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Abstract: Sustainability is a key factor in petroleum industry development, determining whether
an enterprise has the ability to maintain high-quality safety management in the long term. In order
to reduce occupational injuries and accidents, and to improve safety in the petroleum industry,
this study proposes a hybrid approach based on the fuzzy analytical hierarchy process (FAHP),
human factors, and the fuzzy comprehensive evaluation (FCE) method in order to assess safety
performance in a petroleum enterprise. This paper is comprised of four stages. In the first stage,
a model is constructed for assessing the safety of the petroleum industry based on a literature review.
In the second stage, we use the FAHP to determine the weights of five factors and 19 sub-factors.
In the third stage, employees are the subjects of a questionnaire on the safety performance of the
petroleum enterprise. According to the analysis of the assessment results, we focus on improving
employees’ safety behaviors and mental health. A second round of questionnaires is distributed to the
employees, and a second set of assessment results obtained. Finally, the results of the two evaluations
are compared, and the effectiveness of the combination of FAHP, human factors, and FCE is verified.

Keywords: petroleum industry; sustainable development; fuzzy analytic hierarchy process (FAHP);
human factors; safety communication

1. Introduction

Sustainability is often regarded as one of the main goals of the petroleum industry [1]. At the same
time, the exploitation of oil resources is among the main causes of occupational injuries and accidents
that have raised many sustainability issues [2]. The oil industry plays a core role in feeding society’s
demand for power, transport, and heat. However, the oil industry is considered a very dangerous
sector [3], since the rate of occupational accidents and injuries is consistently high [4]. The cost of
occupational accidents and injuries is extreme, not only for an employee, but also for the future life of
his or her whole family [5]. Millions of occupational injuries and accidents occur around the world
every year and cause negative impacts on employees, enterprise, society, and national economies.
The task of oil accident prevention appears enormous but understanding and identifying the root
causes of these accidents and occupational injuries will help us to implement better safety management
to prevent their re-occurrence.

The oil refinery industry has experienced a series of disastrous accidents, and statistics show
that most of these accidents are caused by human factors [6,7]. For example, the BP Texas City oil
refinery explosion in 2005 resulted in about 15 fatalities [8] and the Piper Alpha offshore oil industry
accident in 1988 led to 167 deaths and dozens of serious injuries [9]. These have all been investigated
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and the importance of human factors in the causation of occupational injuries and accidents is well
established. Furthermore, the role of human factors involving hazardous technology failures is
increasingly recognized by both organizational [10] and technical specialists [11], such as in the Piper
Alpha disaster. Pate-Cornell [12] attributed the accident to poor maintenance procedures, inexperience,
and a lack of learning mechanisms. However, compared to in other industries such as sewage treatment
plants and nuclear power plants, the key role of human factors in the oil industry has not been
fully researched. This may be partly due to a lack of routinization of petroleum operations and
the oil industry being more widely distributed geographically than other industries. Urbina [13]
points out that the activities of the oil industry tend to be loosely regulated and that enterprises
and individuals often operate independently. Previous studies have shown that human error and
unsafe acts play an important role in the occurrence of oil accidents. In fact, engineers have long
pointed out that the psychological and emotional health of employees plays a central role in human
performance [14]. Decreased concentration, distractibility, and a tendency to emotional exhaustion
and cognitive failure increase the probability of human error and procedural violations. This includes
the influence of an employee’s physical or psychological fatigue and the likelihood of distraction by
personal concerns, such as marital discord or personal or family illness. In addition, reduced levels
of physical health and psychological well-being may directly or indirectly influence the incidence
of occupational injuries and accidents. To reduce the possibility of oil industry accidents, this study
focused on the behavioral and psychological health of the employees, following a bottom-up approach
which starts from the understanding and identification of potential unsafe behavior in order to assess
employees’ well-being [15]. Thus, one effective approach used to combat unsafe human action is
behavior-based safety (BBS) [16]. BBS is deemed to be an effective approach to further prevent oil
industry accidents. BBS has been successfully applied in a wide range of areas such as health care and
hospitals [17,18], transportation [19–21], manufacturing [22], and construction [23–25]. These successful
applications illustrated the effectiveness of the BBS approach for identifying potentially risky or unsafe
behaviors [26].

In this context, bottom-up safety communication is also conducive to improving the safety
performance of the oil industry and the safety behaviors of employees [27]. Over the past few decades,
a decline in oil refinery accidents has been associated with improvements in safety communication.
For example, in 2003, after management became more involved in safety communication, the accident
rate began to fall below the industry averages published by the National Petroleum Refiners Association
and the Bureau of Labor Statistics, and continued to decline in 2007. The Cambridge Center for
Behavioral Studies (CCBS) has also published data indicating that there is an inverse relationship
between the number of safety communications made by oil refinery employees and the accident
rate [28]. In this study, the effectiveness of safety communication in Chinese state-owned oil enterprises
may be correlated to organizational power distance. Power distance refers to the extent to which
individuals accept the unequal distribution of power in institutions and organizations and consider it
a normal phenomenon [14]. Low power distance means that there is a closer relationship between
the leader and the employees, since the organizational and administrative structure is flatter and
employees are more involved in safety communication [29]. However, a high-power distance may lead
to a one-way flow of communication from leaders to employees, which prevents the knowledge and
experience of employees from being used to improve safety communication in a bottom-up manner.

Despite the qualitative nature of the method, it can be used to better understand employees’
perception of unsafe behaviors and their psychology, and provides practical evidence to assess and
improve their safety behaviors. Hence, these first results can improve safety performance in the oil
industry, providing a basis for further analysis and assessment of safety behaviors and psychology
related to employees, which are considered core factors in the prevention of occupational injury
and accidents [15]. Moreover, the interdisciplinary part of the human factor means that different
professionals should participate in the decision-making process, which makes the decision-making
more difficult and sometimes time-consuming. The analytic hierarchy process (AHP) is a common
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method to solve interdisciplinary and multiple-criteria decision-making (MCDM) problems [30]—it
was established by Saaty in the late 1970s [31,32]. So far, AHP has been widely used to assess various
industries’ problems, and has also been widely applied in research on occupational safety issues [33,34].
In particular, the determinants of safety behavior and psychological well-being include intangible
aspects and require accurate data [35]. Furthermore, it is increasingly difficult to describe and assess
an enterprise’s safety performance. Since human judgments are usually uncertain, there is no accurate
numerical value to assess their preferences. Since decision-making is done by people, ambiguity must
be considered in MCDM.

However, AHP does not take inherent uncertainty and imprecision into account [36], so the
comparison matrices used by AHP are combined with the crisp scale. Fuzzy set theory is a reasonable
and effective tool to solve the problem of inherent uncertainty and ambiguity. An extension of
AHP, the fuzzy analytic hierarchy process (FAHP) has the ability to deal with a fuzzy multi-criteria
decision-making problem. This method has been applied by numerous scholars to deal with different
decision-making problems. In order to handle the inherent uncertainty or fuzziness of data (to assess
the psychological behavior of employees, etc.), the FAHP has been successfully applied in many
fields in recent years, such as in-flight service quality [37], energy investments [38,39], transportation
engineering management [40,41], application in the army [42], project prioritization and selection [43],
and healthcare service quality [44]. Furthermore, fuzzy AHP is also applied in combination with
other methods to tackle actual making-decision and management problems [45,46]. Therefore, it is
necessary to apply a combination of qualitative and quantitative approaches to assess the safety
performance, in which linguistic variables are involved. Then, bottom-up safety communication and
BBS management are used to improve the safety behavior and mental health of the employees. Different
FAHP methods have been developed by many authors, but each method has its own advantages,
disadvantages, and range of application. Until now, the answer as to which is better has remained an
open question [47]. In this study, AHP and triangular fuzzy numbers are applied, as well as the FAHP
method developed by Buckley [48]. Thus, in this study, in order to improve an enterprise’s safety
performance, a novel assessment model is developed based on FAHP, human factors, and the fuzzy
comprehensive evaluation (FCE) method.

The remainder of this article is organized as follows. Section 2 introduces the FAHP, AHP and
FCE methods. Section 3 illustrates the application of the method to Chinese petrochemical enterprises
and reports the results. Analysis and discussion of the results are provided in Section 5. Finally,
the conclusions, limitations and future research are presented in Sections 6 and 7.

2. Research Methods

2.1. The Weights of All the Factors and Sub-Factors

In this study, a FAHP and original AHP are employed to calculate and compare the weight set in a
petrochemical enterprise, respectively. The AHP is a structured, traditional approach for analyzing and
solving multi-criteria problems based on psychology and mathematics [32]. It has been widely applied
in many petroleum enterprises for sustainable safety assessment. An extension of AHP, FAHP, has the
ability to deal with fuzzy MCDM problems. This method has been generally applied by integrating
numerous expert opinions to improve the AHP’s decision-making [49].

2.2. Calculation of the Factors’ and Sub-Factors’ Weights Using FAHP

Firstly, the geometric mean was applied to represent the interviewer’s opinion consensus [32,50].
Secondly, a triangular fuzzy number (TFN) characterized by a minimum value, to measure the
maximum value of the score and geometric mean, is applied to integrate n pairwise comparison
matrices into a fuzzy positive reciprocal matrix [49]. Finally, based on the above matrix, the FAHP is
utilized to determine the weight of factors and sub-factors in a petrochemical enterprise.
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2.2.1. The Fuzzy Positive Reciprocal Matrix

Assume Ã = (̃ai j)n×n is a fuzzy positive reciprocal matrix, where ãi j =
(
li j, mi j, ui j

)
is a TFN where

[
li j, mi j, ui j

]
=

 [1, 1, 1], i f i = j
1

ui j
, 1

mi j
, 1

li j
, i f i , j. (1)

For ease of explanation, let A(k) = [a(k)i j ]
n×n

, k = 1, 2, . . . , m, represent the pairwise comparison matrix
of m interviewers. Then, these pairwise comparison matrices are integrated into the fuzzy positive
reciprocal matrix as follows:

Ã =
(̃
ai j

)
n×n

, (2)

where ãi j = [min1≤k≤12{a
(k)
i j }, (

∏12
k=1 a(k)i j )

1
12 , max1≤k≤12{a

(k)
i j }] (i = 1, 2, . . . , n, j = 1, 2, . . . , n and k = 1, 2,

. . . , m) is a TFN.
Based on the arithmetic operation rules for fuzzy numbers [49], the fuzzy positive reciprocal

matrix Ã =
(̃
ai j

)
n×n

, can be described as follows:

ãi j =

{
[1, 1, 1], i f i = j
(̃ai j)

−1, i f i , j
(3)

2.2.2. Consistency Tests of FAHP

In order to obtain objective and reasonable expert decision results, the consistency of a fuzzy
positive reciprocal matrix must be tested. Thus, a fuzzy positive reciprocal matrix needs to be converted
into a crisp matrix. There are many defuzzification methods for obtaining a crisp number from
a TFN [51].

In this study, Buckley’s method is applied to defuzzify a fuzzy number. In this method,
the geometric mean operations are used to defuzzify a fuzzy number, and this operation can convert
the fuzzy positive reciprocal matrix into a crisp matrix. Then the traditional AHP is used to test
the consistency of a crisp matrix. As a result, the fuzzy numbers ãi j =

(
li j, mi j, ui j

)
in the Ã can be

defuzzified as follows:

ãi j = (li j, mi j, mi j, ui j)
1
4 , i = 1, 2, . . . , n, j = 1, 2, . . . , n (4)

In order to test the consistency of a positive reciprocal matrix, the consistency index (CI) and
consistency ratio (CR) are introduced and computed; they are defined as follows [32]:

CI =
λmax − n

n− 1
(5)

CR =
CI
RI

, (6)

where λmax is the maximum eigenvalue of the matrix, n is the dimension of the matrix, and RI represents
a random index, shown in Table 1. Saaty proposed that CI ≤ 0.1 and CR ≤ 0.1 are acceptable ranges.

Table 1. The random consistency index.

N 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.09 1.12 1.24 1.32 1.41 1.45

If CR > 0.1, the experts need to modify their decision. This step should be repeated until all
experts’ decisions are consistent.
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2.2.3. The Local Weights of All the Factors and Sub-Factors

Based on the special structure of the positive reciprocal matrix A, we applied the Normalization
of the geometric mean of the rows (NGMR) method to calculate the local weights [32]. According to
the arithmetic operations of fuzzy numbers [52], the geometric means of the TFNs for the ith factors
can be given as follows:

g̃i = (
n∏

j=1

ãi j)

1
n

=

(
n∏

j=1

li j)

1
n

, (
n∏

j=1

mi j)

1
n

, (
n∏

j=1

ui j)

1
n
, i = 1, 2, . . . , n. (7)

According to Equation (5), we have:

n∑
i=1

g̃i =


n∑

i=1

(
n∏

j=1

li j)

1
n

,
n∑

i=1

(
n∏

j=1

mi j)

1
n

,
n∑

i=1

(
n∏

j=1

ui j)

1
n
, i = 1, 2, . . . , n. (8)

The fuzzy weight of the ith factors (i = 1, 2, . . . , n) can be expressed as follows:

w̃i =
g̃i∑n

i=1 g̃i
=


 (

∏n
j=1 li j)

1
n∑n

i=1 (
∏n

j=1 ui j)
1
n

,

 (
∏n

j=1 mi j)
1
n∑n

i=1 (
∏n

j=1 mi j)
1
n

,

 (
∏n

j=1 ui j)
1
n∑n

i=1 (
∏n

j=1 li j)
1
n


, i = 1, 2, . . . , n. (9)

2.2.4. The Defuzzification Process

Since the local weight Wi of the ith SA (i = 1, 2, . . . , n) is fuzzy, this study applied Yager’s
index to defuzzify it and convert a fuzzy number w̃i into a crisp number Wi, (i = 1, 2, . . . , n) [53].
Let w̃i =

[
lwi , mw

i , uw
i

]
, where

[
lwi , mw

i , uw
i

]
=


 (

∏n
j=1 li j)

1
n∑n

i=1 (
∏n

j=1 ui j)
1
n

,

 (
∏n

j=1 mi j)
1
n∑n

i=1 (
∏n

j=1 mi j)
1
n

,

 (
∏n

j=1 ui j)
1
n∑n

i=1 (
∏n

j=1 li j)
1
n


, i = 1, 2, . . . , n. (10)

The Yager’s index for the w̃i can be defined as follows [53]:

wi =
lwi + 2mw

i + uw
i

4
, i = 1, 2, . . . , n. (11)

Via normalization of wi, the normalized local weight of the ith factors can be expressed as follows:

ωi =
wi∑n

i=1 wi
, i = 1, 2, . . . , n. (12)

2.3. Calculation of the Factors and Sub-Factors Weights Using Original AHP

AHP is a structured, traditional technique for integrating and analyzing multiple expert opinions.
Hence, in this study, original AHP is applied for the calculation of the weight values and the integration
of group decisions.
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2.3.1. Establishment of Judgment Matrices

The relative importance of the factors is scored by experts, and the scored results are used to
construct a judgment matrix of the factors and sub-factors. To this end, Saaty’s method is employed
for pairwise comparisons, divided into 1–9 [32]. Thus, a reasonable judgment matrix C is established:

C = (ai j)n×n =


a11 a12 · · · a1n
a21 a22 · · · a2n

· · · · · · · · · · · ·

an1 an2 · · · ann


where aij (i, j = 1, 2, . . . , n) is the importance pairwise comparison result of the ith and jth factors, and n
is the number of factors. The judgment matrix C satisfies aij > 0, aji = 1/aij, and aii = 1.

2.3.2. Weight Calculation and Consistency Check

(1) Each row of the judgment matrix can be normalized:

bi j =
ai j∑n

i=1 ai j
(i, j = 1, 2, . . . , n). (13)

(2) Each column of the normalized judgment matrix is summed:

wi =
i∑

j=1

bi j. (14)

(3) The weight vector W = (W1, W2, . . . , Wn) is normalized:

w̃i =
Wi j∑n
i=1 Wi

. (15)

(4) The maximum eigenvalues of the judgment matrix are calculated:

λmax =
n∑

i=1

(AW)i
nWi

(16)

2.3.3. Consistency Tests of AHP

In order to test the consistency of a judgment matrix, the consistency index (CI) and consistency
ratio (CR) are introduced and computed; they are defined as above Equations (5) and (6).

The same principle as Section 2.2.2, Saaty proposed that CI ≤ 0.1 and CR ≤ 0.1 are acceptable
ranges. If CR > 0.1, the experts need to modify their decision. This step should be repeated until all
experts’ decisions are consistent.

2.4. Fuzzy Comprehensive Evaluation

2.4.1. Evaluation Factor Set

U = {U1, U2, . . . , Um} (17)

The factors Ui (i = 1, 2, . . . , m) denote different influencing factors of the assessment object.
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2.4.2. Evaluation Result Set

The evaluation factor set is composed of the different evaluation results of the assessment object,
which is generally described by fuzzy language. The evaluation result set can be expressed as follows:

V = {V1, V2, . . . , Vn}. (18)

In this study, the evaluation result can be divided into five classifications, as follows (n = 5): V1:
very high, V2: high, V3: average, V4: low, V5: very low.

2.4.3. Fuzzy Relation Matrix R

Firstly, the single factor evaluation is to be established as below:
Assume an evaluation result set V = {V1, V2, . . . , V5} and its corresponding scores are as shown

in Table 2.

Table 2. Evaluation set and its corresponding scores.

Grade Very High High Average Low Very Low

score P5 P4 P3 P2 P1
value 5 4 3 2 1

Suppose there are N participants in the questionnaire sample X and the participant number
set corresponding to each rating level is Nij = (Nij1, Nij2, Nij3, Nij4, Nij5),

∑5
k=1 Ni jk = N, then the

single-factor evaluation from uij to the evaluation result set V is shown as follows:

Ri j =
(
ri j1, ri j2, ri j3, ri j4, ri j5

)
(19)

ri jk =
pk·Ni jk∑5

k=1 pk·Ni jk
, i = 1, 2, . . . , 5, j = 1, 2, . . . , ni (20)

where
∑5

k=1 ri jk = 1. Then, the fuzzy relation matrix is to be established. According to the single-factor
evaluation established in the previous step, the fuzzy relation matrix can be expressed as below:

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...
rm1 rm2 · · · rmn

, (21)

where R represents the fuzzy relationship between the factor set U and evaluation result set V.

2.4.4. Fuzzy Comprehensive Evaluation

The FAHP is applied to determine the weight values W. Thus, the fuzzy relation matrix R can be
used to construct the FCE model:

B = W·R = (a1, a2, . . . , am)


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...
rm1 rm2 · · · rmn

 = (b1, b2, . . . , bn) (22)

The FCE results can be calculated by multiplying the weight set W and the fuzzy relation matrix
R. After normalization, the calculated standard evaluation result is B.
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3. A Petrochemical Enterprise Application

3.1. The Weights of Factors and Sub-Factors

Due to a growing awareness of the increasing importance of BBS, the Chinese petroleum industry
has applied more BBS practices to their management processes, which creates some benefits for the
enterprises. Thus, to better understand BBS practices in the Chinese petrochemical industry, this paper
selected a well-known petroleum enterprise in the east of China as an empirical study. This petroleum
enterprise includes an administrative service division, oil production crew, geological team, oil and
gas gathering team, and hydropower team.

3.2. Questionnaire Design

This study, based on the literature on BBS [54–58], safety climate, and process safety,
considers industrial characteristics of the petroleum industry and organizes items to interview
employees about their attitudes to safety. The survey and interview results provide a reasonable
scientific reference for questionnaire design. However, different groups may have various perceptions
of safety attitudes. Perceptions of the behaviors and attitudes of senior managers are associated with
the safety operation behaviors of employees [59]. The opinions and behavior of top management
influence employees’ views about safety policies. Top and middle management may have a limited
understanding of the safety attitudes of grass-roots employees [60]. Furthermore, there may be different
perceptions between horizontal departments. The hierarchy of the case study consists of five factors
and 19 sub-factors, as shown in Figure 1.Sustainability 2019, 11, x FOR PEER REVIEW 8 of 20 
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3.3. Calculating the Weight of the Factors Using FAHP

In order to calculate the factor and sub-factor weights, the senior and middle management of
the petrochemical enterprise were surveyed. In this study, an AHP questionnaire with a nine-point
rating scale is designed to measure their preference for each factor. Furthermore, with the help
of an experienced researcher, 12 groups of 36 experienced senior and middle managers, scholars,
and employees in China have also been interviewed and answered the AHP questionnaire. In the
next stage, the manager, experts, and scholars, based on their experiences, used pairwise criteria to
weight the factors and sub-factors. To enhance the validity of the questionnaire, this study employed
an interview survey rather than a questionnaire to fill in.

3.3.1. The Local Weights of All the Factors Using FAHP

After that, the local weights of all the factors and sub-factors were obtained based on the method
proposed in Section 2.2. Taking the first-layer data as an example, based on Equation (2), the fuzzy
positive reciprocal matrix A was obtained as follows:

A1 =




[1.0000 1.0000 1.0000]
[0.1429 0.8613 7.0000]
[0.1667 1.5551 5.0000]
[0.2000 0.4860 4.0000]
[0.1429 1.0819 6.0000]




[0.1429 1.1610 7.0000]
[1.0000 1.0000 1.0000]
[0.1667 1.7285 5.0000]
[0.2500 0.5692 4.0000]
[0.3333 1.4628 6.0000]




[0.2000 0.6430 6.0000]
[0.2000 0.5785 6.0000]
[1.0000 1.0000 1.0000]
[0.2000 0.3998 5.0000]
[0.2000 0.6941 5.0000]


[0.2500 2.0576 5.0000]
[0.2500 1.7567 4.0000]
[0.2000 2.5014 5.0000]
[1.0000 1.0000 1.0000]
[0.2500 1.7970 7.0000]




[0.1667 0.9243 7.0000]
[0.1667 0.6836 3.0000]
[0.2000 1.4407 5.0000]
[0.1429 0.5565 4.0000]
[1.0000 1.0000 1.0000]





.

According to Equation (4), the Ã1 can be defuzzified as follows:

A1 =


1.0000 1.0776 0.8393 1.5167 0.9992
0.9281 1.0000 0.7961 1.3254 0.6953
1.1915 1.2562 1.0000 1.5816 1.2003
0.6593 0.7545 0.6323 1.0000 0.6486
1.0009 1.4383 0.8331 1.5418 1.0000


.

By using Equations (5) and (6), CI = 0.0028, CR = 0.0025 < 0.1. This shows that A has satisfactory
consistency. Then, the CR values for all the positive reciprocal matrixes of the sub-factors can be
obtained (the operation method is the same as that applied in Table 1). Finally, due to all of the CR
values being confirmed to be less than 10%, the consistency in each positive reciprocal can be accepted.

In the example of A, the geometric mean of triangular fuzzy numbers g̃i, (i = 1, 2, . . . , 5) is obtained
via Equation (7): 

g̃1
g̃2
g̃3
g̃4
g̃5


=


[0.2601 1.0726 4.3000]
[0.2601 0.9024 3.4713]
[0.2566 1.5748 3.6239]
[0.2698 0.5726 3.1698]
[0.2988 1.1457 4.1694]


.

From Equation (8), we have
5∑

i=1

g̃i = [1.3454, 5.2682, 18.7343].
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Then, the w̃i for the ith factor (i= 1, 2, . . . , n) can be obtained via Equation (9):
w̃1

w̃2

w̃3

w̃4

w̃5


=


[0.0139 0.2036 3.1961]
[0.0139 0.1713 2.5801]
[0.0137 0.2989 2.6936]
[0.0144 0.1087 2.3560]
[0.0159 0.2175 3.0990]


.

3.3.2. The Defuzzification Process

In the example of A, wi and ωi (i = 1, 2, . . . , 5) can be calculated by Equations (11) and (12):
w1

w2

w3

w4

w5


=


0.7234
0.5873
0.6610
0.5176
0.7100


=⇒


ω1

ω2

ω3

ω4

ω5


=


0.2216
0.1836
0.2066
0.1618
0.2219


.

where ωi (i = 1, 2, . . . , 5) are the weights of the factors.
Similarly, using the same method, the weights of the sub-factors can also be obtained as in Table 3.

Table 3. Global weights for sub-factors.

Factors and Sub-Factors Local Weight Global Weight Rank

Safety communication U1/C1 0.2261/0.3479
Corporate frequency and intensity of safety training U11/C11 0.2248/0.1334 0.0508/0.0464 12/6

Awareness degree of safety regulations U12/C12 0.2729/0.4208 0.0617/0.1464 6/2
Knowledge degree about current position’s risks and dangers U13/C13 0.2768/0.3295 0.0626/0.1146 5/4

Cognition degree of following safety operation U14/C14 0.2255/0.1163 0.0510/0.0405 11/8
Management support U2/C2 0.1836/0.0733

Corporate improvement degree of safety production plans U21/C21 0.2130/0.1597 0.0391/0.0117 16/15
Improvement degree of safety production regulations U22/C22 0.2323/0.1315 0.0427/0.0096 15/16

Corporate reward and punishment of safety production U23/C23 0.1699/0.0756 0.0312/0.0055 19/18
Corporate funding investment of safety production U24/C24 0.1983/0.2424 0.0364/0.0178 17/13

Corporate supervision of safety production U25/C25 0.1866/0.3908 0.0343/0.0286 18/11
Psychosocial safety behavior U3/C3 0.2066/0.3368
Personal attention at work U31/C31 0.3761/0.1047 0.0777/0.0353 1/9

Performance of workers in daily safety production U32/C32 0.3084/0.6370 0.0637/0.2145 4/1
Personal psychological quality U33/C33 0.3154/0.2583 0.0652/0.0870 3/5

Organizational environment U4/C4 0.1618/0.1875
Corporate atmosphere of safety culture U41/C41 0.3350/0.2430 0.0542/0.0456 8/7

Comfort level of working space U42/C42 0.3029/0.6255 0.0490/0.1173 13/3
Abrasion of manufacturing facilities U43/C43 0.3622/0.1315 0.0586/0.0247 7/12

Physical safety behavior and competency U5/C5 0.2219/0.0545
Personal physical health U51/C51 0.2341/0.0580 0.0519/0.0032 9/19
Fatigue degree at work U52/C52 0.2316/0.5262 0.0514/0.0287 10/10

Proficiency degree in safety operation U53/C53 0.2207/0.1308 0.0490/0.0071 14/17
Corporate funding investment of safety production U54/C54 0.3135/0.2851 0.0696/0.0155 2/14

3.3.3. Calculation of the Global Weights of Sub-Factors

The global weights of sub-factors can be obtained by multiplying the local weights of the sub-factor
by the weights of the factor to which they belong. The results are shown in Table 3.

3.4. Calculating the Weight of the Factors Using AHP

3.4.1. The Local Weights of All the Factors Using AHP

In Section 3.3, an AHP questionnaire is designed to measure the preference for each factor. Twelve
groups of 36 experienced senior and middle managers, scholars, and employees have been interviewed
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and answered the AHP questionnaire. In this study, we employed an interview survey rather than a
fill-in questionnaire.

C =


1 7 0.5 3 5

0.1429 1 0.2 0.5 2
2 5 1 1 4

0.3333 2 1 1 4
0.2 0.5 0.25 0.25 1


According to Equations (13)–(16), the weights Ci (i = 1, 2, . . . , 5) can be calculated as follows:

C1

C2

C3

C4

C5


=


0.3479
0.0733
0.3368
0.1875
0.0545


.

CR = 0.0801 < 0.1 is calculated using Equations (5)–(6). The weight distribution of the comparison
matrix is reasonable, and has satisfactory consistency.

Similarly, using the same method, the weights of the sub-factors can also be obtained as in Table 3.

3.4.2. Calculation of the Global Weights of Sub-Factors Using AHP

Similarly, using the same method as in Section 3.3.3, the global weights of sub-factors can also be
obtained as in Table 3.

4. Fuzzy Comprehensive Evaluation

Firstly, the petroleum enterprise’s leader was formally informed that we were requesting assistance
with administering this questionnaire survey. The leader assigned 10 administrative assistants to
distribute the questionnaire to employees. Before all the employees were asked to filled out the
questionnaire, they were provided with an introduction to human factors and safety behaviors since
the purpose of this study is to assess and improve employees’ safety behaviors and attitudes. Thus,
the more common agree/disagree rating scale was used to survey employees—it adopts a five-point
Likert scale to collect questionnaire data (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree,
and 5 = strongly agree) [61].

Secondly, in the first survey, a total of 611 questionnaires were distributed to employees,
yielding 532 valid questionnaires. According to the results of the questionnaire, employee operational
behavior was observed and guided based on the application of the BBS approach in the oilfield
enterprise. After a period of time, a second survey was issued. In the second survey, a total
of 683 questionnaires were distributed to employees, yielding 631 valid questionnaires. Finally,
the membership matrix was calculated based on the valid questionnaire data and Equations (19)–(21):

RA1 =


0.0000 0.0018 0.0572 0.5572 0.3838
0.0004 0.0000 0.0222 0.3021 0.6753
0.0004 0.0000 0.0595 0.3241 0.6160
0.0000 0.0000 0.0517 0.4425 0.5058



RA2 =


0.0000 0.0026 0.0634 0.4982 0.4357
0.0000 0.0017 0.0543 0.4272 0.5168
0.0000 0.0018 0.0580 0.5077 0.4326
0.0000 0.0000 0.0320 0.4501 0.5179
0.0000 0.0009 0.0230 0.4670 0.5092
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RA3 =


0.0018 0.0123 0.0608 0.4229 0.5022
0.0000 0.0018 0.0877 0.5416 0.3689
0.0014 0.0101 0.0990 0.5298 0.3598


RA4 =


0.0009 0.0018 0.1022 0.5893 0.2968
0.0080 0.0066 0.1137 0.5091 0.3627
0.0000 0.0009 0.0570 0.4408 0.5013


RA5 =


0.0014 0.0090 0.0976 0.4738 0.4182
0.0004 0.0017 0.0808 0.3873 0.5297
0.0004 0.0000 0.0544 0.3321 0.6131
0.0004 0.0000 0.0594 0.4112 0.5290


RB1 =


0.0000 0.0000 0.0308 0.3805 0.5888
0.0000 0.0000 0.0319 0.2428 0.7253
0.0000 0.0000 0.0590 0.3562 0.5848
0.0000 0.0000 0.0508 0.4138 0.5353



RB2 =


0.0067 0.0000 0.0759 0.3887 0.5287
0.0007 0.0000 0.0431 0.4098 0.5464
0.0004 0.0000 0.0394 0.4965 0.4637
0.0043 0.0000 0.0475 0.3486 0.5996
0.0007 0.0000 0.0188 0.3359 0.6446


RB3 =


0.0000 0.0007 0.1058 0.3481 0.5454
0.0000 0.0000 0.1058 0.5019 0.3923
0.0000 0.0023 0.1385 0.3527 0.5066


RB4 =


0.0000 0.0008 0.1499 0.4833 0.3660
0.0000 0.0000 0.1457 0.5144 0.3399
0.0004 0.0000 0.0957 0.3683 0.5356


RB5 =


0.0007 0.0000 0.0802 0.3987 0.5203
0.0004 0.0015 0.0981 0.3616 0.5384
0.0000 0.0000 0.0584 0.3968 0.5447
0.0000 0.0000 0.0552 0.4943 0.4505


where RA1–5 and RB1–5 represent the membership matrices of the first and second evaluation,
respectively. Taking the membership matrix RA1 as an example, based on Table 2 (N11 = 0, 2, 43, 314,
173) and Equations (19) and (20), RA1 = (0.0000, 0.0018, 0.0572, 0.5572, 0.3838) with pi, (i = 1, 2, . . . , 5).
The membership matrices are calculated based on the two sets of survey data.

From the membership matrices obtained above, we can determine the first-layer FCE results for
the two surveys. The first-layer FCE result is calculated according to each sub-factor weight Wi and
each corresponding membership matrix Ri of the U layer based on Equation (22):

SA1 = ωU1 ×RA1 = (0.2248, 0.2729, 0.2768, 0.2255) ×


0.0000 0.0018 0.0572 0.5572 0.3838
0.0004 0.0000 0.0222 0.3021 0.6753
0.0004 0.0000 0.0595 0.3241 0.6160
0.0000 0.0000 0.0517 0.4425 0.5058


= (0.0002, 0.0004, 0.0470, 0.3972, 0.5551).

Similar to the SA1 calculation, the calculation results of other membership degrees can be obtained
as shown in Table 4.
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Table 4. Calculation results of membership degree.

Index Very High (5) High (4) Average (3) Low (2) Very Low (1)

SA1/SB1 0.5551/0.6129 0.3972/0.3437 0.0470/0.0434 0.0004/0.0000 0.0002/0.0000
SA2/SB2 0.4841/0.5575 0.4680/0.3942 0.0466/0.0458 0.0014/0.0000 0.0000/0.0026
SA3/SB3 0.4161/0.4859 0.4932/0.3969 0.0811/0.1161 0.0084/0.0010 0.0011/0.0000
SA4/SB4 0.3909/0.4196 0.5143/0.4511 0.0893/0.1290 0.0029/0.0003 0.0027/0.0001
SA5/SB5 0.5217/0.5079 0.4028/0.4196 0.0722/0.0717 0.0025/0.0003 0.0006/0.0003

SA1–5 and SB1–5 represent the first-layer fuzzy comprehensive results of the first and second
evaluations, respectively.

We constructed a fuzzy relationship matrix RA and RB from the SA1–5 and SB1–5 as follows:

RA =


0.0002 0.0004 0.0470 0.3972 0.5551
0.0000 0.0014 0.0466 0.4680 0.4841
0.0011 0.0084 0.0811 0.4932 0.4161
0.0027 0.0029 0.0893 0.5143 0.3909
0.0006 0.0025 0.0722 0.4028 0.5217



RB =


0.0000 0.0000 0.0434 0.3437 0.6129
0.0026 0.0000 0.0458 0.3942 0.5575
0.0000 0.0010 0.1161 0.3969 0.4859
0.0001 0.0003 0.1290 0.4511 0.4196
0.0003 0.0003 0.0717 0.4196 0.5079


According to Equation (22) and the factors’ weight values, the result of the second-layer

comprehensive evaluation is as follows:

B1 = ωi·RA = (0.2261, 0.1836, 0.2066, 0.1618, 0.2219)


0.0002 0.0004 0.0470 0.3972 0.5551
0.0026 0.0014 0.0466 0.4680 0.4841
0.0011 0.0084 0.0811 0.4932 0.4161
0.0027 0.0029 0.0893 0.5143 0.3909
0.0006 0.0025 0.0722 0.4028 0.5217


= (0.0008, 0.0031, 0.0664, 0.4502, 0.4794)

B2 = ωi·RB = (0.2261, 0.1836, 0.2066, 0.1618, 0.2219)


0.0000 0.0000 0.0434 0.3437 0.6129
0.0026 0.0000 0.0458 0.3942 0.5575
0.0000 0.0010 0.1161 0.3969 0.4859
0.0001 0.0003 0.1290 0.4511 0.4196
0.0003 0.0003 0.0717 0.4196 0.5079


= (0.0006, 0.0003, 0.0790, 0.3982, 0.5219),

where B1 and B2 represent the FCE results of the first and second evaluations, respectively.

5. Discussion and Analysis of the Results

5.1. Weight Analysis

5.1.1. Comparison Between the Weight of FAHP and AHP

To further verify the reasonableness of the proposed FAHP, comparisons between the global
weight values from the FAHP and AHP calculations are performed in Figure 2. The global weight
is calculated by AHP, shown in red. In Figure 3, it is easy to see that the calculation results of AHP
fluctuate greatly and reflect major differences. For example, the difference between U12 and U51 is
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0.2113. Therefore, the method not only produces great differences in weight distribution, but also has
a strong subjective influence on experts’ preferences. However, the global weight values calculated
by FAHP are shown in blue. The calculation results of FAHP point to consistent weight distributions
and small differences, such as U31 (0.0777) and U23 (0.0312)—the difference between them is 0.0465.
The results show that this method is less affected by the subjective preferences of experts.
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5.1.2. Analysis of the Global Weights Based on FAHP

As shown in Figure 2, personal attention at work (U31), corporate funding investment of safety
production (U54), personal psychological quality (U33), and the performance of workers in daily safety
production (U32) have the greatest impact. Conversely, corporate improvement of the degree of safety
production plans (U21), corporate funding investment of safety production (U24), corporate supervision
of safety production (U25), and corporate reward for, and punishment of safety production (U23) have
less influence and are overlooked factors.

In Figure 2, we also rank the global weights of (Uij) from large to small according to their values
in Table 3. Based on the above analysis, it is clear that the main overlooked factors (U4) and sub-factors
(especially U24, U25, and U23) are potential risk factors. These may lead to occupational injuries and
accidents in the petroleum enterprise. Thus, it is necessary to use the BBS approach to improve the
overlooked factors.

5.2. Comparing the Data of the Oil Industry and Human Assessment (FAHP)

5.2.1. Annual Accident and Occupational Injury Statistics Reported in RMP Databases

Federal regulations demand that industrial enterprises file a Risk Management Plan with the
United States Environmental Protection Agency [62]. The information is then stored in a national
information system, called the Risk Management Program (RMP) database. The RMP database
includes information on occupational injuries and accidents reported by the chemical and oil sectors
of the processing industry. Furthermore, the information must report consequences such as injuries,
evacuation, deaths, and property damage [63].

Consequently, driven by the motivation to reduce occupational injury and accidents in the oil
industry, this paper uses the RMP databases to analyze accidents and their consequences. Based on the
data from the RMP from 1994 to 2009, three waves of reported accidents were studied collectively in
order to understand the accident profile.

Table 5 shows the proportion of accidents deriving from oil- and chemical-related processing
versus the total petrochemical accidents in the RMP database. In general, oil accidents only account
for about 28%, and significant consequences, such as death, are equally prevalent in oil and chemical
processing accidents. About 55% of accidents leading to mass evacuation and shelter in place are
oil-related accidents.

Table 5. RMP database showing the percentage of oil and chemical incidents versus the total
petrochemical accidents.

Consequence Total Petrochemical Chemical %Petroleum %Chemical

Accidents reported 2528 707 1821 28 72
Fatalities 87 44 43 51 49

Total Injuries 2725 961 1764 35 65
Hospitalization & Treatment 9475 1806 7669 19 81
Evacuation & Shelter in place 563,015 308,561 254,454 55 45

Table 5 also shows that the consequences of oil-related accidents are more severe than those of
chemical accidents. As a result, oil refineries must take safety measures because, even if there are fewer
accidents, their consequences will be worse.

5.2.2. The Different Initiating Causes of Oil Accidents in the RMP Database

Figure 3 shows the different causes leading to oil accidents in the RMP database. Equipment
failures account for about 58% of total accidents, with human error resulting in about 37% of all
oil-related accidents. Accidents that occur due to unknown and natural causes account for 3% and
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2%, respectively. Therefore, the major cause of accidents in the oil industry is equipment failure,
followed by human error.

5.2.3. The Data on Occupational Injuries and Accidents, Compared with Human Assessment

Figure 3 shows the different causes leading to oil accidents, in which equipment failure caused by
abrasion and product quality may be major. To some degree, this is inevitable. However, human error
is completely avoidable. The oil industry can reduce the occurrence of human error by means of BBS,
bottom-up safety communication, and improvement of the safety climate. In this paper, about 37% of
the human factor is analyzed in detail and ranked to find the most important factors, so as to reduce
the safety accidents caused by human error.

As shown in Figure 4, about 37% of the human factor is divided into five parts, including safety
communication (U1), management support (U2), psychosocial safety behavior (U3), organizational
environment (U4), and physical safety behavior and competency (U5). The weights of factors and
sub-factors were obtained by using the FAHP method. Safety communication (U1) represents the
highest influence on the safety performance among all five factors, followed by physical safety behavior
and competency (U5), psychosocial safety behavior (U3), management support (U2), and organizational
environment (U4). Thus, employees’ psychological behavior (U2) and safety education (U4) are the
overlooked factors that should be improved to achieve better safety performance.
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In conclusion, the weighted results are obtained after group discussions with experts, scholars,
and managers, and the key human factors causing oil industry accidents are determined based on
their weight ranking. Furthermore, the analysis of the weight values indeed provides reasonable,
scientific guidance for the relevant leaders, operators, and managers. The approach can also be applied
to the safety performance assessment of other industries and areas.

5.3. Comprehensive Analysis of Results

The results of the first FCE show that the probability of very high safety performance is 0.4580,
and the probabilities of high, average, low, and very low are 0.4601, 0.0775, 0.0026, and 0.0021,
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respectively. In line with the maximum membership degree principle, the FCE result for the safety
performance is very high. The result of the second FCE shows that the probability of very high safety
performance is 0.4836, and the probabilities of high, average, low, and very low are 0.4523, 0.0626,
0.0010, and 0.0008, respectively. In line with the maximum membership degree principle, the FCE result
for the safety performance is very high. Due to the final value of the second evaluation being higher
than that of the first one, the second one is better. The compared FCE results are given in Figure 5.
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Figure 5 shows that the safety performance of the second FCE is superior to that of the first
assessment. In addition, the safety behaviors and psychology of the employees improved following
bottom-up safety communication and BBS reinforcement. Meanwhile, the FCE results indicate the
current safety performance level to help leaders and managers with preventing potential accidents.
Safety performance postintervention levels were better than for the first FCE results. As a matter of
fact, the numbers of occupational injuries and days away decreased.

6. Conclusions

In China, human factors are more common than equipment failure in oil industry accidents,
but often lead to more serious consequences. Many employees have been killed in oil industry
accidents over the past decade. In addition, hundreds of employees are dying of chronic occupational
disease or are disabled for life. The purpose of this study was to establish a safety assessment
model for petrochemical enterprises as well as to guide management in developing bottom-up safety
communication with employees. According to the results of this study, the conclusions are as follows:

(1) The oil industry has made obvious progress in the field of environmental protection,
safety management, and social responsibility in recent years. However, there is still much
room for improvement in terms of sustainable safety development. Human factors are often
defined as the root cause of incidents leading to oil accidents. The oil industry is becoming more
employee-centered and must make efforts to improve safety performance.

(2) This study shows the importance of human factors to sustainable safety development in the
oil industry. Based on the industry investigation and literature review, bottom-up safety
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communication would reduce the incidence of accidents in the oil industry. In conclusion,
safety performance improvements are likely to be more efficient when employees are aware
that their behaviors and psychology are also being observed and evaluated. Therefore, we can
conclude that most oil accidents can be prevented by bottom-up safety communication, especially
safety training of operators.

(3) This paper proposes a comprehensive safety performance assessment model based on human
factors, FAHP, and FCE. Experts; knowledge and experience are systematically combined to
determine the weight of factors and sub-factors based on FAHP. Weight ranking can also help
leaders and managers with their safety strategy, reducing potential risk factors by implementing
the BBS approach. Furthermore, the combined method can also be applied in the chemical and
gas industry.

7. Limitations of the Method

Owing to research limitations, the assessment model cannot include all categories of human factors.
Second, there is a lack of a standardized database system to analyze and assess the obtained behavior
data. Thus, incorrect data may be entered or summarized. Finally, if the safety communication and
behavioral interventions are removed, the effects of the existing BBS approach will be unsustainable.
As a result, it is our sincere hope that future researchers will develop human factors and other behavioral
science approaches to improve sustainable development and the safety performance in the oil industry.
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