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Abstract: Floods are natural disasters that should be considered a top priority in disaster management,
and various methods have been developed to evaluate the risks. However, each method has different
results and may confuse decision-makers in disaster management. In this study, a flood risk assessment
method is proposed to integrate various methods to overcome these problems. Using factor analysis
and principal component analysis (PCA), the leading indicators that affect flood damage were selected
and weighted using three methods: the analytic hierarchy process (AHP), constant sum scale (CSS),
and entropy. However, each method has flaws due to inconsistent weights. Therefore, a Bayesian
network was used to present the integrated weights that reflect the characteristics of each method.
Moreover, a relationship is proposed between the elements and the indicators based on the weights
called the Integrated Index for Flood Risk Assessment (InFRA). InFRA and other assessment methods
were compared by receiver operating characteristics (ROC)-area under curve (AUC) analysis. As a
result, InFRA showed better applicability since InFRA was 0.67 and other methods were less than 0.5.

Keywords: flood risk; Bayesian networks; integrated index for flood risk assessment

1. Introduction

Recent major disasters highlight the importance of disaster preparedness around the world and
emphasize the concept of disaster risk across communities. Floods are major natural disasters and have
been studied with great interest worldwide [1,2]. Federal Emergency Management Agency (FEMA) [3]
and National Oceanic and Atmospheric Administration (NOAA) [4] developed a risk assessment
program to estimate the extent of damage related to disasters. Munich Re Group [5] classified disasters
into four categories after evaluating disaster scenarios using four factors (natural, technological,
socio-political, and economic factors) and direct/indirect damages. The Tyndall Centre [6] classified
flood vulnerability into social and biological categories and proposed a basic framework to improve
vulnerability-specific adaptability.

Rygel et al. [7] suggested that the most important issue in a vulnerability assessment is selecting
appropriate indicators. They proposed a method to evaluate flood risk using the Pareto ranking process
after selecting and collecting vulnerabilities into two categories (exposure and sociological). Chang
and Huang [8] selected potential impact indicators (PIs) for urban areas in Taiwan and estimated the
flood risk index by combining PIs with adaptive capacity indicators (AIs). Kablan et al. [9] estimated a
flood vulnerability index based on the concept of climate change vulnerability assessment through
proxy variables that are relevant to disaster risk management and adaptation to climate changes using
three flooding indices: (1) an exposure index (EI), (2) sensitivity index (SI), and (3) adaptive capacity
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index (AI). In addition, some studies have examined the impact of forest areas on flood risk [10] and
the relationship between intensity-duration-frequency (IDF) curves and flood risk [11].

Many research institutes around the world have also assessed flood risk, including the Environment
Agency (EA), Jeollabuk-do Total Human Institute National of Korea (JTHINK), Korea Institute of
Civil Engineering and Building Technology(KICT), Korea Research Institute for Human Settlements
(KRIHS), Korea Environment Institute(KEI), Ministry of Land, Transport and Maritime Affairs
(MOLTMA), National Disaster Management Research Institute (NDMI), National Institute for Land
and Infrastructure Management (NILIM), and Seoul Institute (SI) [12–21]. The above studies commonly
selected indicators that are expected to have an effect on flood risk. Then, the conclusive flood risk is
derived from the weight between each indicator (mainly expert questionnaire or subjective judgment).
Their goal is to address flood management through flood risk assessment.

To assess flood risks, it is essential to select indicators that affect floods and assign them reasonable
weights. However, as mentioned earlier, most studies lack a basis for the selection of indicators,
and they have typically selected indicators based on the frequency of their use in other studies or a
subjective view on the importance of such indicators. In addition, most flood risk assessment methods
are not differentiated because they use similar estimation methods. These problems have not been
validated for the methods to be actually applied.

The purpose of this study is to develop a flood risk assessment method that can address the
problems of undifferentiated and accurate estimates of previous methods. To this end, a methodology
is proposed to derive the integrated weights of components and indicators using Bayesian networks
(BNs) as an integrated decision model after selecting representative indicators among the existing flood
risk indicators through factor analysis and principal component analysis (PCA). Section 2 explains the
basic theories behind the methodologies that are material in this study, and Section 3 discusses the
result of the methodology used on the target areas. Finally, Section 4 presents the conclusions.

2. Materials and Theories

2.1. Existing Flood Risk Assessment Indices

In general, flood risk is computed by multiplying three factors of vulnerability related to flood
occurrence: (1) hazard; (2) asset or human exposure; and (3) lack of flood protection [22]. Based on these
definitions, many flood risk assessment indicators have been developed for flood risk management. The
indicators mainly used in Korea are the potential flood damage (PFD) [17], excess flood vulnerability
index (EFVI) [18], flood disaster risk reduction index (FDRRI) [19], flood vulnerability assessment
(FVA) [13], flood damage index (FDI) [15], and regional safety assessment (RSA) [21]. These six
methods have been used mainly in Korea because they are well known to be applicable with general
indicators for assessing flood risk. Each assessment method is estimated by the general procedure
with almost similar methods presented in introduction.

In this study, the factors of these indicators were reviewed and classified into four components:
(1) hydro-geology; (2) socio-economics; (3) protection; and (4) climate. Furthermore, 28 indicators
were also used for the components, as shown in Table 1. The flood risk index (FRI) increases as the H
(hydro-geology), S (socio-economics), and C (climate) components increase. The index decreases as the
P (protection) component increases. With these indicators, the FRI can be expressed as follows:

FRI= (H × S × C)/P (1)
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Table 1. Classification of components and indicators using six assessment methods.

Classification MOLTMA NDMI JTHINK KRIHS SI

Components Indicators EFVI PFD FDRRI FVA FDI RSA

A.
Hydro-geology

(1) Flood hazard area # #
(2) Flood damage cost for public facilities # # # # #

(3) Imperviousness # # # #
(4) Urban rate #

(5) Curve number (CN) #
(6) Basin slope # # #

(7) Lowland area rate # #
(8) Stream density #

B.
Socio-economy

(9) Population density # # # #
(10) Asset (reference land price) # # #
(11) Financial independence rate # # # #

(12) Infrastructure # # #
(13) Dependence population # #

(14) Manufacturing output in value #
(15) Total number of houses #

C. Climate

(16) Frequency of hourly rainfall (P ≥ 50 mm) # #
(17) Frequency of intensive rainfall per day (P ≥ 150 mm) # #

(18) Maximum hourly rainfall #
(19) Annual precipitation #
(20) Probability rainfall #

D. Flood
Protection

(21) Levee maintenance # #
(22) Levee length # #

(23) Pump station (number) #
(24) Pump station (capacity) #

(25) Dam and reservoir #
(26) Drainage capacity

(27) Number of public servants per resident #
(28) Index of damage reduction ability # #

2.2. Methodology for Selecting Representative Indicators

Factor analysis is used to reduce the complexity of data by grouping measurement variables
into common factors and determining whether the measured variables measure the desired data in
the same construct [23]. Factor analysis is advantageous because it is relatively free of constraints of
multicollinearity, it can classify variables by factors in the development process of a measurement scale,
and it can analyze them based on the correlation of variables. principal component analysis (PCA) in
factor analysis is a technique for creating a small number of new variables by combining many highly
correlated variables. It is a method of forming a group of components that represent many variables
by reducing the dimensionality of data [24]. In addition, it can easily identify the component that has
the highest explaining power in the group because the component of each variable can be quantified.

Figure 1 illustrates the method of selecting representative indicators using factor analysis and
PCA. Assuming that there are six indicators A–F, they can be grouped by factor analysis, and the ones
that have high explanatory power can be selected using PCA. In this way, the complexity of the FRI
can be effectively reduced.
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2.3. Methodology for Assigning Weights

Weights should be assigned according to the importance of each indicator that affects the flood in
assessing flood risk. There are many theories for weight assignment methods, and it is difficult to say
that these weighting techniques differ in explanatory power or merit. Only the classification methods
differ according to the purpose of a study or a subjective view about importance. The weighting
techniques originate from differences in assumptions that lead to values or preferences [25], and they
are categorized into direct and indirect methods, including surveys [26]. In this study, the analytic
hierarchy process (AHP), constant sum scale (CSS), and entropy weight were selected for weighting
the flood risk indicators identified to derive the FRI.

AHP is a typical method of multicriteria decision-making (MCDM). It forms a hierarchical
structure by assessment items and evaluates alternatives through pairwise comparison. Quantitative
and qualitative data can be processed on a ratio scale, which makes the method useful for verifying
objectivity through the process of secondary processing of data [27,28]. CSS provides a consistent fixed
total score to respondents and divides the score according to the relative importance of the attributes
within the total score [29]. The score used for the total fixed scale is usually 10 or 100 based on the
number of factors and indicators.

The entropy weight technique is based on the theory that information about the signal can be
measured indirectly with a degree of reduction of uncertainty. In this sense, information and uncertainty
are dual terms and sometimes used interchangeably [30], and weights between the indicators can
be determined using the characteristics of these entropies. The estimation procedure consists of (1)
constructing a matrix for each item; (2) normalizing the attribute information for each constructed
indicator; (3) calculating the entropy for each attribute; (4) considering the degree of diversity between
the indicators; and (5) determining the final weights (see Equations (2)–(6)).

(1) Matrix construction
x11 · · · x1 j · · · x1n

...
...

...
xi1
...

xm1

xi j
...

xmj

x1n
...

xmn

(2)

(2) Normalization of assessment items

pi j =
xi j∑m

i=1 xi j
(i = 1, 2, · · ·m; j = 1, 2, · · · n) (3)

(3) Calculation of entropy of each attribute

E j = −k
m∑

i=1

pi jlogpi j

(
Here, k =

1
logm

; i = 1, 2, · · ·m; j = 1, 2, · · · n
)

(4)

(4) Weight assignment between assessments

d j = 1− E j (5)

w j =
d j∑n

j=1 d j
( j = 1, 2, · · · n) (6)
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2.4. Bayesian Networks (BNs)

A BN is a stochastic graphical model that can represent the relationship between variables even
when there is uncertainty between them. It consists of a directed acyclic graph (DAG) model of nodes
and links and has the advantage of integrating variables of sources and types into a single structure.
The relationship between nodes is described by conditional probability distribution (CPD), which
considers dependencies between variables [31–33].

For example, the child nodes (x1, x2) in Figure 2 are determined by the conditional probability of
the parent nodes (x2, x3) if there is a graph that has the nodes (x1, x2, x3) that follow the CPD. Any
unconnected node is ignored. The joint distribution with n number of variables p(x1, x2, · · · , xn) is
expressed in Equation (7):

p(x1, x2, · · · , xn) =
n∏

i=1

p(xi | ai) (7)

where ai denotes the set of parent nodes of xi, and p(x1, x2, · · · , xn) is normalized constantly as the
predistribution has been normalized.
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2.5. Integrated Index for Flood Risk Assessment (InFRA)

Equation (8) is proposed as a formula to construct the Integrated Index for Flood Risk Assessment
(InFRA) based on the weight of each factor:

InFRA = Ha1 × Sa2 ×Ca3 × (1− P)a4 (8)

where:

H = hydro-geology
S = socio-economics
C = climate
P = flood protection and
αi = weight of each indicator

As flood protection is inversely proportional to InFRA, it is necessary to consider it in descending
order when estimating flood protection. If flood protection is 0 and the other indicators are 1, the
value of InFRA will be 1, and the closer the value is to 1, the higher the flood risk will be. The key
components that make up an indicator can be determined by multiplying them by the weights and
summing them (Equations (9)–(12)):

H = β1h1 + β2h2 + · · ·+ βnhn (9)

S = γ1s1 + γ2s2 + · · ·+ γnsn (10)

C = δ1c1 + δ2c2 + · · ·+ δncn (11)

P = ε1p1 + ε2p2 + · · ·+ εnpn (12)

where:
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hi, si, ci, pi= each indicator
βi, γi, δi, εi= the weights of each indicator

3. Application and Results

3.1. Selection of Target Areas and Data Collection

This study targeted the Midwest region of the Republic of Korea, including Daejeon Metropolitan
City, Sejong Special Self-Governing City, Chungnam Province, and Chungbuk Province. The area
consists of 28 cities and gun (districts or counties in Korea), including two municipalities, 11 cities, and
15 gun (see Figure 3). The advantage of the area is that it provides various geographical environments
to select flood risks because it encompasses large cities, small and medium cities, coastal cities,
mountainous regions, and rural areas.Sustainability 2018, 10, x FOR PEER REVIEW  7 of 18 
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Figure 3. Target area (Chungnam and Chungbuk Provinces).

The elements needed to construct an indicator database are summarized as statistical data and
geographic information system (GIS)-based data. Demographic, social, and economic data were
collected from the Korean Statistical Information Service (KOSIS), the statistical yearbooks of local
governments, and the Statistical Yearbook of Natural Disasters. Meteorological data were collected
from the Korea Meteorological Administration. All data were collected based on GIS for spatial
analysis. The base year of the data is 2016, and statistical data for the ten years prior (2007–2016) were
used. As shown in Table 1, data were collected for all 28 indicators of four components. All indicators
were normalized to values between 0 and 1 using the average values estimated for each region and the
standard deviations. Thus, the larger the value of an indicator for a region is, the closer it is to 1. The
indicators of the H, S, and C components are positively correlated with FRI, whereas the indicators of
P are negatively correlated.

3.2. Selection of Indicators Using Factor Analysis and Principal Component Analysis

Factor analysis and PCA were performed on each of the four components (hydro-geology,
socio-economics, flood protection, and climate), which each consisted of several indicators. First, the
indicators were grouped by factor using factor analysis, and the indicators with the highest component
point for each group were selected using PCA. The procedure can prevent the duplication of meaning
of the indicators and reduce dimension of the indicators in each group.

Table 2 shows the results of the factor analysis. The hydro-geology, socio-economic, and protection
components were classified into three groups, whereas climate was classified into two groups.
Kaiser–Meyer–Olkin (KMO) [34] and Barlett’s test of sphericity [35] were used to determine the
appropriateness of the analysis. The Kaiser–Harris measurement [34] was used to select principal
components that have an eigenvalue of 1 or higher (see Table 2). The result of each component was
determined to be significant because KMO remained at 0.5 or higher, and the probability value (p)
remained below 0.05.
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Table 2. Grouping and selection of representative indicators by PCA and factor analysis.

Classification Component Points (Selected:
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PCA was used to select indicators that have the most significant contribution for each group.
Among 28 indicators, 17 were eliminated and 11 were chosen: (1) three indicators for hydro-geology
(damage cost, urban rate, and lowland area rate); (2) three for socio-economics (total number of houses,
financial independence rate, and dependence population); (3) three for flood protection (number of
pump stations, drainage capacity, and number of public servants per resident); and (4) two for climate
(frequency of intensive rainfall and probability rainfall), as shown in Table 2.

3.3. Weight Assignment by Method and Calculation of Integrated Weights

3.3.1. Weight Assignment by Method

The factors selected are expressed as normalized values between 0 and 1, and each indicator is
estimated using the assigned weights. The flood risk index can be quantified using the weight of each
indicator. To this end, weights can be assigned by various methods, and three weight assignment
methods were applied, as described in Section 2.3. For the AHP, a survey was conducted with
30 respondents from academia and research. The survey was constructed in such a way that the
importance of each indicator was compared in pairs. The terms of each indicator were defined and
presented in the questionnaire to improve the accessibility for the respondents. The first-level hierarchy
consists of four upper-level assessment components (hydro-geology, socio-economics, flood protection,
and climate), and the second-level hierarchy consists of 11 lower-level assessment indicators.

For the CSS, a survey was conducted with 21 experts who have experience in work related to flood
or wind damage and did not participate in the AHP survey. The questionnaire was structured in such
a way that the sum of the four components presented and the sum of indicators for each component
was 10. A sufficient explanation of the survey method was provided to supplement the questionnaire
so that the respondents would not be confused.

For entropy weighting, Equations (1)–(6) from Section 2.3 were used based on the data collected
for each component. The weights are shown in Table 3 and Figure 4. In summary, the weights
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for the socio-economic component were low in the survey methods, while they were high in the
entropy weight method. In particular, the weights were evenly distributed among the rest of the
components other than the socio-economic component and thus gave a relatively identical position
concerning importance.

Table 3. Weight assignment for the representative indicators.

Components Weight 1
(AHP)

Weight 2
(CSS)

Weight 3
(Entropy) Indicators Weight 1

(AHP)
Weight 2

(CSS)
Weight 3
(Entropy)

A.
Hydro-geology 0.25 0.31 0.25

(2) Flood damage cost for
public facilities 0.31 0.37 0.19

(4) Urban rate 0.29 0.33 0.31
(7) Lowland area rate 0.40 0.30 0.50

B.
Socio-economy 0.13 0.15 0.28

(11) Financial
independence rate 0.30 0.36 0.28

(13) Dependent population 0.31 0.30 0.01
(15) Total number of houses 0.39 0.34 0.71

C. Climate 0.31 0.28 0.20
(16) Frequency of hourly

rainfall (P ≥ 50 mm) 0.77 0.72 0.99

(19) Annual precipitation 0.23 0.28 0.01

D. Flood
Protection

0.31 0.26 0.27
(23) Pump station (number) 0.37 0.38 0.56

(26) Drainage capacity 0.50 0.45 0.35
(27) Number of public
servants per resident 0.13 0.17 0.08
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The indicators within a component showed a different aspect in the survey and entropy methods:
the entropy method showed higher weight values for specific indicators, while the surveys showed
relatively similar weight values for the indicators. This was due to the unique characteristics of entropy,
which increases when deviations between alternatives are low. Moreover, the deviations between the
normalized values of the indicators were small. However, the number of public servants per resident
indicator of the flood protection component and the annual precipitation indicator of the climate
component were low, and divisions in indicators between regions were high, which resulted in low
entropy weights.

3.3.2. Integrated Weight Assignment Using Bayesian Networks (BNs)

The estimated weights affect the outcome of the estimated flood risk. It is not easy to determine
the weights for each component and indicator, particularly when the entropy weight is higher than the
other weights, such as for the total number of houses in Table 4. Thus, the BN method was used to
estimate the combined weights while considering causal relationships between weights obtained from
the AHP, CSS, and entropy techniques. First, a BN with 20 nodes and 19 links was constructed with
AgenaRisk 10, as shown in Figure 5. The BN was constructed in consideration of the relationships
between the components and indicators. The pre-probability assigned to each higher node can be
inferred directly from the conditional probability, and the deviation of the probability determines the
post-probability of the lower nodes. That is, the post-probability (the integrated weights) can be derived
from pre-weights (the current weights), the conditional probability of each component (hydro-geology,
socio-econometrics, flooding protection, and climate), and its indicators. As each component was
weighted separately, it will not affect its indicators and can be expressed as dotted-line links that have
indirect influences. Table 4 shows all of the probabilities (weights) of each component and indicator
obtained from the configuration in Figure 5 and the post-probabilities (integrated weights).

Table 4. Resulting integrated weights.

Components
Weights Using Bayesian

Networks (AHP, CSS,
and Entropy)

Indicators
Weights Using Bayesian

Networks (AHP, CSS,
and Entropy)

A. Hydro-geology 0.26
(2) Flood damage cost 0.32

(4) Urban rate 0.28
(7) Lowland area rate 0.40

B. Socio-economy 0.20
(11) Financial independence rate 0.31

(13) Dependent population 0.21
(15) Total number of houses 0.48

C. Climate 0.26
(16) Frequency of hourly rainfall

(P ≥ 50 mm) 0.84

(19) Annual precipitation 0.16

D. Flood protection 0.28
(23) Pump station (number) 0.51

(26) Drainage capacity 0.36
(27) Number of public servants per

resident 0.13

The estimated weight of each component was relatively uniform in the range of 0.20–0.28. The
weight of the socio-economic component was low in the survey method but increased significantly in
the entropy method. This indicates that the entropy weight contributed to conditional probabilities as
a prior probability. Similarly, the other indicators within each component were adjusted adequately by
prior and conditional probabilities. For example, the drainage capacity indicator of the flood protection
component was weighted as 0.50 and 0.45 in two surveys, respectively, while it was weighted as 0.35
in the entropy method, and its integrated weight became 0.36.

Moreover, the annual precipitation of the climate component was weighted with a small value
of 0.01 in the entropy method, but the integrated weight was 0.06 because it was weighted with 0.23
and 0.28 in the two surveys. The BN model has an effective and optimal decision-making capability
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to integrate different knowledge and data [36,37]. Thus, BNs are expected to be a new alternative in
assigning weights between indicators.Sustainability 2018, 10, x FOR PEER REVIEW  11 of 18 
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3.4. Results of Calculation with InFRA

The final InFRA was estimated for hydro-geology, socio-economics, flood protection, and climate
components in 28 cities in the Chungcheong Province using several formulas (see Figure 4). As a result,
InFRA did not show a significant gap between regions except for some areas and showed a flood
risk of 0.3–0.5 in most places. The resulting values for Seosan (17), Dangjin (20), and Taean (27) were
close to 0.7, despite their low risk from the socio-economic component. This occurred because the risk
from the other components was high. Some village areas including Jeungpyeong (8) and Jincheon (9)
showed a low InFRA level because they had a low level of flood protection and other components. The
risk related to the hydro-geology component was high in the countryside because these areas are more
influenced by flood damage, and there are more lowland areas than urban areas. In the socio-economic
component, the indicators of the total number of houses and financial independence rate showed a
high risk in large cities, followed by some villages that have a high dependent population.

In the flood protection component, large and medium cities showed a high level of protection,
whereas villages showed a low level of protection because they lack flood protection systems. The
flood protection component shown in Figure 6 is expressed in the concept of “1-flood protection,” so it
is interpreted accordingly. In the climate component, the basins were clustered in a continuous pattern
and showed a constant flood risk, particularly in coastal areas according to the consistent measurement
of the measurement stations in the Thiessen network along the coastal cities. This is attributed to the
high frequency of intense rainfall in coastal areas, and thus, the frequency of intensive rainfall indicator
is weighted higher than the annual precipitation indicator.
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3.5. Comparison with Other Methods and Discussion

The proposed method was compared with other three methods used to assess flood risk: PFD,
FDI, and RSA [15,17,21]. The three methods are the most popular in a practical field because they are
easy to collect data and simple to apply. These methods are briefly explained in Table 5. However,
the same assessment criteria must be used to compare the two sets of methods. The other assessment
methods use various criteria with grades (1–5) or groups (A–D), and thus, comparing the methods
using the same set of criteria is not appropriate. Therefore, they were compared in an alternative way
using risk values between 0 and 1 instead of using grades or groups for a consistent comparison. In all
the assessment methods, the risk of flood increased when the risk value was closer to 1, indicating that
appropriate measures need to be taken for flood mitigation.

Table 5. Basic information on other flood risk assessment methods.

Other Methods Method for Selecting
Indicators

Method for Assigning
Weights Formula

PFD
Selected based on the

subjective judgment of the
researchers

Assigned based on the
subjective judgment of

the researchers
PFD = Potentiala1 ×Riska2

FDI
Selected based on the

subjective judgment of the
researchers

CSS FDI =
n∑

j=1
(W j ×Zi j)

RSA
Selected based on the

subjective judgment of the
researchers

CSS RSA =
α×Risk−×Reduction

The other assessment methods generally showed high flood risk in cities and low risk in villages.
In particular, flood risks were high in Daejeon, Cheongju, Chungju, and Cheonan but low in Yeongdong,
Jincheon, Goesan, and Geumsan. The other assessment methods were polarized in urban and rural
areas and showed large regional variations compared to InFRA (see Figure 7). It seems that the
duplicated meaning in the construction of indicators and the insufficient level of flood protection
in cities are major reasons for such results. Nevertheless, indicators such as population, financial
independence rate, and infrastructure are typically high in urban areas. Thus, the other risk assessment
methods are considered to have produced somewhat overestimated values because they use a system
that would inevitably estimate large flood risk in large cities.
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This comparison was qualitative, and a quantitative comparison is necessary. Therefore, the
methods were validated by analyzing the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve. The ROC curve is a graph where the x-axis shows the specificity, which
indicates the probability of the estimated value being false. The y-axis shows the sensitivity, which
indicates the probability of the estimated value being true. That is, the evaluation method is better
if the risk assessment is more likely to be correct and has a lower false probability rate. A higher



Sustainability 2019, 11, 3733 13 of 15

AUC indicates higher accuracy of the prediction, and the accuracy of the results increases as AUC
approaches 1.

The limit of this validation is that the factors to be compared must be considered to evaluate the
accuracy of each method, but the assessment factors are already included as indicators, and there is no
suitable criterion to apply. As the best alternative, data from [38] were used, and total flood damage
costs were derived, including injuries and flooding of farmland and cities, for the flood damage cost
for public facilities (see Table 6). Then, the integrated sums were normalized. If the value is 0.5 or
higher, the corresponding region is considered to have high damage cost. The ROC analysis was
then conducted.

Table 6. Estimated total flood damage cost by district.

District

Period: 2007–2016 (Units:
Thousand KRW)

District

Period: 2007–2016 (Units:
Thousand KRW)

Flood Damage
Cost for Public

Facilities

Total Flood
Damage Cost

Flood Damage
Cost for Public

Facilities

Total Flood
Damage Cost

Daejeon 28,904,388 47,212,788 Boryeong 32,401,710 83,801,710
Cheongju 91,359,488 92,472,688 Asan 48,656,598 73,920,798
Chungju 104,137,429 131,245,429 Seosan 114,830,315 190,237,515
Jecheon 186,090,075 246,660,075 Nonsan 47,680,083 96,512,883
Boeun 71,415,564 91,802,764 Gyeryong 51,490,991 61,412,991

Okcheon 52,452,809 76,211,609 Dangjin 90,928,932 102,690,132
Yeongdong 538,481,881 559,584,281 Geumsan 116,518,336 248,099,536

Jeungpyeong 47,680,083 68,518,883 Buyeo 84,734,079 103,852,079
Jincheon 110,242,303 135,001,103 Seocheon 27,608,991 88,375,991
Goesan 93,072,362 130,146,762 Cheongyang 34,453,315 90,744,515

Eumseong 80,755,775 85,305,375 Hongseong 46,091,101 59,817,901
Danyang 310,987,567 332,961,167 Yesan 39,018,182 51,444,182
Cheonan 47,680,083 55,908,083 Taean 106,713,297 140,302,897
Gongju 90,773,723 128,253,723 Sejong 18,198,894 34,950,094

According to the AUC of the ROC, the accuracy of InFRA was 0.67, while that of PFD, FDI, and
RSA was less than 0.5 (0.296, 0.417 and 0.174, respectively). Thus, they were withdrawn from the
assessment of flood damage cost (see Figure 8). In other words, the other risk assessment methods
were revealed to be inappropriate for assessing flood damage costs. The evaluation showed that InFRA
is better than the classic methods for assessing flood risk and could thus be applicable in the field.
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4. Conclusions

Numerous methods have been developed to assess flood risk. In this study, a methodology was
proposed for use in decision-making by integrating existing methods rather than developing another
flood risk assessment method. First, previous flood risk assessment methods were evaluated (PFD,
EFVI, FDRRI, FVA, FDI, and RSA), and four components and 28 indicators were extracted. Factor
analysis and PCA were carried out, and 11 of the 28 indicators were selected as a result. Then, the
weights of each component and indicator were estimated by the AHP, CSS, and entropy methods, and
the results of each method differed from one another. Therefore, BNs that integrate the conventional
weight assignment methods were structured to estimate integrated weights.

The BN-based InFRA was applied to target regions to estimate the flood risk of each region. The
result of both qualitative and quantitative comparisons between InFRA and the conventional methods
demonstrated the excellent applicability of InFRA. The InFRA methodology can integrate various
other flood risk assessment methods and it could be used as a useful tool in decision-making for flood
risk management.
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