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Abstract: A transportation service must be sustainable, respectful of the environment, and socially
and economically responsible. These requirements make metro networks the ideal candidate as
the most efficient mean of transport in our society. Now, a correct management of this type of
infrastructures entails the analysis of the structure and robustness of these networks. This allows
us to detect malfunctions and, above all, to design in the most appropriate way the expansion of
subway networks. This is one of the major challenges facing the study of transport networks in
sustainable smart cities. In this sense, the complex network analysis provides us with the necessary
scientific tools to perform both quantitative and qualitative analysis of metro networks. This work
deals with Madrid metro network, which is the largest in Spain. The main structural and topological
characteristics, and robustness features of Madrid metro network were studied. The results obtained
were analyzed and some conclusions were derived.

Keywords: complex network analysis; subway networks; centrality measures; robustness;
Madrid metro network

1. Introduction

One of the central pillars on which sustainability is based is the design and implementation of
procedures that allow us to manage in an efficient way the public resources, services and infrastructures.
Among them, public transport systems and, more precisely, urban rail transit systems, constitute the
paradigmatic example in which sustainability and development must coexist efficiently.

The design of efficient public urban transportation plans has a huge social, economic and
environmental impact. Urban transport networks (bus networks, subway networks, light rail
networks, etc.) are a backbone of society and one of the pillars on which the paradigm of sustainable
smart cities is sustained. Currently, one of the major concerns is the efficient management of such
transportation networks. As these infrastructures can be mathematically modeled in terms of graphs,
the complex network analysis plays a very important role in their study. Usually, L-space configuration
is used when representing metro networks as graphs. In this case, stations stand for the nodes of the
graph and direct rail connections between them define the edges. Depending on the role played by
the associated station, every node of the network can be classified into three classes (which are not
necessarily disjointed compartments): monotonic nodes, transfer nodes and termini nodes. Monotonic
nodes are those that belong to only one metro line, transfer nodes belong to (at least) two lines of the
metro network, and finally termini nodes are the end stations of each line. Transfer and termini nodes
are also called diatonic nodes.

There are alternative ways to represent metro networks in terms of graph theory. For example,
the reduced L-space configuration is obtained from the standard L-space when the monotonic
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non-transfer stations are removed. The P-space representation is obtained when the nodes of the graph
stand for the stations and there exists an edge between two nodes when these nodes belong to the
same metro line. In addition, in the C-space configuration, the nodes represent the subway lines and
there exists an edge between two nodes if the associated lines share, at least, one station.

This work tackles the analysis of a subway network. Metro networks have a characteristic
that distinguish them from other urban transport networks—such as bus networks: it is practically
impossible to restructure the already built network. Consequently, the knowledge about the structural
properties and robustness characteristics of such transport networks play a fundamental role in the
optimization of resources (both, material and economic) for its efficient maintenance. In this way, it is
necessary to identify the stations and links of major structural importance within the whole network
and whose malfunction modifies its robustness. Furthermore, this analysis is also extremely interesting
when the expansion of metro network is tackled. We focus our attention on Madrid metro network,
which is the largest in Spain not only because of the number of stations (243) but also because of its total
length (294 km) and the number of passengers (during 2017, 626.4 million people used it—2.3 million
on working days—and about 687 million passengers in 2018). Madrid metro network will face in the
coming years its remodeling and expansion (due to the urban growth). Consequently, it is mandatory
to have studies and analysis for making decisions about the efficient and sustainable management of
the existing network and the location of new stations.

The mathematical analysis of transport networks is an old issue [1], although it has gained
great popularity and attention in the last years. In these studies, the complex network analysis plays
an important role [2] and they focus the attention not only on subway networks but also on bus
networks [3,4] and on road networks [5,6]. In the case of subway networks, several works have been
published in the scientific literature. Some of them study specific characteristics: for example, in [7],
the analysis of the betweenness centrality associated to the reduced L-space topology of 32 metro
networks in the world is shown; the analysis performed in [8] reveals two related classes of complex
networks that can be approximated by an evolutionary complex network with an associated degree
distribution; or, in [9], the authors proposed an alternative methodology (different from L-space or
P-space approaches) to represent the topology of subway networks and the main coefficients are
computed and compared in the case of Nanjing (China). Furthermore, the analysis of robustness of
metro networks against different type attacks has also been presented in some works: for example,
the transport capacity and the local and global connectivity of Shanghai, Beijing and Guangzhou
metro networks are computed and analyzed in [10]; in [11], some centrality measures considering the
passengers flow are analyzed considering relative disruption probability of each subway line and this
study is applied in the case of Shanghai metro network; etc.

As far as we know, there is no detailed study on the structural and robustness characteristics of
Madrid metro network considering the L-space topology. This is precisely the main goal of this work
and one of the most important contributions apart from the novel study of the robustness of the metro
network considering as a basis the notion of metro lines. In this paper, the most important centrality
measures, structural coefficients and robustness indicators of this subway network are analyzed. These
provide us sufficient knowledge to draw conclusions about the structural robustness of Madrid metro
network.

The rest of the paper is organized as follows. In Section 2, the basics of complex network analysis
are shown, the computation and the analysis of the main structural coefficients and parameters of
Madrid metro subway are introduced in Section 3. Section 4 is devoted to the study of its robustness.
Finally, the conclusions and further work are presented in Section 5.

2. The Basics of Complex Network Analysis

In this study, we considered the L-space representation of the network, thus the stations of the
subway network were represented by nodes of a graph and the tracks connecting two stations were
represented by edges of the graph. Therefore, the subway network was represented by a undirected
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graph G = (V, E) where V = {v1, v2, . . . , vN} is the set of nodes (note that vj represents the
jth node/station of the metro network), and E = {eij =

(
vi, vj

)
, vi, vj ∈ V} is the set of edges,

where |E| = M.
The adjacency matrix of G, AG =

(
aij
)

1≤i,j,≤N , is a N × N symmetric matrix such that the
coefficient aij takes the value 1 or 0 depending on whether there is a link between nodes vi and vj.
The degree of a node vi is the number of adjacent nodes to vi and can be computed as follows:
ki = ∑N

j=1 aij.
The Laplacian matrix of G, QG = ∆ − AG, is an N × N matrix where ∆ = diag (k1, . . . , kN)

is the N × N diagonal degree matrix. As shown in Section 2.2, the eigenvalues of QG play a very
important role in robustness analysis; they are non-negative and can be ordered and denoted as follows:
0 = λN ≤ λN−1 ≤ . . . ≤ λ1.

2.1. Centrality Measures

The analysis of a complex network is performed through the computation and analysis of several
structural coefficients of the network topology. Specifically, the most important are the following [12]:
degree centrality, average degree, degree distribution, average path length, closeness centrality,
and betweenness centrality. Some of the metrics and coefficients introduced are local—related to
nodes—and others are global—related to the whole network.

2.1.1. Local Measures and Coefficients

The degree centrality of vi is the average number of incident edges to vi, that is:

CD (vi) =
ki

N − 1
, 0 ≤ CD (vi) ≤ 1. (1)

The shortest path length or distance between two nodes vi, vj ∈ V is denoted by d
(
vi, vj

)
and it is

defined as the minimum number of links necessary to follow from node vi to node vj.
The eccentricity of the ith node vi is defined as the maximum distance from vi to another node of

the network: e (vi) = max{d
(
vi, vj

)
, 1 ≤ j ≤ N, j 6= i}.

The farness centrality of the ith node is defined as the sum of its distances to all other nodes
of the network:

CF (vi) =
N

∑
l=1,l 6=i

d (vi, vl) , (2)

whereas the closeness centrality of vi is the inverse of its farness: CCL (vi) = 1
CF(vi)

,

where 2
(N−1)N ≤ CCL (vi) ≤ 1

N−1 . Note that the greater is the value of closeness centrality, the smaller
is the length of the shortest paths to all other nodes and the more central the node is. The normalized
closeness centrality is obtained by multiplying by N − 1, that is: 2

N ≤ C̃CL (vi) = (N − 1)CCL (vi) ≤ 1.
Finally, the betweenness centrality of the node vi ∈ V is defined mathematically as follows:

CB (vi) = ∑
r 6=s 6=i

`rs (vi)

`rs
, (3)

where `rs is the total number of shortest paths from vr to vs, and `rs (vi) is the the number of shortest
paths between vr and vs that pass through vi. Note that this centrality index “measures” in some way
the number of shortest paths between two nodes that run through a fixed node. In addition, the greater
is the number of paths that pass through a node, the greater is the importance of this node and more
central it is. Betweenness centrality can be normalized obtaining the normalized betweenness centrality
C̃B by dividing by (N − 1) (N − 2) /2.
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2.1.2. Global Measures and Coefficients

The average degree of the network G is defined as the average value of all node degrees:

〈k〉 = 1
N

N

∑
i=1

ki =
N − 1

N

N

∑
i=1

CD (vi) , 0 ≤ 〈k〉 ≤ N − 1. (4)

Consequently, the normalized average degree of G is 〈k〉
N−1 . On the other hand, the degree distribution

of the network, P (k), is the probability distribution of degrees over the whole network. Note that
〈k〉 = ∑N

k=1 kP (k). Moreover, the cumulative degree distribution Pk stands for the probability that the
degree of a node chosen at random is, at least, k.

The density of the network G is the ratio between the number of existing edges and the total
number of possible edges in the graph, that is:

d =
2M

N (N − 1)
=
〈k〉

N − 1
, 0 ≤ µ ≤ 1, (5)

which is equal to the normalized average degree.
Taking advantage of the definition of shortest path length, the notion of diameter D of the network G

can be introduced as the greatest distance between any pair of nodes: D = max{d
(
vi, vj

)
, 1 ≤ i < j ≤ N}.

Obviously, D = max{e (v) , v ∈ V}. Furthermore, the average path length of the network is the average
distance between any two nodes:

L =
2

N (N− 1) ∑
1≤i<j≤N

d
(
vi, vj

)
, 1 ≤ L ≤ D. (6)

The center of the network G, c (G), is the set of vertices with minimal eccentricity. This minimal
eccentricity is called radius of the network r (G).

2.2. Robustness Metrics

Robustness can be defined as the network’s ability to survive random failures or deliberate
attacks consisting of the elimination of nodes and/or edges [13]. That is, this characteristic refers to
the capacity of the network to solve possible failures by offering alternative routes that overcome
the attacked edges or nodes; this is a very important issue when metro networks are analyzed [14].
In this sense, several theoretical and numerical robustness metrics have been proposed to quantitatively
determine this characteristic. In what follows, a brief description of the most important robustness
measures is introduced.

2.2.1. Theoretical Robustness Metrics

One of the most important robustness parameters is the assortativity coefficient:

r =
∑

1≤i,j≤N

(
aij −

kikj
2M

)
fij

∑
1≤i,j≤N

(
kiδij −

kikj
2M

)
fij

, (7)

where aij is the corresponding adjacency matrix entry, and δij = 1 if there exists an edge between vi
and vj and 0 otherwise. This coefficient measures how high-degree (respectively, low-degree) nodes
are, on average, linked to other nodes with high-degree (respectively, low-degree) [15]. It is defined as
the Pearson correlation between the degree of nodes of each edge in the network and ranges from −1
(when low-degree nodes are usually connected to high-degree nodes: the network is disassortative)
to 1 (nodes with equal or similar degree are often linked: the network is assortative). Assortative
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networks are more robust since the attack against a high-degree node could leave the path length
relative intact.

A measure of robustness of metro networks needs to take into account the number of alternative
routes between two nodes. The more alternative routes there are, the more robust the network is.
The robustness indicator rT accounts for the probability of failures/accidents, which is highly dependent
of the size of the network. It uses the cyclomatic number µ [16] to calculate the number of paths available
in a graph: µ = M−N + P, where P is the number of subgraphs. Therefore, this coefficient is originally
defined as follows [17]:

rT =
µ−Mm

N
, (8)

where Mm is the number of multiple links between two nodes. Subway networks are usually connected
(P = 1), thus:

rT =
M− N + 1−Mm

N
. (9)

Note that 0 ≤ rT ≤ N2−3N+2−2Mm

2N and rT increases when there are alternative paths to reach
a destination, and it decreases in large systems.

The effective graph resistance, RG, gives us an idea of the robustness of the network by studying the
number of parallel paths between two nodes and their length. In this sense, a small value of RG means
that the network is robust. Mathematically it is determined by:

RG = N
N−1

∑
i=1

1
λi

, (10)

where λi is the ith eigenvalue of the Laplacian matrix of the graph. In this work, we use the
normalized version of the effective graph resistance, which is called effective graph conductance defined
as follows [18]:

CG =
N− 1

RG
. (11)

Note that 0 < CG ≤ 1 and, the higher the effective graph resistance is, the higher the robustness
of a network is.

The average efficiency EG is a measure that indicates the capability of the network to permit
movement between any pair of nodes. Mathematically, it is defined as the averaged sum of the
reciprocal of the distances between nodes [19]:

EG =
2

N(N− 1) ∑
1≤i<j≤N

1
d(vi, vj)

, 0 < EG ≤ 1. (12)

Note that the higher its value is, the greater is the robustness of the network.
The clustering coefficient [20] is used to assess how the neighbors of a node vi are connected with

another. It is explicitly defined as follows:

CCLU (vi) =
2εi

ki (ki − 1)
, 0 ≤ CCLU (vi) ≤ 1, (13)

where εi is the number of links connecting neighbors of node vi. From this definition, it follows that
the larger the clustering coefficient is, the better the local connectivity around the node vi is. A global
coefficient, called average clustering coefficient, can be obtained from this local measure. It is depicted
as follows:

C̃CLU =
1
N

N

∑
i=1

CCLU (vi) , 0 ≤ C̃CLU ≤ 1. (14)
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These clustering coefficients measure the connectivity of a network since they assess how the
neighbors of a node are connected with another one [12].

The algebraic connectivity is a measurement of the connectivity level of the network. This coefficient
is given by the second smallest eigenvalue of the Laplacian matrix, λN−1, and it satisfies the following:

0 ≤ λN−1 ≤ κV ≤ κE ≤ min{k1, k2, . . . , kN}, (15)

where κV and κE are the vertex connectivity and the edge connectivity, respectively (minimal number
of vertices and edges to be removed to disconnect the network). It can be shown that the higher the
algebraic connectivity is, the more difficult it is to disintegrate the network into components and,
therefore, the network is more robust [18]. The normalized algebraic connectivity is obtained dividing the
algebraic connectivity by the total number of nodes: λ̃N−1 = λN−1

N .
The natural connectivity characterizes the redundancy of alternative paths by quantifying the

weighted number of closed walks of all lengths: S =
∞
∑

k=1

lk
k! , where lk = ∑∞

i=1 λk
i is the number of closed

walks of length k. Thus, S =
N
∑

i=1
eλi and the natural connectivity is then obtained by scaling S [21]:

λ = ln[
1
N

N

∑
i=1

eλi ], 0 ≤ λ ≤ ln
(

N− 1
e

+ eN−1
)
≈ N− ln N. (16)

It changes strictly monotonically with the addition or deletion of edges, thus it is sensitive even
to a single link failure. We normalize the natural connectivity dividing by the maximum natural
connectivity N− ln N:

λ̃ =

ln[ 1
N

N
∑

i=1
eλi ]

N− ln N
, 0 ≤ λ̃ ≤ 1. (17)

The higher the natural connectivity is, the higher the robustness of the network is.
Finally, the percolation limit pc is another connectivity measure that computes the critical fraction

of nodes that are necessary to be removed from the network in order to disconnect it. This coefficient
is defined as follows:

pc = max{0, 1− 1
κ− 1

}, 0 ≤ pc < 1, (18)

where the quotient κ = 〈k2〉
〈k〉 is called degree diversity, and 〈k2〉 = 1

N ∑N
i=1 k2

i . It has been shown that, the
higher pc is, the more nodes have to be removed from the network to disintegrate it [22], which means
the network is more robust.

2.2.2. Numerical Robustness Metrics

Numerical robustness metrics are obtained through simulations so that nodes are removed
from the network one by one until the network collapses. This paper considers three
strategies for node removal: (i) random node removal; (ii) degree-based node removal;
and (iii) betweenness-based removal:

(i) Random removal: The node to be removed is chosen randomly from among all the nodes in the
network with equal probability.

(ii) Degree-based removal: The node with the highest degree is removed from the network first, then
the highest degree is recalculated and the removals continue.

(iii) Betweenness-based removal: The node with the highest betweenness centrality is first deleted
from the network, then highest betweenness centrality is recalculated after the removal and the
removals continue.
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Several topological parameters can be used to illustrate the performance changes of the network.
In our case, we use the largest connected cluster (LCC) [23,24], the network efficiency, the average
betweenness and the number of non-contact islands.

The largest connected cluster can be defined as follows

LCC = N′/N, (19)

where N′ is the number of nodes of the largest connected component after removals.
In this case, the robustness curve is obtained when we represent the size of the largest connected

component for an interval of removed nodes [1, N]. From it, the critical thresholds f90% and fc can be
obtained. The critical threshold f90% is the fraction of nodes that have to be removed from the network
so that the largest connected component of the resulting network contains 90% of the original network.
In the same way, the critical threshold fc is defined as the fraction of nodes that have to be removed so
that the largest component has only one node. In the case of random node removal, we performed
1000 simulation runs to get these values.

2.3. Applications of Complex Network Analysis

Complex network analysis is a very useful discipline in the analysis of several and different
phenomena that can be modeled by means of a network. It provides not only numerical metrics but
also methods and techniques to understand the topological structure of the network and their possible
vulnerabilities [25–27]. Specifically, the main objective of all these procedures is to determine the role
played in the complex system by the actors and relations that represent nodes and edges.

Apart from the analysis of transportation networks mentioned in the Introduction, the study of the
reliability of power grids is one of the paradigmatic examples of the application of complex network
analysis [28]. Several works have appeared in the scientific literature studying the vulnerability of
different power grids [29,30] and their topological characteristics [31].

Due to their features, communication networks are also susceptible to be analyzed from this point
of view [32]. In this case, several aspects of this type of networks are studied using complex network
analysis: pinning analysis [33], mobile phone companies studies [34], etc.

Obviously, several applications to biology, epidemiology and related disciplines can also be found
(see, for example, [35–37]).

Furthermore, due to the importance of industrial supply networks in our society, it is also very
interesting to study these complex systems using techniques from complex network analysis. In this
sense, the most relevant works can be found in [38–40].

3. Structural Analysis of Madrid Metro Subway

3.1. General Considerations

The Madrid metro is a rapid transit system in Madrid (Spain), which actually consists
of 13 operating lines (see Figure 1): Line 1 (Pinar de Chamartín-Valdecarros), Line 2
(Las Rosas-Cuatro Caminos), Line 3 (Villaverde Alto-Moncloa), Line 4 (Argüelles-Pinar de Chamartín),
Line 5 (Alameda de Osuna-Casa de Campo), Line 6 (Laguna-Lucero), Line 7 (Hospital de Henares-Pitis),
Line 8 (Nuevos Ministerios-Aeropuerto T-4), Line 9 (Paco de Lucía-Arganda del Rey), Line 10 (Hospital
Infanta Sofía-Puerta del Sur), Line 11 (Plaza Elíptica-La Fortuna), Line 12 (Puerta del Sur-San Nicasio),
and Line R (Ópera-Príncipe Pío). Lines 6 and 12 are circular, and in this study the three lines of the
light rail network (ML1: Pinar de Chamartín-Las Tablas; ML2: Colonia Jardín-Estación de Aravaca;
and ML3: Colonia Jardín-Puerta de Boadilla) are not considered. The “Cercanías” RENFE commuter
rail service (that connects Madrid with its metropolitan area and other towns near Madrid) is also not
taken into account.
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Figure 1. The 2019 Madrid metro and light rail networks (courtesy of Metro de Madrid, S.A.).

In this work, the representation of the subway metro follows the L-space topology where each
station stands for a node of the graph and the edges are defined by means of the direct connections
by rail ways between the stations. The number of nodes is n = 243 (in Table 1 the types of nodes
of each line are shown) and the number of edges is m = 280; consequently, the density of the metro
network is d ≈ 0.009421. Note that, for example, the densities of the subway networks of Shanghai,
Beijing and Guangzhou—all in China—are 0.0092, 0.0172 and 0.0266 [10]; as a consequence, Madrid
metro network is similar to Shanghai. In Figure 2, the graph corresponding to Madrid metro network
is shown (the exact spatial location of the stations is not considered). In this figure, cyan nodes are
non-transfer termini nodes, and black nodes are transfer nodes. On the other hand, the color code for
lines follows those introduced in Table 1.
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Table 1. Types of nodes of each line of Madrid metro network.

Line Monotonic Transfer (Not Termini) Transfer (Termini) Termini (Not Transfer)

Line 1 (light blue) 23 8 1 1
Line 2 (red) 9 8 1 1
Line 3 (yellow) 10 6 1 1
Line 4 (brown) 14 7 2 0
Line 5 (green) 20 7 1 1
Line 6 (gray) 14 14 - -
Line 7 (orange) 22 5 0 2
Line 8 (pink) 4 2 1 1
Line 9 (purple) 21 6 1 1
Line 10 (blue) 20 9 1 1
Line 11 (green) 5 0 1 1
Line 12 (light green) 27 1 - -
Line R 0 0 2 0

Figure 2. The graph representing the Madrid metro network computed using Mathematica.

3.2. Basic Study

We computed the most usual coefficients of Madrid metro network used in the complex network
analysis to determine the structural importance of each node within the network.

In Table 2, the ten stations with highest degree (and centrality degree) are displayed. In Figure 3,
the first five most central stations are shown in the network. As is shown, the most connected node is
“Av. de América” with degree 7. Although this station belongs to four lines, it has a double connection
with “Diego de León” station and only one of these is taken into account in the computation of its
degree. The average degree of the network is 〈k〉 ≈ 2.280 and the degree distribution P (k) is shown in
Figure 4a, whereas the cumulative degree distribution is introduced in Figure 4b. The fitting function of
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the cumulative degree distribution is h (x) = h1eh2x, where h1 = 2.012 and h2 = −0.5940. It is similar
to those obtaining from other metro networks around the world such as Shanghai, New York or
St. Petersburg [24].

Table 2. The ten stations with the highest degree and centrality degree.

Station Subway Lines Degree Degree Centrality

Av. de América 4, 6, 7, 9 7 0.02892
Alonso Martínez 4, 5, 10 6 0.02248
Sol 1, 2, 3 6 0.02248
Nuevos Ministerios 6, 8, 10 5 0.02066
Príncipe Pío 6, 10, R 5 0.02066
Diego de León 4, 5, 6 5 0.02066
Plaza de España 3, 10 5 0.02066
Opera 2, 5, R 5 0.02066
Cuatro Caminos 1, 2, 6 5 0.02066
Colombia 8, 9 4 0.01653

Sol

Alonso Martínez Av.de América
Príncipe Pío

Nuevos Ministerios

Figure 3. The five stations with highest degree centrality.
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Figure 4. (a) Degree distribution of Madrid metro network; and (b) cumulative degree distribution of
Madrid metro network.

Moreover, the diameter of the network is D = 44 and the average path length is L ≈ 14.6822.
In Table 3, the most central stations considering its eccentricity are shown. Note that the radius of
Madrid metro network is 22 and its center is the station “Príncipe Pío”, that is, this is the location that
minimizes the maximum distance to any other station of the network. Obviously, its adjacent nodes
(the five other stations introduced in Table 3) are the subsequent nodes with minimal eccentricity
(the first five stations are illustrated in Figure 5).

Table 3. The six stations with the highest eccentricity.

Station Subway Lines Eccentricity

Príncipe Pío 6, 10, R 22
Lago 10 23
Puerta del Ángel 6 23
Plaza de España 3, 10 23
Argüelles 3, 4, 6 23
Opera 2, 5, R 23

In Table 4, the stations with the highest clustering centrality are shown. Furthermore, the five
most central ones are shown in Figure 6. The most central considering these coefficient are “Callao”
(CCLU ≈ 0.3333) and “Diego de León” with CCLU = 0.2. These two stations belongs to Line 5. Moreover,
the average clustering coefficient is C̃CLU = 0.0077.

Table 4. The ten stations with the highest clustering coefficient.

Station Subway Lines Clustering Coefficient

Callao 3, 5 0.3333
Diego de León 4, 5, 6 0.2
Núñez de Balboa 5, 9 0.1666
Ventas 2, 5 0.1666
Manuel Becerra 2, 6 0.1666
Gran Vía 1, 5 0.1666
Tribunal 1, 10 0.1666
Bilbao 1, 4 0.1666
Sol 1, 2, 3 0.1333
Opera 2, 5, R 0.1



Sustainability 2019, 11, 3486 12 of 24

Argüelles

Plaza de España

Príncipe Pío

Puerta del Ángel

Lago

Figure 5. The five stations with highest eccentricity.

Manuel Becerra

Ventas

Callao

Diego de León
Núñez de Balboa

Figure 6. The five stations with highest clustering coefficient.
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The results obtained from the computation of the closeness centrality are shown in Table 5 and
illustrated in Figure 7. In our case, 0.0001481 ≤ CCL (vi) ≤ 0.0004575, and 0.03585 ≤ C̃CL (vi) ≤ 0.1107
for every i. Note that the two stations with the highest closeness centrality are “Gregorio Marañón”
(CCL ≈ 0.0004575) and “Alonso Martínez” (CCL ≈ 0.0004568). Both stations belong to Line 10.

Table 5. The ten stations with the highest closeness centrality.

Station Subway Lines Closeness Centrality Normalized Closeness Centrality

Gregorio Marañón 7, 10 0.0004575 0.1107
Alonso Martínez 4, 5, 10 0.0004568 0.1106
Av. de América 4, 6, 7, 9 0.0004466 0.1081
Tribunal 1, 10 0.0004464 0.1080
Núñez de Balboa 5, 9 0.0004395 0.1064
Rubén Darío 5 0.0004355 0.1054
Bilbao 1, 4 0.0004334 0.1049
Plaza de España 3, 10 0.0004330 0.1048
Nuevos Ministerios 6, 8, 10 0.0004325 0.1047
Diego de León 4, 5, 6 0.0004299 0.1040

Tribunal

Alonso Martínez

Av.de América
Núñez de Balboa

Gregorio Marañón

Figure 7. The five stations with highest closeness centrality.

Finally, the results dealing with the betweenness centrality are displayed in Table 6 and Figure 8.
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Table 6. The ten stations with the highest betweenness centrality.

Station Subway Lines Betweenness Centrality Normalized Betweenness Centrality

Gregorio Marañón 7, 10 9350 0.3180
Príncipe Pío 6, 10, R 8918 0.3033
Nuevos Ministerios 6, 8, 10 8855 0.3012
Av. de América 4, 6, 7, 9 8839 0.3006
Alonso Martínez 4, 5, 10 8629 0.2935
Casa de Campo 5, 10 7406 0.2519
Lago 10 7137 0.2427
Batán 10 6978 0.2373
Tribunal 1, 10 6732 0.2289
Colonia Jardín 10 6541 0.2225

Alonso Martínez Av.de América
Príncipe Pío

Nuevos Ministerios

Gregorio Marañón

Figure 8. The five stations with highest betweenness centrality.

The results shown in the previous tables indicate that some stations play a central role in the
structural definition of the network. For example, although the degree of “Gregorio Marañón” is not
high (it belongs to two lines), this station is a very important structural piece of the subway network
since it possesses the highest value of closeness and betweenness centralities. In addition, we want
to highlight the role of “Avenida de América” in the structural cohesion of Madrid metro network:
it belongs to four lines (its degree is the highest) and it has high coefficients in the case of closeness and
betweenness centrality. Furthermore, “Nuevos Ministerios” and “Alonso Martínez” are also important
centrality stations. In Figure 9, the location of these stations is illustrated: note that they are directly
connected in pairs. Finally, it is also remarkable that stations with highest eccentricity are not central
considering betweenness and clustering.
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Figure 9. The most central stations of Madrid metro network.

3.3. The Role of Metro lines 5, 6 and 10

From the results presented in Tables 2, 4, 5 and 6, it was derived that Lines 5, 6 and 10 have
high structural importance in the network. All these lines exhibit high values in degree, clustering,
closeness and betweenness. Line 5 has six stations in the top ten of clustering (in fact, the top four
belong to Line 5) and four stations in the top ten of closeness. Line 6 has five stations in the top ten of
degree centrality and three stations in the top ten of betweenness. However, the most outstanding is
Line 10 since nine stations of the top ten for betweenness belongs to Line 10, it has five stations in the
top ten of closeness and four stations in the top ten of degree. Furthermore, the center (and two other
stations with high eccentricity) belongs to Line 10. This gives us an idea of the prominence of such line
in Madrid metro network.

We next studied how the (separately) removal of these lines would affect the behavior of the
network. In Table 7, the most important global coefficients are shown when each of these lines is
eliminated.

Table 7. Structural coefficients obtained after the removal of one line.

Coefficients Line 5 Line 6 Line 10

n 221 229 222
m 248 252 250
d 0.01007 0.009615 0.01011
〈k〉 2.217 2.192 2.234
Fitting (h1,h2) (2.055,−0.6146) (2.065,−0.6212) (2.040,−0.6077)
L 15.12 ∞ ∞
D 44 ∞ ∞
Mean clustering 0.0023 0.0067 0.0067

Obviously, when some nodes and edges are removed from a network, its density d and average
degree 〈k〉 decrease. From the new degree distributions, it is shown that the probability of obtaining
nodes with degree two increases to values close to 0.5. Note that, when Line 5 is eliminated, the average
path length L increases, although the diameter D remains constant. In this case, all stations have a null
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clustering coefficient with the exception of “Alonso Martínez”, “Tribunal” and “Bilbao” whose values
are equal to 0.1667; the closeness centrality hardly varies; and the station with the highest betweenness
centrality happens to be “Avenida de América” with 0.3632. On the other hand, when Line 6 or Line 10
is removed, the resulting network is disconnected. In addition, the mean clustering coefficient becomes
smaller than the original one but the top ten does not vary much. Finally, the normalized betweenness
coefficient of “Gregorio Marañón” when Line 6 is removed is remarkable: it increases from 0.3180
to 0.4269. In this case, when Line 10 is removed and “Gregorio Marañón” only belongs to Line 7,
its normalized betweenness centrality drops to 0.0213, being “Avenida de América” the node with
highest betweenness (0.2540).

3.4. Analysis of the Central Core

Line 6 is a circular subway line, which, in some way, delimits the extended central urban area
of the city (see Figure 10). Therefore, it seems to be interesting to study this subnetwork in order to
identify the principal differences with respect to the original one.

Figure 10. Central core (delimited by Line 6) of Madrid metro network.

In this case, n = 74 and m = 101, thus the density is d ≈ 0.03665, which is significantly larger than
the original one (0.009421). This is an expected fact since we have removed the “tentacles” (outside
of Line 6) of the network, which are constituted by several stations with degree 2 and all stations of
degree 1. Obviously, the diameter and the average path length drop from 44 and 14.68 to 13 and 5.948,
respectively. In Figure 11a,b, the degree and cumulative degree distributions are shown, respectively.
The fitting function of the cumulative degree distribution is h (x) = 1.8368e−0.4834x.

The mean clustering coefficient increases from 0.0077 to 0.0218. Now, the most central station is
“Sol” (Lines 1, 2 and 3); it is the station with highest closeness centrality with 0.2320 (“Gregorio Marañón”
goes down from the first place to the thirteenth) followed by “Tribunal” (0.2277) and “Plaza de España”
(0.2222), and it is also the station with highest betweenness centrality: 0.3046 (“Gregorio Marañón”
also goes down to the ninth place).
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Figure 11. (a) Degree distribution of central core; and (b) cumulative degree distribution of central core.

4. Robustness Analysis of Madrid Subway Network

4.1. Analysis of Robustness by Removing Stations

Failures of subway networks can have enormous impact on our society, thus the analysis of the
robustness is very important when studying subway networks. The robustness of networks reflects
the extent to which the networks can solve possible (intentional or unintentional) failures by offering
alternative routes that overcome the attacked edges or nodes [41].

The robustness metrics described in Section 2.2 were computed for the Madrid subway network
and briefly analyzed. Then, the critical thresholds under random failures and targeted attacks were
obtained through simulations.

Table 8 shows the values of the theoretical and numerical robustness metrics computed.

Table 8. Robustness metrics in Madrid subway networks.

Coefficients Madrid Subway Network

Nodes, N 243
Edges, M 280
Assortativity coefficient 0.2963
Robustness indicator, rT 0.1440
Effective graph conductance, CG 0.0008631
Average efficiency, EG 0.1053
Average clustering coefficient, CCG 0.007741
Algebraic connectivity, λN−1 0.003767
Normalized algebraic connectivity, λ̃N−1 0.00001550
Natural connectivity, λ 1.0489
Normalized natural connectivity, λ̃ 0.004416
Degree diversity, κ 2.693
Percolation limit, pc 0.4093
Critical threshold f90%-degree 0.02880
Critical threshold f90%-betweenness 0.00823
Critical threshold f90%-random 0.03292
Critical threshold fc-degree 0.51028
Critical threshold fc-betweenness 0.99588
Critical threshold fc-random 0.92181

Madrid metro network is slightly degree assortative (r ≈ 0.2963), which suggests that a significant
fraction of stations with a low degree connect to other low degree stations. Note that, if we remove
Line R (which only has one connection between the stations “Opera”—L2 and L5—and “Píncipe
Pío”—L6 and L10), the assortativity coefficient decreases to 0.2810. Furthermore, if Line L5 or L10
is removed from the network, the respective assortative coefficient is r ≈ 0.1757 or r ≈ 0.2191,
respectively. In addition, if the most central stations (“Avenida de América”, “Gregorio Marañón”,
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and “Alonso Martínez”) are removed, the assortativity of the network decreases to 0.2953, 0.2789,
and 0.2658, respectively.

The robustness indicator of Madrid subway network is rT = 0.1440 since Mm = 3. This indicator
favors the metro networks which have many alternative paths between any pairs of nodes and
disadvantages those metro networks which have a large number of nodes but few alternative paths.

The effective graph conductance is CG ≈ 0.0008631, thus, according to this value, Madrid subway
network is not robust. This is due to this measure accounts not only the number of alternative paths
but also the length of each alternative path, hence it favors the star-like topology with a small average
shortest path length.

The average efficiency is EG ≈ 0.1053, thus the global connectivity is quite poor. It is important to
note that the maximum value is obtained in fully connected networks and it is equal to 1.

The average clustering coefficient of Madrid subway network (C̃CLU ≈ 0.007741) is lower than
that of the subways of some other European cities such as Copenhagen (C̃CLU = 0.0769), London
(C̃CLU = 0.0387 or Paris (C̃CLU = 0.0157) [24]. It is important to note that this coefficient measures the
global connectivity of the network as it assesses to what extent the neighbors of a node are connected
to another one.

In our case, both vertex connectivity κV and edge connectivity κE are equal to 1 since there exist
monotonic nodes, and consequently 0 ≤ λN−1 ≈ 0.003 ≤ 1. The higher this value is, the more difficult
it is to disintegrate the network, thus it is quite easy to disintegrate Madrid network into components.

The natural connectivity uses the number of alternative paths to quantify the robustness of
a network. The normalized natural connectivity λ̃ in our case is approximately equal to 0.004, therefore,
since it takes values between 0 and 1, it seems that Madrid subway is not very robust.

The degree diversity of Madrid metro network is κ ≈ 2.693. Note that for a network to have
a giant component most nodes that connect to it must be connected to at least two other vertices.
This leads to the Molloy–Reed criterion that states that a randomly connected network has a giant
component if κ > 2 [42]. In our case, this condition is met with difficulty; indeed, the percolation limit
is pc ≈ 0.4093, which is similar to this coefficient exhibited by the largest connected component of
random graph networks defined by the Erdös–Renyi algorithm with edge probability p ≈ 0.006897.
This value is smaller than that presented by other public transport networks [43].

Figure 12 describes the performance changes of the largest connected component of Madrid
subway subjected to different network failures. It shows that the most serious network attack is the
highest betweenness based attacks, the second most serious attack is the largest degree-node attacks
and finally random disruption of stations results in minimum damage to the network. In this way, if the
ten stations with the greatest betweenness centrality are eliminated, the size of the largest connected
component is reduced by 80%. When stations are eliminated according the degree, the elimination
of ten stations can result in more than 65% reduction in the size of the largest connected component
(Figure 13). In the case of random attacks, ten stations removed only results in 8% of reduction in the
size of the largest connected component. Thus, Madrid subway network is fragile when subjected
to intentional attacks, and it is quite robust against random attacks. The lowest value of the critical
thresholds f90% was obtained when nodes are removed according to their betweenness centrality
(Table 8). On the other hand, we have that the critical thresholds fc of the fraction of removed nodes of
the network subjected to largest degree-node based attacks is the smallest one.

Figure 14 depicts the changes in the network efficiency subjected to different network failures.
It shows that the highest betweenness based attacks will result in the highest damage and the random
attacks cause the minimum damage among these different attacks. Thus, if the ten stations with the
greatest betweenness centrality are eliminated, the network efficiency is reduced more than 70%.
The damage caused by largest degree attacks is slightly smaller than the damage caused by highest
betweenness based attacks.
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Figure 12. The changes of the size of largest connected component with different attack protocols.
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Figure 13. (a) Size of the largest connected component when each station is removed (10 stations are
selected based on betweenness); and (b) size of the largest connected component when each station is
removed (10 stations are selected based on degree).
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Figure 14. The changes of the network efficiencies with different attack protocols.

The changes in the average betweenness for nodes subjected to different network failures are
shown in Figure 15. Again, it can be seen how Madrid subway is quite robust against random
attacks but is fragile when it is subjected to intentional attacks (largest degree node-based attacks
and highest betweenness node-based attacks). Furthermore, it can be observed that the highest
betweenness node-based attacks will result in the most serious damage to the network. When one
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node/station is removed, the resulting network could have the same number of connected components
or not (the number of connected components increases). In the first case, if the removed node
has high centrality values (degree and/or betweenness), the average betweenness of the network
usually increases (since the average number of the paths between any pairs of nodes decreases
significantly)—this is exactly what happens in the beginning. On the other hand, if the node removed
has similar centrality coefficients than the remaining nodes in the network, the average betweenness
is slightly decreased. In the second case, when more connected components appear, the average
betweenness decreases. This behavior is similar to that exhibited by, for example, Shanghai [44].
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Figure 15. The changes of the average betweenness with different attack protocols.

Figure 16 shows the changes of the number of connected components when the network is
subjected to the three different networks failures. According to Figure 15, with the increase of the
number of the removed nodes, the number of connected components increases with the quickest
velocity when the largest degree node-based or the highest betweenness attack protocol are applied
to the network. In this sense, when the three stations with the highest betweenness are eliminated,
the network disintegrates into three connected networks, and, when the number of stations eliminated
is ten, the number of connected components is eleven.
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With all this, it is shown that malicious attacks can effectively destroy the network.

4.2. Analysis of Robustness by Removing Lines

In this section, an analysis of the robustness of the network is presented when metro lines were
removed instead of nodes/stations. For the sake of simplicity, we only studied those cases when one or
two metro lines were removed (it does not seem realistic to consider eliminating three or more lines).

First, if only one line is removed, then 12 possible metro networks are obtained. In Tables 9 and 10,
the numeric values of the most important robustness coefficients are shown when each line is removed.
The main conclusion for these empirical results is that removing lines 2, 6 or 10 affects the reliability of
the metro network more than removing the other lines.

Table 9. Robustness metrics when only one line is removed.

Removed Line Global Efficiency Algebraic Connectivity Average Degree

12 0.1162 41.10 ×10−6 0.01068
11 0.1031 9.331 ×10−6 0.009618
10 0.09369 0 0.009987
9 0.1044 10.25 ×10−6 0.01035
8 0.1012 9.346 ×10−6 0.009583
7 0.1047 10.31 ×10−6 0.01040
6 0.09166 0 0.009500
5 0.1011 9.482 ×10−6 0.01004
4 0.1005 9.645 ×10−6 0.009712
3 0.1019 9.563 ×10−6 0.009712
2 0.09920 9.486 ×10−6 0.009554
1 0.1022 10.19 ×10−6 0.0102

Table 10. Robustness metrics when only one line is removed.

Removed Line Natural Connectivity Percolation Limit

12 0.004992 0.4137
11 0.004462 0.3928
10 0.004586 0.3552
9 0.004745 0.3747
8 0.004443 0.3853
7 0.004809 0.3756
6 0.004228 0.3014
5 0.004535 0.3476
4 0.004389 0.3411
3 0.004438 0.3661
2 0.004383 0.3469
1 0.004663 0.3605

For example, when global efficiency is considered, the elimination of any of these lines causes
the global efficiency to drop by 12%. The case of algebraic connectivity is paradigmatic: when Lines 6
and 10 disappear from the whole network, then it stops being connected. In addition, if Line 2 or 5 is
removed, the metro network remains connected but its robustness greatly decreases.

It should be notice the importance of Line 2 to the structural cohesion of the network. When this
line is removed, the numeric values of natural connectivity and percolation limit decrease considerably.
Nevertheless, these computations reveals that the most central line when robustness is tackled is Line 6;
this is a circular line with a great number of stations (note that the normalized average degree is about
0.0095—the minimum when one line disappears) and with a high connectivity to the rest of lines.
Consequently, it seems reasonable that great efforts be made in the maintenance of this metro line.

Finally, the previous results can be corroborated when two lines are removed from the Madrid
subway network. For example, if we compute the global efficiency in this new situation, we can see
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the central role of Lines 6 and 10. In Figure 17, a 3D point cloud is represented from data
(
i, j, Eij

)
where coordinates i and j stand for the removing lines (1 ≤ i, j ≤ 12) and 0.08 ≤ Eij ≤ 0.14 is the
global efficiency of the metro network when lines i and j are removed. Note that, when Lines 6 and 10
(i, j = 6, 10) disappear, the fitting surface exhibits a valley.

Figure 17. Global efficiency when two lines are removed.

5. Conclusions and Future Work

In this work, a detailed analysis of Madrid metro network was done following the paradigm
of Complex Network Analysis. Specifically, the most important centrality measures and coefficients
were computed not only for the whole network but also for reduced networks obtained by removing
sensitive lines and stations. Moreover, the most important robustness coefficients were also computed
for the subway network.

In this sense, it was shown that the most central stations are “Gregorio Marañón”,
“Alonso Martínez” and “Avenida de América”, and the most central subway lines are Line 5
(“Alameda de Osuna”–“Casa de Campo”), Line 6 (circular line from “Laguna”–“Lucero”) and Line 10
(“Hospital Infanta Sofía”–“Puerta del Sur”).

Taking into account the results derived from the study of the robustness of Madrid metro network,
we can state that Madrid metro network is more vulnerable to attacks than other public transport
networks. In this sense, the stations “Gregorio Marañón” and “Avenida de América” play an important
role in ensuring the robustness of the transportation network.

Further work will analyze in a detailed way the Madrid metro network considering different
topological representations (P-space, C-space, etc.), additional transport lines (light rail network),
sociological and geographical coefficients. On the other hand, this work exhibits some limitations in
relation to its practical application. Specifically, it would also be interesting to consider in the future
robustness studies additional information such as the number and periodicity of trains, the number
of passengers that use the different stations and lines, etc. This would provide us an analysis of the
number of passengers directly or indirectly damaged by the failure of a single node, or by the number
of passengers not influenced by the failure.
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