bicycle-related crashes have been associated with
increasing numbers of fatalities and injuries [3–6] and the risk of crashes prevents people from using
bicycles [7]. Compared with driving, cyclists have a higher probability of injuries in traffic accidents [8].
Unfortunately, bicycle crash risks are unclear [7] because current risk estimates mainly depend on
general exposure (such as population or census data) [9,10] or insufficient exposure (such as traffic
exposure or bicycle exposure) [11]. Despite the fact that bicycle crashes tend to cluster within a spatial
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area [12,13], and are likely to be over-dispersed during a time period, the majority of risk studies
provide no explanation for these spatio-temporal aspects of bicycle crashes.

1.1. Research Gap

Bicycle crashes are mainly studied from the perspectives of transportation and geography.
From the transportation perspective, most studies neglect the regional impact of bicycle safety on the
macro-scale level. This holds especially true for crash analyses of specific locations, e.g., intersections
or other crash-prone locations on the micro-scale level. Meanwhile, from a geographical perspective,
many studies ignore the locational influence of safety attributes on the micro-scale level. This especially
applies to crash analyses of geographic areas, such as spatial autocorrelation or many different kinds
of cluster analyses on the macro-scale (regional) level. Moreover, from an epidemiological point of
view, bicycle crashes are complex spatio-temporal phenomena with many contributing risk factors
(e.g., weather conditions, motorized and non-motorized traffic volumes, road facilities, road traffic
controls and driving behaviours) varying over space and time. Therefore, significant gaps are present
in current bicycle crash studies.

1.2. Research Goals

In order to determine future measures to improve cycling safety, this paper aims to:

1. Reveal the spatial and temporal risk patterns of bicycle crashes (where? and when?) from a
regional level to a locational level (a macro scale to a micro scale). To this end, a two-stage
workflow (spatial and temporal approaches) is created for exploring bicycle crashes. Through the
spatial approach, urban arterials are determined to have the highest bicycle–motorized vehicle
BMV crash densities (see Figure 6a and Figure 7).

2. Explain how arterial infrastructure affects bicycle crashes in the city of Antwerp (CA, Belgium)
by examining possible risk factors.

2. Background of Spatio-Temporal Approaches

2.1. Bicycle–Motorized Vehicle (BMV) Crash Studies

Bicycle–motorized vehicle crashes raised concerns in the 1970s when the annual fatality rate
among children surpassed 500 in the Netherlands [14]. Since the 1990s, much research has focused on
road crashes related to bicycles. Road crashes arise from the interaction between human factors (such as
driving behaviours), environmental factors (such as traffic exposure, road facilities), and vehicle-related
factors (e.g., driving speed) [15–17]. These factors account for 57%, 34%, and 13% of all bicycle crashes,
respectively (Figure 1a) [18]. However, recent reviews on BMV crashes have identified that these factors
account for 59.3%, 57.6%, and 15.3%, respectively [19]. As can be seen from Figure 1b, the influence of
environmental factors in crashes involving bicycles and motorised vehicles may be comparable to that
of human factors.
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Figure 1. (a) Road crashes are mainly influenced by the interaction of human, vehicle and environmental
(road) factors [18]. (b) Recent studies show that BMV crashes are mainly caused by the interaction of
human, vehicle and environmental factors, where environmental factors include road environments,
traffic engineering and road traffic controls [20,21].
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A number of previous studies have explored the relationship between bicycle crashes and the
physical environment [8,22,23]. Additionally, despite limitations due to issues of privacy, a few studies
have explored the influences of human and vehicle factors on bicycle collisions [24–26].

2.2. BMV Crash Patterns

BMV crash patterns are fundamentally space- and time-related because the occurrence of a
crash directly involves its specific location and time. Since bicycle crashes are mainly assessed
through the perspectives of geography (which is related to spatial methodologies) and transportation
(which is related to temporal methodologies), it is essential to review the current literature relating to
these approaches.

2.2.1. Spatial Patterns of BMV Crashes

Many risk evaluations have focused on spatial crash analysis. Bíl [27] and Chen [28] studied
the crash risk of road sections, and Hels and Orozova-Bekkevold [29] and Harris et al. [30]
investigated the risk-influencing factors of road roundabouts and intersections, respectively. Compared
with road sections, the majority of studies found an increased possibility of BMV crashes at
intersections [4,28,31–33]; however, the likelihood of severe injuries from BMV crashes on the road
sections is more likely to increase [4]. In addition, Vandenbulcke et al. [34] indicated that distinguishing
cities (built-up areas) from rural areas is important because bicycle crashes are closely associated with
urban structures [21,35,36].

With regard to the spatial scale, crash risks can be assessed from a regional level (macro scale) [37–42]
to a locational level (micro scale) [43,44]. Generally speaking, in the regional (macro) level, BMV risks
can be analysed over certain geographic zones in order to understand the effect of environmental factors
on accident occurrences, thereby improving traffic safety in the whole region [45]. On the other hand,
in the locational (micro) scale, BMV risks can be observed on certain specific road entities (e.g., ramps,
curved road sections) in order to determine explanatory factors contributing to accident events and
thereby facilitating constructive countermeasures to reduce crashes [20]. However, few BMV crash
studies so far have estimated the risk of certain specific locations (e.g., urban arterials, tunnels and
bridges) [9]. The spatial approaches proposed in this paper provide generalisability, meaning the same
countermeasures may be applied to areas with similar infrastructure characteristics [46].

2.2.2. Temporal Patterns of BMV Crashes

Although less bicycle risk estimations emphasise temporal approaches based on probability
modelling due to inadequate time-related counting data (exposure), these approaches focus on the
study of contributing factors that affect the frequency of BMV crashes occurring within a certain
period [47,48]. A potential alternative approach is to collect exposure data at each location [49].
However, when there are high rates of bicycle collisions, such collected data are increasingly expensive
and labour-intensive to obtain [12]. On the other hand, the definition of temporal approaches may
refer to only time-related contributing factors (rather than time-related methodologies), where these
estimations focus on bicycle risks influenced by traffic exposure, travel time, specific seasons, days,
peak hours and road surface conditions related to the weather [20]. Dozza [50] examined cycling risk
at hourly, daily, weekly, monthly and seasonal scales and discovered that BMV and single-bicycle
crashes had significant risk differences in the dark and during weekend afternoons, peak hours and
July. Kim [51] and Yan [52] both indicated that serious bicycle crashes occurred during peak hours,
bad weather influencing driver visibility and in the absence of street lights at night. Chen [53] and
Prati [21] showed that transient poor road surface conditions (e.g., following rain) may significantly
increase the riding risk. Chen and Fuller (2014) [54] found that the probability of a bike crash increased
by 2.13 times at night. In addition, early studies indicated that for a given location, rainfall was related
to a 70% higher crash risk [55], and it might increase the severity of BMV crashes as well [56].
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Note that the temporal analysis of bicycle crashes not only refers to time-related contributing risk
factors, but also refers to a BMV crash methodology with exposure counting data (see Section 2.3).

2.3. BMV Crash Methodology

2.3.1. Methods without Exposure Counting Data

From a methodological perspective, BMV crash estimates may be separated into two groups:
exposure-based and non-exposure-based methods. So far, due to the lack of qualitative traffic counts
within a location scale, few bicycle risk estimates have been investigated [9,24,53]. Non-exposure-based
methods are viewed as preliminary steps to examine bicycle risks because they explore factors that
may cause bicycle crashes with the use of descriptive statistics (such as medical records [57], police and
questionnaire data [58]) or general statistics (such as odds ratios [59], logistic models [53,60], census
data combined with spatial analyses [61]).

Of these spatial analyses, methods without exposure commonly analyse BMV crashes on a macro
scale, such as traffic analysis zones [37,39,41,46], and are implemented in geographic information
systems (GIS) spatial modelling, such as kernel density estimations [7,20,62–64]. Since methods with
exposure counting data are quite data-intensive, methods without exposure reduce the amount of
required data and are important for crash locations with inadequate exposure.

2.3.2. Methods with Exposure Counting Data

Unlike the methods discussed above, exposure-related approaches using related statistical
probabilities (such as Bayesian distributions [21], negative binomial distributions [41,43], Poisson
distributions [46]), pay more attention to explaining the relationships between influencing factors
and bicycle crashes. In addition, because “exposure to risk” is strongly related to average daily
bicycle traffic (ADB) and average daily traffic (ADT) [11,65,66], the modelling is labour-intensive
and time-consuming. However, exposure-based methods may have a better ability to explain their
contributing factors [10,20]. Moreover, by combining these methods with spatial network reference
units, such as hotspot analysis [67], cluster analysis [68], or density estimations [67], exposure-based
methods may bring more accurate results.

Methods with exposure are strongly related to time because a crash probability model can be
developed by controlling bicycle and motorized-vehicle exposure within a specified period to gain
better understanding of risk factors [20,47]. However, exposure data are usually unknown [63], the role
of exposure can be replaced or explained using (bicycle) lane kilometres [31,69], total number of
trips [46], travel behaviour of cycling [49], (bicycle) commuting flows [63] or peak hour flows [70].

2.4. Risk Factors Associated with Cycling Environments

Considering the risk impact of cycling environments, the majority of studies have indicated
that bicycle crashes are affected by road environments, road traffic controls, and road engineering
facilities [8,20]. Particularly, some cycling environments may have an increased risk for bicycle crash
frequency but a decreased risk for bicycle crash severity (such as highly-urbanized areas [44,71],
peak hours [7], straight roadways [53], signalised intersections). The observed phenomenon may be
entirely different, which means frequency risks may be lower but the severity of risks may be higher
(e.g., curved road sections [51]). However, in most of the cases, crash frequencies may be consistent
with their severity [20]. Overall, previous studies showed that heavy traffic (during peak hours),
an increased number of lanes and a higher speed limit may lead to higher crash probabilities. However,
up to now, a large number of studies have examined only risk factors related to the crash frequency [71]
or severity [21,53]. For example, lower speed limits significantly lower bicycle and pedestrian crashes
on urban road sections and junctions [4,59]; the turning movement of bicycles and motorised vehicles
and urban road networks are aggravating and mitigating factors for bicycle crashes, respectively [4];
or increased bicycle exposure may reduce the severity of bicycle crashes [36,72,73].
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Finally, based on the overall background of bicycle crashes, Section 5 collected 33 potential
influencing factors with their detailed descriptions. The study assumed that other factors related
to infrastructure (such as primary roads or secondary roads) may affect the risk of having a bicycle
crash. Indeed, in the first stage of this study (the spatial approach), urban arterials are identified as
high-risk areas, which may be attributed to complex traffic situations in road environments, including
amongst others: higher traffic volume, more lanes and wider road widths [7,19,71]. However, prior
bicycle crash studies have given little specific information about such risks, how these risks affect BMV
crashes, and how they are affected by their BMV crash severities [7,20]. Therefore, the purpose of this
research is to explore the patterns of bicycle crashes spatially and temporally, and to reveal how road
environments influence bicycle crash risks. A further purpose is to explicate particularities in a case
study (urban arterials of city of Antwerp) and reflect on existing BMV risk studies.

3. Methodology: Integrating Spatial and Temporal Approaches

For the spatial and temporal analysis of bicycle crashes, a two-stage workflow (Figure 2) integrated
geocoded data (such as X and Y coordinates, road sections, road junctions, among others), visual data
(such as crash figures, aerial photos), traffic data and infrastructure data into the spatio-temporal
analysis (for details, see Section 5). In stage 1, spatial references of analysis combined nine reference
units with census data (the population at risk) for analysis. Within each reference unit, BMV crashes
with corresponding severity levels were precisely located. Stage 1 included census data because
an increased population may contribute to more BMV crashes. Using kernel density estimation as
a spatial approach, urban arterials were found to have the highest density of bicycle crashes on a
macro scale. The displayed crash patterns were further investigated based on road environments and
statistical data by including more information on road networks (e.g., road sections, road junctions,
annual updated transportation facilities, etc.). In stage 1, all bicycle crash data were implemented in
ArcGIS 10.6.1 (A. 10.6.1; Esri: Redlands, CA, USA, 2019), and in stage 2, only urban arterial crashes
were implemented in both ArcGIS 10.6.1 and Limdep 11 (L. 11; Econometric Software, Inc.: Plainview,
NY, USA, 2016). Therefore, certain types of bicycle crashes, such as crashes on arterials, can be easier
identified and further investigated.

Stage 2 defined the traffic volume data (along with bicycle count data) as temporal references
for BMV crashes, and delineated potential influencing factors of arterial crashes. These factors varied
over time (such as the timing when a bicycle facility was built) and remained independent through
a correlation coefficient test. Negative binomial modelling was used as a temporal approach to
estimate the risk of BMV crashes on a microscopic scale. Finally, risk factors associated with bicycle
infrastructure were assessed by adopting a maximum likelihood estimation (MLE) and all arterial
crash data were put in the Limdep environment.

3.1. The Selection of Spatio-Temporal Approaches

3.1.1. Stage 1: Spatial Approach

To detect the spatial pattern of crash events, a weighted kernel density estimation (wKDE) [74,75]
served as an initial step in the risk calculation to estimate crash density (Equation (1)). The wKDE
placed a surface on each crash point, calculating the distance from a reference position to that point
(di); wKDE was generally derived using:

D(x, y) =
1

nh2

n∑
i=1

Wi K
(

di
P(u, v)

)
(1)

where the kernel function (K) was the intensity of the crash event i, influenced by population and
distance; h was the search bandwidth (radius); n was the frequency of observed crashes; D(x,y) was
the density at the position with x and y coordinates; Wi was the weighted value of the crash event
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i, which considered the different severity of bicycle crashes [76]. Stage 1 replaced the fixed search
bandwidth (h) with an adaptive search bandwidth P(u,v) in order to exclude uneven spatial distribution
caused by the population at risk. Local population density was presented by the P function and was
placed at the centre position (u,v) for reference. KDE was first applied to traffic crashes in 2008 [13,77].
The wKDE is the extension of KDE and has the advantage regarding determining the density of crash
risks more accurately than KDE [74,75]. Second, such a spatial density approach makes a visual
comparison analysis (Figure 7), providing risk class homogeneity for the entire studied area and
enabling identification of high-density areas, such as arterial roads in this study.
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Of note, this study proposes to use planar KDE rather than network KDE [13,78] for density
estimations because: (1) By using an adaptive search radius, KDE may easily exclude the uneven
spatial distribution caused by the population at risk. (2) KDE (Figure 3a) calculates the density on
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an area unit rather than that on a linear unit. However, a crash may be more properly recognised
as a spatial point carrying a spread of risk (e.g., crashes caused by a discrepancy in elevation in the
mountain areas [20]). (3) With a re-weighting function, wKDE can be adjusted to control for the severity
of different crash points (e.g., slightly injured, severely injured, fatal crashes). However, network KDE
does not distinguish crashes by injury severity, which means all bicycle crashes are treated the same.
(4) Network KDE could possibly underestimate crash density. For example, KDE finds eight bicycle
crashes within the search bandwidth, but network KDE only finds three bicycle crashes at the same
studied area (Figure 3b) because network KDE does not consider a prolonging distance caused by road
curvature or driving manoeuvres.
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3.1.2. Stage 2: Temporal Approach 

Figure 3. The different estimates between (planar) KDE (a) and network KDE (b) for the same crash
points. To estimate the density value, KDE uses the whole two-dimensional space based on Euclidean
distances and finds eight crash points within a search radius h, whereas network KDE only finds three
crash points within the same radius in the network space based on linear distances.

3.1.2. Stage 2: Temporal Approach

The temporal approach estimated the crash risks with a suitable risk model. Temporal construction
sites or bad road environments may accumulate more BMV crashes. With the help of aggregation by
time, the characteristics of BMV crashes can be statistically described and visually detected (stage 2
of Figure 2). A Poisson distribution [47,79] was used for crash probability modelling by controlling
motorized vehicle and bicycle exposure within an observed time. This modelling assumed that BMV
crashes were random and obeyed a binomial distribution [71] in the observed period. According to this
particular distribution, the probability of crashes and the influencing factors related to the probability
of crashes can be estimated.

However, comparing the traffic flows (Vi) and bicycle risk (Pi), Pi had a very small value
because the motorized vehicle flows were usually much greater than the frequency of bicycle crashes.
Therefore, a Poisson distribution was suitable to explain the binomial distribution of bicycle crashes [80].
The Poisson distribution with random, discrete, and non-negative characteristics was commonly applied
to crash estimates; however, this distribution required that its mathematical expectation and variance
were equal. In most situations, it was difficult to reach this constraint because the crash data were
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over-dispersed. To relax this constraint, inserting an independent error term εi into the Poisson
distribution allowed for the variance and mathematical expectation of the Poisson distribution to be
unequal [61,81,82].

Moreover, it was assumed that, eεi obeyed a gamma distribution, giving a variance of δ, and θ = 1/δ,
thus a negative binomial (NB) distribution may be more suitable to explicate the prior Poisson
distribution of bicycle crashes because it allowed the NB and Poisson distributions’ variances to be
different and their expected values to remain the same. The negative binomial modelling was given by
(the detailed formula derivation can be found in recent research conducted by Wang et al. (2019) [20]):

P(ni|εi) =

∏
(ni + θ)∏

(ni + 1)
∏

(θ)

(
θ

ViPi + θ

)θ( ViPi
ViPi + θ

)ni

(2)

Pi =
Fi

Fi + e−βXi
(3)

P(ni) =
1415∑
i=1

∏
(ni + θ)∏

(ni + 1)
∏

(θ)

 θ
(
Fi + e−βXi

)
ViFi + θ(Fi + e−βXi)


θ(

ViFi

ViFi + θ(Fi + e−βXi)

)ni

(4)

where i was the road junction or section index (see Figure 4a,b), ni was the number of BMV crashes
under specific Vi traffic flows, Vi was the traffic flow of location i, Pi was the BMV risk under traffic
flow (Vi) and P(ni|εi) was the likelihood of ni bicycle crashes occurring under the inserted error term
εi. If θ was statistically significant, the NB distribution would be used in the BMV crash model.
Otherwise, the Poisson distribution would be adopted. Equation (3) shows that the BMV crash risk
(Pi) was determined by the bicycle flow Fi of location i and a series of influencing risk factors (Xi),
and β was a vector of coefficients of Xi. To avoid the possible over-estimation of bicycle risk in stage 1
(Figure 6a), and to reflect the high cycling population at certain locations, Fi was collected by this
study according to field surveys on arterial roads. By adding the value of Pi from Equation (3) into
Equation (2), the final formula is shown in Equation (4) for the probability P(ni) of having ni crashes.

This temporal approach hadd three advantages: (1) The crash risk approached 0 when there were
few bicycle flows at location i. (2) βwas made up of a series of coefficients. If the value of βwas positive,
it had an aggravating impact on the crash risk; otherwise, it had a mitigating impact on risk when the
value of β was negative. (3) Unlike Wang et al. [20], historical crash severity index (CSI) was viewed as
a contributing risk factor [20,41] integrated into the temporal modelling (rather than two separated
models). Conducting the modelling this way estimated the crash risk on arterial roads because stage 1
had found that the severity of arterial crashes was in line with its crash frequency, which meant that
on urban arterials, a location was found with an increased number of crash frequency, accompanied
with increased crash injuries and fatalities. Determining and dealing with the road features of these
collision-prone positions may greatly lower the risk of crash frequencies, severe injuries and fatalities.

To find the contribution of the crash risk, each influencing risk factor should be independent.
Using Pearson’s correlation examination, a pair of risk factors with a correlation ≥0.700 would not be
together into the model [61,83], only the one with favourable explanatory abilities was included in the
temporal modelling [84]. A total of 33 vectors of explanatory variables Xi were later selected for the
temporal modelling. These explanatory risk factors (Xi) were chosen based on crash types and their
environmental features, which may have an aggravating or mitigating influence on the crash risk of
urban arterials. Finally, using maximum likelihood estimation (MLE) [47], Equation (5) evaluated the
unknown vector of coefficient β:

MLE(β,θ) =
1415∑
i=1

∏
(ni + θ)∏

(ni + 1)
∏

(θ)

 θ
(
Fi + e−βXi

)
ViFi + θ(Fi + e−βXi)


θ(

ViFi

ViFi + θ(Fi + e−βXi)

)ni

(5)
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Figure 4. (a) A road junction was defined using 10 m linear buffers from the building line’s corner.
This definition considered the possible influence caused by traffic signs, traffic signals, and the turning
movement of traffic flows. The definition came from the CA Police Department and Department of
Transportation (DOT). (b) An arterial road was separated into several sections based on each crash
event, corresponding to its geometric environments. For example, section index i = 1–8 had its own
numbers of lanes, section lengths, and other different road features.

4. Case Study

The presented case study considered both statistical population and exposure counting data. BMV
crashes were spatially and temporally combined. The proposed spatio-temporal approaches were
applied to a case study of the city of Antwerp (Belgium) where a five-year BMV crash database was
analysed, from 2014 to 2018. Before Section 6 presents the results, Sections 4 and 5 describe the data,
studied area, and the detailed information regarding contributing risk factors.

Study Area

The city of Antwerp (CA) had approximately 521,000 residents and the population density was
approximately 2500 residents per square kilometre. In the CA, the total length of the road network
related to bicycle flow was 6269 kilometres. Around 44% of these roads (2750 kilometres) had bicycle
infrastructure in the range of shared uni-directional bicycle lanes to separated bi-directional bicycle
lanes, where 498 kilometres were exclusive cycle lanes (Figure 5).
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In addition, in the city of Antwerp, the average family owns 2.2 bicycles and 36.5% of the traffic
modal share is from cycling traffic [85]. The current amount may be higher because within each studied
year, the total amount of BMV crashes has steadily grown [86].

5. Data Attributes and Sources

Based on the GIS road networks and reported bicycle crashes from the police, the study developed
a database. Figure 2 of Section 3 demonstrates the procedure of data collection. First, stage 0 conducted
a complete literature review on the influencing factors. Bicycle crashes were then geocoded on the
road network of the GIS (stage 1) and their road environment characteristics were determined from
police reports, field surveys and aerial photos (stage 2). Finally, the database with influencing risk
factors, information attributes and bicycle crashes was applied for the estimation of bicycle–motorized
vehicle crash risks in the city of Antwerp. All information in the database was collected from (1) Police
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Department, CA; (2) Flemish Traffic Center; (3) Department of Transportation, CA; (4) Department of
Urban Development, CA; (5) Port Authority, CA; and (6) field surveys conducted specifically for the
study (see Table 1, column 3).

The following attributes were contained as a crash event’s information: date, time, location,
the weather, vehicle type, crash severity, crash type, lighting, road surface condition of the road and
risk influencing factors (Table 1, column 1). Table 1, column 2, fully describes these risk factors and
categorises them into three classifications: road environments, road traffic controls and road traffic
facilities. Although the database did not contain information about liability, the scene of a bicycle
crash was easier to reconstruct by using crash scene photos, standard crash report forms, official
police reports and crash site figures depicted by trained police personnel. Bicycle crashes involving at
least one motorised vehicle were considered in this study, resulting in 4162 reported crashes in this
spatio-temporal database from January 2014 to December 2018. However, due to the invalidation of
some crash locations, 42 reports were excluded. Finally, 4120 crashes (stage 1) and 1415 arterial crashes
(stage 2) were the objects of analysis in this study.

5.1. Analytical Environments

By exchanging file formats and combining three analysis software programs, the spatio-temporal
approaches, introduced in Section 3, were built. ArcGIS 10.6.1 performed all spatial analysis,
while Limdep 11 and SPSS 24 (S. IBM: Armonk, NY, USA, 2016) accomplished all temporal and
statistical analysis. Manual input of police reports and address mapping successfully geocoded 99% of
the bicycle crashes. By using the adaptive bandwidth [87], ArcGIS 10.6.1 performed kernel density
estimations, obtaining high-density areas of BMV crashes.

Table 1. The variables used in the modelling equations, and the influencing factors used in the spatial
and temporal approaches.

Variables and
Influencing Factors Defined Categories Data Source Relevant Literature

Road networks (ref. number of road forks) The road network of ArcGIS from (3) and
(4) or from Google Map [44]

BMV crash at location i i = 1–4120, 1415 observed samples
were on urban arterials Crash site figures from (1) [20,71]

BMV crash frequency at
location i 1~45 Original datasets from crash site figures (1),

GIS Analysis through KDE [88–91]

Daily bicycle flows
(ADB)

Fi

Original counts = 44–7633
log-transformed ADB = 1.64–3.88

Data reports from (2); data of traffic sensors
from (2) and (6); data mainly from (3) [53,71,72]

Daily traffic flows (ADT)
Vi, expressed in

passenger car equivalent
(PCE)

Original counts = 7003~69,982
log-transformed ADT = 3.85–4.85

Data reports from (2); data of traffic sensors
from (2) and (6); data mainly from (3) [53,71,91–93]

Road categories
0 = others, 1 = rural roads,
2 = urban secondary roads,

3 = urban arterials

Annual aerial photographs from (5); ArcGIS
road networks from (3) and (4); Google Map [4,44,51,53,56]

Road Environments Defined Categories Data Source Relevant Literature

Morning peak hour
volume (M-PHV) (PCU)

Log (M-PHV) = 2.59–3.80
Original counts = 396–6381

Data reports from (2); data of traffic sensors
from (2) and (6); data mainly from (3) [52,76,94]

Afternoon peak hour
volume (A-PHV) (PCU)

Log (A-PHV) = 2.45–3.71
Original counts = 284–5116

Data reports from (2); data of traffic sensors
from (2) and (6); data mainly from (3) [52,76,94]

Month (seasonal
patterns) 1–12 = January–December Brief description of the crash from (1) [24]

Day (daily patterns) 1–7 = Monday–Sunday Brief description of the crash from (1) [24,51]
Weekend (weekly

patterns)
0 = weekday,
1 = weekend Brief description of the crash from (1) [24,51]

Hour (hourly patterns)
(h) 1~24 Brief description of the crash from (1) [24]
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Table 1. Cont.

Road Environments Defined Categories Data Source Relevant Literature

Crash severity index
(CSI)

0 = A4 property damage,
1 = A3 slight injury,
2 = A2 severe injury,

3 = A1 fatality

Data from (1) and hospital records [4,21,53,59,91,93,94]

Light conditions 0 = daytime,
1 = night-time Brief description of the crash from (1) [4,44,56,63,95,96]

Number of lanes
(unidirectional) 0–6

Aerial photos from (4) and (5); crash scene
photos, brief description of the crash, crash

site figures from (1);
[4,92,93,97,98]

Length of segments (m) Log(LoS) = 1.05–2.72
Original length = 11.17–521.79 m

Road networks of ArcGIS from (3) and (4);
crash site figures from (1); Annual traffic

engineering facilities of AutoCAD
measurements, from (4)

[12,20,99]

Area of junctions (m2)
Log(AoJ) = 0, 1.50–4.26,

Original counts = 31.79–18,177.19
m2

Road networks of ArcGIS from (3) and (4);
crash site figures from (1); Annual traffic

engineering facilities of AutoCAD
measurements, from (4)

[20,100]

Road Engineering
Facilities Defined Categories Data Source Relevant Literature

Road section/Intersection 0 = intersection,
1 = road section

ArcGIS road networks from (4); Google
Map; Auto Cad Map [4,30,59,90,94]

Lighting systems

0 = at daytime, natural light;
1 = at night-time, natural light;
2 = at night-time, with lighting;

3 = at night-time, without lighting

Brief description of the crash from (1) [4,44,51,56,63,95,96]

Residential area 0 = not adjacent residential areas,
otherwise = 1 ArcGIS residential zones from (3) and (4) [12,41,51]

Major road 1 = intersect with another major
road, otherwise = 0 ArcGIS road networks from (2), (3) and (4) [12,45,51]

Secondary road 1 = intersect with a secondary road,
otherwise = 0 ArcGIS road networks from (2), (3) and (4) [12,24,31,45,51]

Collector road 1 = intersect with a collector road,
otherwise = 0 ArcGIS road networks from (2), (3) and (4) [12,24,45]

Central business district
(CBD)

1 = adjacent CBDs,
otherwise = 0 Annual ArcGIS CBD zones from (4) and (5) [7,71]

One-way bicycle path 1 = with a one-way bicycle path,
otherwise = 0

Original data from (3) and (4) and field
investigation (6) [7,12]

Two-way bicycle paths 1 = with two-way bicycle paths,
otherwise = 0

Original data from (3) and (4) and field
investigation (6) [7,12]

Two-way turns into a
one-way bicycle path

1 = between a one- and two-way
bicycle paths, otherwise = 0

Original data from (3) and (4) and field
investigation (6) [7,12]

Distance from the school
(m)

0 = 1–200 m from the school,
1 = 201–400 m,
2 = 401–600 m,

3 = more than 600 m

The location of crashes and schools from (1)
and (4) respectively; distance measured by

AutoCAD, original data from (2), (3)
and (4);

[41,90]

Tram tracks 1 = with tram tracks,
otherwise = 0 The location of tram tracks from (4); [7,23,46,101]

Distance from the bus
stop (m)

0 = 1–200 m from the bus stop,
1 = 201–400 m,
2 = 401–600 m,

3 = more than 600 m

The location of crashes and bus stops from
(1) and (4) respectively; distance measured

by AutoCAD, original data from (2), (3)
and (4);

[31,90,101]

Bus routes 1 = passing through bus routes,
otherwise = 0

Crash site figures from (1); ArcGIS road
networks from (3) and (4) [31,90,101]

Main cycling routes 1 = within main cycling routes,
otherwise = 0

ArcGIS road networks from (3) and (4);
field investigation (6) [101]

Lane marking

0 = no lane marking,
1 = lane marking,

2 = lane marking with directional
arrows

Crash site figures, brief description of the
crash, the annual dataset of facilities from

(2), and crash scene photos from (1)
[21,91,102–104]

Numbers of lanes
(uni-directional) 0–6

Annual datasets of facilities from (2); crash
scene photos, brief description of the crash,

crash site figures from (1)
[4,92,93,97,98]
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Table 1. Cont.

Road Traffic Controls Defined Categories Data Source Relevant Literature

Speed limits (km/h) 20~90
20, 30, 50, 70, 90

ArcGIS road networks from (3) and (4);
annual datasets of facilities from (2) [4,44,53,56,59,71,97,103]

Signalised facilities

0 = no, 1 = flashing amber
signals,

2 = traffic signals,
3 = traffic signals prioritise

cyclists and pedestrians

Data from (2) and (3) and crash site figures
from (1) [30,46,53,71,93,100,102,105]

Signal cycle lengths (s) 0 = 0~60, 1 = 61~120,
2 = >120 s Data from (2) [91,101,106,107]

Zone 20/30
(residential zone)

0 = non-traffic-calming zone,
1 = within dynamic

traffic-calming zone, 2 = within
zone 30 km/h,

3 = within zone 20 km/h,

Data from (2); annual ArcGIS traffic
calming zones from (4) and (3) [39,41]

One-way road 1 = one-way road,
otherwise = 0

Annual aerial photographs from (5);
ArcGIS road networks from (3) and (4); [12,20,51]

Turning movement of
motorists

0 = straight ahead, 1 = left turns,
2 = right-turning

Crash site figures and brief description of
the crash from (1), and sensor data from (2) [4,93,100]

Turning movement of
cyclists

0 = straight, 1 = left-turning,
2 = right turning

Crash site figures and brief description of
the crash from (1), and sensor data from (2) [4,93,103]

Data source: (1) refers to Police Department,CA; (2) refers to Flemish Traffic Center, Belgium; (3) refers to Department
of Transportation (DOT), CA; (4) refers to Department of Urban Development (DUD), CA; (5) refers to Port Authority,
CA; and (6) refers to field surveys conducted specifically for this research. In stage 1: only 15 variables were available
for the spatial analysis in ArcGIS 10.3 (4120 observed BMV crashes), which were crash type, crash time, severity
index (CSI), road section/intersection, lighting systems, residential area, urban arterials, minor roads, collector roads,
CBD, bicycle paths, tram tracks, bus routes, speed limits, signalized facilities and zone 20/30. No spatial correlations
are found among these variables.

5.2. Influencing Risk Factors

This study’s purpose was to understand the spatial and temporal dynamics of road environments
and engineering facilities. Other influencing risk factors, like the gender or age, could also provide
important information for BMV crash prevention or intervention. However, it was not permissible to
obtain data on human factors that might lead to identification of individuals in this research due to
the privacy concerns [24]. Table 1 not only shows all of the risk factors, data sources, and detailed
descriptions utilised in this study, but also mentions the relevant studies of these risk factors: (1) City of
Antwerp (CA) had tram tracks and icy roads; (2) bicycle and traffic exposure data were acquired from
Flemish Traffic Center (FTC) or from field surveys with the traffic cameras; (3) the study considered
two traffic-calming measures: residential zones (30 and 20 km/h), and dynamic traffic-calming zones
(car-free zones) during certain hours; and (4) the study also contained traffic signals, and turning
movement of bicycles and motorised vehicles, since these were likely to be influencing factors leading
to BMV crashes.

6. Results

This section concisely describes the spatial and temporal pattern of bicycle crashes. For the spatial
scale, bicycle crashes tended to aggregate on arterial roads (see Figure 6c–f). A total of 38.42% and 35.68%
of arterial crashes were caused by rear-end conflicts and side crashes with overtaking manoeuvres,
respectively. Around 10% of BMV crashes were situated in the zone hotspots (see Figure 7). Within
these zone hotspots, 78.52% of crashes were associated with urban arterials and 50.26% with road
junctions. Similarly, throughout the city of Antwerp (CA), 21.70% of arterial crashes were in the red
zones (zone hotspots), whereas only 3.01% of secondary road crashes were in these red zones. Arterial
crashes were unevenly distributed and were disproportionately related to the length of the network.
Figure 7 shows approximately 33.61% of bicycle crashes were concentrated in 28.79% of the total
network length (i.e., the network length of arterials).
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Figure 6. Spatial approaches: (a) the result of the kernel density estimation (KDE). The network of
arterial roads is shown in brown, secondary roads are shown in grey, and the high-risk areas of BMV
crashes are shown in red (zones); (b) the spatial distribution of bicycle crashes in the CA (black spot
approach); (e) and (f) the partial enlarged figures of the spatial approach (KDE) from Figure 6 (c) and
(d) respectively: bicycle crashes were highly aggregated on arterial roads. BMV crashes are displayed
in black (points) and arterial roads are displayed in brown (lines).
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Figure 7. Spatial distribution of bicycle–motorized vehicle crashes.

For the temporal scale, arterial crashes were more likely to be clustered in summer (28.03%),
on weekdays (82.99%) and during peak hours (46.41%, from 7 to 9 am, and from 4 to 6 pm). Descriptive
statistics demonstrate that crash frequencies matched the Poisson distribution by following independent,
scarce, and random events that occurred within the studied year, and were more consistent with the NB
distribution because of their over-dispersed, non-negative features (Table 2). The frequency’s expected
value was 5.16 but its variance was 303.78, unequal to the mean value, which preliminarily proved the
NB modelling was more suitable for the explanation of influencing factors in the study. To understand
crash patterns on arterial roads, Tables 2 and 3 categorised influencing factors into continuous and
ordinal/nominal variables. Since some paired influencing factors were highly correlated (the correlation
coefficient ≥ 0.7), each paired dependent variable was first examined for their explanatory ability
regarding BMV crash modelling, and the ones with a less favourable explanation (e.g., light condition
“night-time” was replaced with “night-time with lighting” and “night-time without lighting”) were
then excluded from the model.

Table 2. Influencing factors with continuous variables and with statistical significance.

Contributing Factors Mean Std Dev Minimum Maximum

Dependent Variables
Crash (4120 observations) 3.66 16.94 1 45
Arterial crash 5.16 17.42 1 45
Contributing Factors
Log(average daily bicycle flows (ADB)) 2.59 1.52 1.64 3.88
Log(morning peak hour volume (M-PHV)) 3.63 0.78 2.59 3.86
Log(morning peak hour volume (M-PHV)) 3.60 0.64 2.45 3.71
Numbers of lanes (unidirectional) 2.92 1.43 0 6
Log(length of segments (LoS)) 2.05 2.21 1.05 2.72
Log(area of junctions (AoJ)) 2.99 3.11 1.50 4.26
Speed limit Xi3 (km/h) 52.48 9.226 20 90

Number of observations = 1415.
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Table 3. Influencing factors with ordinal/nominal categories and with statistical significance.

The Category and Number (%) of BMV Crash Occurrences

Category = 0–3 (See Table 1) 0 1 2 3

Historical crash severity (CSI) 272 (19.2) 1049 (74.1) 87 (6.1) 7 (0.5)
Daytime or night-time 1099 (77.7) 316 (22.3)
Intersection/Road section 744 (52.6) 671 (47.4)
Lighting systems 906 (64.0) 14 (1.0) 199 (14.1) 296 (20.9)
Residential area 1264 (89.3) 151 (10.7)
Intersect with a secondary road 1294 (91.4) 121 (8.6)
Central business district (CBD) 1099 (77.7) 316 (22.3)
Two-way bicycle paths 1328 (93.9) 87 (6.1)
Two-way turns into a one-way bicycle path 1372 (97.0) 43 (3.0)
Tram track 1004 (70.0) 411 (29.0)
Distance from the bus stop (m) 601 (42.5) 327 (23.1) 275 (19.4) 212 (15.0)
Bus routes 670 (47.3) 745 (52.7)
Main cycling routes 975 (68.9) 440 (31.1)
Lane marking 830 (58.7) 46 (31.5) 139 (9.8)
Signalised facilities 1298 (91.7) 117 (8.3)
Signal cycle lengths (s) 549 (42.0) 424 (30.0) 397 (28.1)
Manoeuvre of motorists 710 (50.2) 210 (14.8) 945 (35.0)

Number of observations = 1415.

After running the estimation procedure in stage 2, the result of the likelihood-ratio test for the
estimation of dispersion parameter (α) shows the significance was 0.5363 with a p-value = 0.0001.
This meant that crash data were over-dispersed and NB modelling at this statistical significance was
superior to and thus replaced Poisson modelling. This result reconfirmed that the NB modelling was
more suitable for evaluating bicycle crashes in the city of Antwerp. By removing certain variables
(e.g., light conditions) to solve correlations, 32 independent influencing factors remained in the final
risk model. To identify significant influencing risk factors, NB modelling was first performed in
the temporal workflow. Second, to enhance the modelling performance, the same NB modelling
was performed using only influencing factors with significant levels. Figure 8 shows the estimated
coefficient and their p-values for these risk factors. The coefficient of these factors indicated the
comparative risk level of the overall NB modelling. A positive coefficient shows that Xi was a possible
aggravating factor related to bicycle crashes, while a negative value suggested a mitigating factor,
corresponding to Equation (3) (see Methodology). For example, a higher risk of BMV crashes was
found in locations during the morning or afternoon peak hours. Oppositely, a lower risk was found in
locations with main cycling routes or with signalised facilities. The results show that more than two
thirds of the influencing risk factors were significant in the temporal model (Figure 8a–c), thus giving a
suitable classification under the model.
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7. Discussion

7.1. Spatial Dimension

In stage 1, the 4120 reported crashes appeared at 1125 different locations of the CA. Within the
studied areas, the crashes were strongly aggregated, as shown in Figure 6. During the entire survey
period, the areas with the highest bicycle crash density occurred in districts 2, 4, 5, 7 and 8. These areas
are located in the city centre, enclosed by the ring road R1 from the east, south and west, and have a
relatively large number of bicycle facilities (see Figure 5) and urban road networks (see the top right
corner of Figure 6). Arterial roads were identified as having the highest density of bicycle crashes in
the city of Antwerp. A total of 85% of all arterial crashes were situated in these five (2, 4, 5, 7 and 8)
districts. Descriptive statistics at this stage indicate that other crash features (e.g., road conditions,
road engineering facilities, road traffic controls) in these districts did not significantly differ from the
rest of the city of Antwerp.

The spatial aggregation of bicycle crashes was consistent with the study by Lovelace et al. [63] and
Loidl et al. [24] who found significant spatial aggregations of bicycle crashes on the macro (regional)
scale. The former also used KDE for the spatial approach. However, through a temporal approach,
it becomes more essential for this case study to pay further attention to arterial crashes on the micro
(locational) scale.

7.2. Temporal Dimension

Stage 2 focused on the arterial crash analysis. The 1415 reported arterial crashes were located at
274 different locations. The temporal pattern of BMV crashes was revealed by influencing risk factors
(e.g., the relation of traffic flows and road environments [108], dynamic road traffic controls [46,53,93]).
The results are discussed based on the existing bicycle crash literature.

7.2.1. Road Environments

The results reveal that traffic exposure may provide a significant contribution to the risk of bicycle
crashes on urban arterials. During peak hours in the morning and afternoon, increased traffic may
result in an increase in bicycle crashes. However, the degree of their influence is not huge, expressed by
the coefficients of 0.1199 and 0.1910, respectively. This may be due to the fact that road users typically
slow down under higher traffic flows during peak periods, thereby reducing the impact of urban
traffic flows. This result is also confirmed by previous studies [3,71,109,110]. However, the results
reveal that bicycle flows were not significant in aggravating the risk of bicycle crashes in the city of
Antwerp. This may be attributable to the concept of “safety in numbers” [36,111] and is especially
suitable for reported crashes (major and fatal injuries) [110,111]. Such a result may be caused by the
effect of “risk compensation”. A possible explanation for this phenomenon is that motorists may drive
more carefully when they see groups of cyclists, implying that group cycling may change driving
behaviour [7,34].

The study has also demonstrated that injury severity was positively related to the risk of BMV
crashes, expressed by the coefficient of 0.8424. This means that an urban arterial section with higher
crash frequencies may be considered more dangerous because it also had more serious bicycle
injuries [20,21,112]. In addition, while bicycle crash risks at arterials were rarely affected by changes in
the season, day or hour, darkness was a common influencing factor for reducing bicycle crash risks,
which is consistent with previous findings: night-time may contribute to a decline in cycling, especially
during wintertime [113], and sunshine is identified as an influence on bicycle ridership [114]. Although
the risk of bicycle crashes was much higher in daylight than in darkness, our study has still indicated
one out of five severe crashes were related to darkness, implying that improved lighting conditions or
wearing visible clothing may reduce the value of the crash severity index (CSI) [69,115], and then may
indirectly lower the risk of BMV crashes.
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7.2.2. Road Engineering Facilities

Road engineering facilities have a significant impact on the risk of BMV crashes. This risk may
be attributed to the geometric design of the road environment. Road sections (i.e., the absence of
intersections) may significantly lower the risk of bicycle crashes, as expressed by the coefficient of
−0.4423 (p-value < 0.01). This result concurs with recent studies that show the majority of BMV crashes
happened at road junctions [7,12,31,116]. The absence of lighting systems at night influenced the risk
of BMV crashes, as shown by the coefficient of 0.1976 (p-value < 0.05). This is consistent with the
existing literature, indicating that inadequate road lighting is an important risk factor [69,115] and
sufficient lighting may reduce bicycle crashes by 58% [117]; road lighting may improve the visibility of
cyclists, thus reducing the risk of BMV crashes.

In addition, road categories and land use may also influence crash risks, as observed by Kaplan
and Giacomo Prato [35], as well as Vandenbulcke et al. [7]. Regarding road categories, due to mixed
traffic with heterogeneous vehicular velocities, urban arterials intersecting with secondary roads and
residential areas may increase cycling risk, as shown by the coefficients 0.8298 and 0.4022, respectively.
Secondary roads were twice as risky as residential areas because of more complex traffic situations.
Implementing protected or divided bicycle facilities may greatly reduce the crash risk. Residential
areas connected to arterial roads were related to increased bicycle crash risks. This may be because
in narrow neighbourhood streets, the conflict between cyclists and motorists is more likely and the
majority of neighbourhood streets lack separate bicycle paths. This conclusion is consistent with
findings by Chen et al. (2018) [118]. Therefore, the implementation of one-way roads with bicycle
paths may be an effective countermeasure to reduce risk. Second, crash risks may also be influenced
by land use features [67]. In Antwerp, many roads within the central business areas were constructed
earlier than the average urban road and have heavy traffic during rush hours. However, arterial
roads located in the central business district (CBD) had lower crash risks. This may represent the
effectiveness of municipal efforts to improve bicycle safety. For example, most arterial roads located in
the CBD have been monitored with strict traffic law enforcement, thus enhancing bicycle safety [71].
Another possible explanation is that areas with dense road networks are mostly CBDs where bicycle
facilities are well-designed with separated lanes, thus the conflicts between cyclists and motorists do
not increase with road density [118].

The crash risk may also be influenced by lane types. In the CA, most lanes on arterial roads
were correlated to the heterogeneity of traffic speed and were riskier than lanes with only fast or slow
transport modes. The results demonstrate that tram routes and bus routes on the mixed lane may
increase crash risks (coefficients = 0.4450 and 0.6624, respectively), while one-way bicycle paths and
main cycling routes seemed to decrease crash risks, as shown by the coefficients −0.4976 and −0.1075,
respectively. Previous studies also confirmed that tram track or bus route crashes on mixed lanes were
significantly higher than arterial roads without bicycle infrastructure [7,23,43,119], and crash risks
on the road with bicycle paths, compared to the one without, are reduced by about 25% [120,121].
Additionally, the results show that a longer distance from the bus stop [116] may have a lower possibility
of having crashes, as shown by the coefficient of −0.1781. Therefore, physically separated bicycle paths
near bus stops or tram tracks may greatly reduce this type of BMV crash [7]. However, an exclusive lane
for two-way cyclists significantly raises BMV crash risks on arterial roads (coefficient = 0.4262), mainly
because motorists do not see cyclists coming from right/left directions (two directions) [43,103,122].
Moreover, when two-way dedicated bicycle lanes became one-way (or the reverse), there was an
increased risk because a sudden change required more reaction time for motorists and cyclists to
respond. Marking bicycle crossings with coloured pavement at intersections, or providing physically
divided and protected bicycle facilities, may greatly reduce the risk of BMV crashes, thereby improving
road safety.

Illegal overtaking manoeuvres [123] have also been seen as a contributory factor for the risk of
BMV crashes, as shown by the coefficient 0.2791. For example, on arterial roads, black spots were
situated where there are overtaking-prohibited lanes (with marked lines). The results indicate that
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72% of the conflicts at these locations were inappropriate lateral collisions, while few were frontal
and rear collisions, emphasising the importance of maintaining adequate lateral clearance between
bicycles and motorised vehicles (see References [98,124,125]). Physical lane boundaries or divisional
facilities (e.g., channelization) may prevent vehicles from lane changes, effectively reducing BMV crash
risks on arterial roads (Wang et al., 2019) [20]. Proper mitigating countermeasures for arterial roads
(e.g., the expansion of the sidewalk for the purpose of cycling, the reallocation of bicycle paths on the
sidewalk, the implementation of segregated bicycle paths or the narrowed width of traffic lanes to
prevent motorised vehicles from inappropriate overtaking manoeuvres) may significantly lessen the
risk of BMV crashes.

The dimension of road engineering facilities [98,123] may also have a significant effect on the risk
of BMV crashes. The risk may be attributed to the increased size of arterial road junctions. In the CA,
large-scale junctions often face far more complex traffic situations, such as high volumes of traffic,
complex traffic compositions and speed differences between motorised vehicles and bicycles, thereby
raising the risk of BMV crashes on arterial roads. Additionally, a road section with a longer length may
raise the risk of BMV crashes, as shown by the coefficient 0.1279. In other words, increased length of
road sections may result in increased activities of cycling, leading to a raised risk of cycling-related
crashes and injuries [12,20,126].

7.2.3. Road Traffic Controls

Finally, the risk of BMV crashes may be associated with road traffic controls. This study has
demonstrated that roads with higher speed limits may raise the risk of bicycle crashes. This study
has further shown that roughly 75% of bicycle crashes took place on urban arterials with speed limits
ranging from 50 to 70 km/h. Therefore, at some crash-prone locations, vehicles on arterial roads might
be advised to limit their speed to below 50 km/h [4], and cyclists are advised to have a minimum
sufficient sight distance of 38 meters [127,128]. In addition, when the speed limit of arterial roads
exceeds 50 km/h, shoulder curbs or curb lanes should separate higher traffic flows from cyclists (of note,
the Danish Cycling Embassy recommends a threshold of 60 km/h) [129].

The existence of signalling facilities may reduce the risk of BMV crashes. These facilities reduce
the speed of vehicles, significantly decreasing the risk of conflicts between bicycle and motorised
vehicles [130], as seen with a coefficient of −0.3017. The results are similar to those of Sweden [105]
and Canada [30], suggesting that the presence of bicycle lanes, in conjunction with traffic signals,
may notably reduce the risk of bicycle injuries. From the classification of these signals (Table 1,
column 3), traffic signals prioritising pedestrians and bicyclists are advised as a measure to prevent
BMV conflicts and improve road safety.

An increased cycle length of traffic signals (i.e., more than 120s to complete a cycle of green, amber,
and red indications for both bicycle and motorised vehicle phases together) may result in a high risk of
BMV crashes, as seen with the coefficient of 0.1669. The longer time of green indications may induce
aggressive driving behaviour (e.g., violation of road markings, failure to make way, inappropriate
lane-changing, and the increase of travelling speed [20]). On the other hand, the increased cycle length
may entail a longer duration of red indications for cyclists. Bicycle queues may enlarge, occupying
the whole lane (i.e., "spread effects” [107]), creating more conflicts between bicycles and motorised
vehicles. Therefore, it is recommended that bicycle signal phases be added [131] or to appropriately
shorten the cycle length of traffic signals to prevent erratic driving behaviour and potential conflicts,
thereby lessening the risk of BMV crashes and injuries [106].

One-way roads [51] were correlated with a decreased risk of bicycle crashes (coefficient = −0.1177).
One-way roads are expected to be safer than two-way roads because traffic situations are less complex,
enabling motorists to more easily notice cyclists [51,132]. One-way arterial roads may also result
in fewer crashes involving bicyclists because there are fewer turning movements. The results also
demonstrated that motorist manoeuvres [133] induce a high risk of bicycle crashes (coefficient = 0.2388).
More than half of the crashes (55.6%) occurred when cyclists were riding in a straight line and drivers
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were turning, similar to prior data [4]. One probable explanation is that motorists turning right may
pay more attention to motorised vehicles or bicycles coming from the left, thus failing to see cyclists
from the right until it is too late to react. However, the crash risk may still be decreased with proper
interventions at arterial junctions with high turning manoeuvres (e.g., adopting bicycle (green) signal
phases [116], implementing coloured bicycle crossings, eliminating junction bus stops or using junction
refuges), which may greatly reduce crashes with left-turning and right-turning vehicles [134].

8. Conclusions

8.1. Meaning of the Two-Stage Workflow

A two-stage workflow focuses on bicycle and motorised vehicle crashes and combines advantages
from recent studies conducted in geography and transportation fields. By using a two-stage strategy to
assess bicycle crash risks, a spatio-temporal workflow opens new research directions for the analysis of
traffic crashes (i.e., models aiming at estimating the risk of BMV crashes from a macro scale (a region)
to a micro scale (a location/road network)). Compared to conventional methods for the analysis of
bicycle safety (such as a crash frequency model), the adoption of this two-stage strategy has a number
of methodological advantages:

(1) In stage 1, the evaluation of bicycle crash risks had already been made possible despite
inadequate bicycle traffic exposure; (2) both census/population data (stage 1) and exposure data
(stage 2) were included in the models, improving the accuracy of estimates; (3) in the second stage,
the detailed data collection of each crash point avoided potential errors arising from the arbitrary
aggregation of point data (crash points) in the first stage, thus reducing the risk of point data aggregation;
(4) the characteristics of bicycle crashes could be better understood through visual and statistical
analysis from a macro- to a micro-level; (5) stage 1 avoided the expensive work of collecting counting
data, thus stage 2 minimised labour-intensive and time-consuming analyses, providing conclusions
about the influence of different environment conditions and road facilities; (6) in comparison with
the traditional crash black-spot approach (Figure 8b), the prediction of potential crash risks could be
provided for locations where bicycle crashes were unknown or underreported; (7) finally, stage 2 could
resolve missing values as the scope had reduced from the regional scale to the local scale and could be
achieved via field investigation and manual inputs from original reports (e.g., crash scene figures).

8.2. General Conclusions

In the case study, BMV crashes may be explained by a series of spatial and temporal phenomena.
This study utilised the two-stage workflow, aiming to better understand “when” and “where” BMV
crashes appeared from a regional (macro) scale to a locational (micro) scale. This study supports the use
of the two-stage strategy because regional studies are not suitable for locational risk assessments [24];
however, locational studies may overlook the overall tendency of crashes on the regional scale.
Although the study results are specifically associated with the presented case study, general conclusions
may be drawn.

(1) The two-stage workflow may capture the patterns of BMV crashes in the city, thereby measures
can be suggested to reduce bicycle crashes and crash risks. (2) This strategy may also be applied
to other disciplines (or other cities) and makes analysing point events possible over space and time
because stage 1 may be viewed as an initial step for the identification of hot-spot areas, where these
risky areas may be further addressed carefully in stage 2. (3) Up to now, few studies have focused
on the pattern of BMV crash risks from a macro- to a micro- scale, mainly due to a lack of available
data. Through stage 1 to stage 2, the study makes the investigation of traffic and bicycle flows possible,
thus understanding the influence of traffic controls, engineering facilities and road environments on
BMV crashes. (4) Utilising spatio-temporal approaches to assess crash risk is more effective than
utilising conventional black-spot approaches (Figure 6b). Spatio-temporal approaches enable the
potential crash risk of each location in the entire region to be calculated such that the hazardous areas
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can be further addressed according to their different road characteristics (e.g., road pavement materials,
type of lane, and traffic volume, etc.). (5) Finally, the spatio-temporal approach incorporates the
construction year of road engineering facilities [7], dynamic road traffic controls and directional traffic
volumes, leading to a more precise analysis of existing environment conditions on the arterial road.

9. Limitations and Further Research

It should be mentioned that this study has several limitations. First, the collection of data is
labour-intensive and time-consuming. As can be seen from Table 1 and its footnote, although stage 2 has
included 33 influencing risk factors, stage 1 has made only 15 risk variables available for the statistical
and spatial analysis (4120 observed crashes). Second, this study has excluded some influencing risk
factors associated with privacy concerns (like vehicle and human-related factors). Finally, the study
aimed to understand the influence of bicycle crash risks by evaluating the influencing factors of road
environmental conditions, road traffic controls, and road facilities. Further studies might include more
influencing risk factors for road safety analysis.
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