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Abstract: Reliable predictions of the energy consumption and production is important information
for the management and integration of renewable energy sources. Several different Machine Learning
(ML) methodologies have been tested for predicting the energy consumption/production based on
the information of hydro-meteorological data. The methods analysed include Multivariate Adaptive
Regression Splines (MARS) and various Quantile Regression (QR) models like Quantile Random
Forest (QRF) and Gradient Boosting Machines (GBM). Additionally, a Nonhomogeneous Gaussian
Regression (NGR) approach has been tested for combining and calibrating monthly ML based
forecasts driven by ensemble weather forecasts. The novelty and main focus of this study is the
comparison of the capability of ML methods for producing reliable predictive uncertainties and
the application of monthly weather forecasts. Different skill scores have been used to verify the
predictions and their uncertainties and first results for combining the ML methods applying the NGR
approach and coupling the predictions with monthly ensemble weather forecasts are shown for the
southern Switzerland (Canton of Ticino). These results highlight the possibilities of improvements
using ML methods and the importance of optimally combining different ML methods for achieving
more accurate estimates of future energy consumptions and productions with sharper prediction
uncertainty estimates (i.e., narrower prediction intervals).

Keywords: machine learning; monthly forecasts; predictive uncertainty

1. Introduction

The study of this paper has been inspired by the idea of analysing the potential benefits for
managing water reservoirs and hydro-power plants by providing predictions of short- to long-term
future energy consumptions in a region or a localized area. It is assumed that the energy consumption
is mainly driven by meteorological conditions, for which forecasts will be available with different
temporal and spatial resolutions. Under regular conditions, the production will be mostly driven by
the energy price, but the limitations of the production will be given by hydro-meteorological boundary
conditions. Thus, forecasts of the consumption and the production based on hydro-meteorological
information could be gainful for the managers of the electricity grids and the power plants and
providers of energy as well. If it is possible to identify statistically dependency structures between
meteorological variables and the energy consumption/production, a regression model can be framed,
which allows the prediction of the consumption/production. Such relationships could be modelled
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with simple linear regression approaches (see for example [1,2], there is a great potential in improving
the prediction models taking the nonlinearities and non-stationarities into account, which will bias
the predictive skill and the forecast quality quite significantly at certain times during the weeks
and months.

In this study, machine learning models have been tested in order to allow higher degrees of model
complexity and to identify and to model dependency structures, which are hidden and therefore
are most probably disregarded with simpler approaches. The different machine learning techniques
applied are:

• Multivariate Adaptive Regression Splines (MARS): MARS build linear relationships between
predictors and a target (predictand) by segmenting predictor variables. Possible nonlinear
relationships can be identified by integrating all segments [3].

• Quantile Regression Neural Network (QRNN): Quantile Regression (QR) models [4] have been
enhanced by Cannnon [5] using Neural Networks in order to incorporate nonlinearities.

• Kernel Quantile Regression (KQR): Use of kernel functions (weighting functions) to model
dependencies non-parametrically, which allows modelling of both Gaussian and non-Gaussian
data [6]. KQR is closely related to Support Vector Machines, but with different loss functions.

• Quantile Regression Forest (QRF): Based on decision tree models, a random forest is a tree-based
algorithm, which builds several trees and combines their output by averaging each tree leaf in
the forest, which helps to improve the generalization ability of the model. In quantile regression
forests, all outcomes are stored, thus the quantiles from each tree leaf can be be calculated [7].

• Gradient Boosting Model (GBM): Also for the GBM, a decision tree model is chosen typically as
a base model; however, ensembles of such prediction models are generated. The final GBM model
is built iteratively by optimizing an arbitrary differentiable loss function [8].

The rationale behind choosing these techniques among the large number of ML methods available
is primarily driven by the possibility of estimating quantiles directly and by the interpretability of results.
Other Deep Learning methods have been omitted because they require large sample sizes [9,10].

These ML methods are compared with two linear models, the classical Multivariate Linear
Regression (MLR) and the QR approach. Additionally, the different model outputs are optimally
combined using the Nonhomogeneous Gaussian Regression (NGR) approach in order to calibrate the
(monthly) forecasts [11]. Although there are studies available comparing different energy forecast
models (e.g., [12]), only a few works take the predictive uncertainty into consideration (e.g., [13]).
Thus, the main focus of this paper will be the derivation of quantiles of the predictions as a measure of
uncertainty and how to verify the resulting quantile forecasts.

The coupling of energy models with numerical weather forecast models has been propagated by
Taylor and Buizza [14], but, by the best knowledge of the authors, no monthly ensemble prediction
system has been applied so far. This will be done the first time in this paper for a region of Switzerland.
In order to calibrate the monthly forecasts, the ML based predictions will be optimally combined using
the Nonhomogeneous Gaussian Regression method, which removes systematic bias of the forecasts
and thus further improves the forecast skill.

The emphasis and novelty of this study is the derivation of predictive uncertainties based on ML
approaches, which has been neglected in most analysis so far. Furthermore, there is a lack of in-depth
studies regarding the usage of ensembles of monthly weather forecasts for the estimation of future
energy consumptions and productions and its operational application. This study will be a first step
to close the gap between research and application. An additional novelty is the analysis of possible
improvements achieved through calibration, i.e., optimally combining different ML methods applied
to monthly forecasts of the energy consumption/production.

The rest of the paper is structured as follows: Section 2 contains the detailed description of the
case study and the methods. The results of the predictions and monthly forecasts will be presented
and discussed in Section 3. Finally, some outlook will be given after the conclusion in Section 4.



Sustainability 2019, 11, 3328 3 of 22

2. Materials and Methods

For the ease of clarification, the main topics of the proposed research analysis, the structure of the
study and the main steps of the modelling and evaluation chain are shown in Figure 1.

Input
Observations
+ Simulations

Calibration MLR, QR MARS, QRNN, QRF, KQR, GBM

Validation
Linear

Predictions
ML Pre-
dictions

Testing
Observations
+ Ensemble
Forecasts

+

Energy Forecasts

Combination

Verifcation Accuracy + Predictive Uncertainty

Energy Forecasts

Accuracy + Predictive Uncertainty

Figure 1. Flowchart of the modelling and evaluation chain. On the right side, the general structure of the
study is shown. The left side shows the main topics of each step: starting from preparing the input data
at the top, followed by the calibration and validation of the linear and Machine Learning (ML). models.
In the testing phase, forecasts will be produced using the calibrated models and hydro-meteorological
ensemble forecasts. After combining the different model outcomes (7 models × 51 ensemble members),
the results of the predictions and the forecasts of the energy consumption/production will be verified
with the target of quantifying the predictive uncertainty. The different thicknesses of the black and
blue arrows indicate the different number of the used models and the derived predictions/forecasts.

The study starts with preparing the input data, which comprises observed hydro-meteorological
observations and simulations and measurements of the energy consumption/production
(see Section 2.1). These data are used for calibrating the different models under consideration
(Section 2.2) and to make predictions of the energy consumptions/productions and to validate the
predictive quality and uncertainties (Section 2.5). In the following testing phase, these calibrated
models will be applied using ensemble hydro-meteorological forecast data consisting of 51 members
as input in order to produce daily energy consumption/production forecasts for the upcoming months.
Additionally, these suchlike created ensembles for each model will be aggregated to one optimally
combined model (Section 2.4). Finally, all these outputs from the predictions and the forecasts (with and
without combination) will be analysed and some verification measurements will be calculated with
the final target of comparing the various models and to highlight the possibilities for estimating
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reliable uncertainty ranges. All the different steps of this study will be explained next, starting with
a description of the input data and a brief summary of the different ML techniques.

2.1. Data

The analysis is based on the energy consumption and production data available from www.
swissgrid.ch. The data are provided spatially aggregated for each canton in Switzerland with 15 min
resolution starting from the year 2015 and are updated regularly with a delay of one month. For this
study, the data from 1 January 2015 to 31 October 2018 have been used. Since the ultimate goal is
the testing of the predictability of monthly forecasts, these energy data are aggregated to daily sums,
which corresponds to the resolution of the meteorological monthly forecast data available in this
study. As input only, those meteorological variables from MeteoSwiss have been selected, for which
information is available in the calibration period, in real-time and as a monthly forecast. Additionally,
the factors Weekday and Holiday have been included (similar to [15]). In Figure 2, the location of the
study area of the canton Ticino is shown in blue and the Verzasca catchment is highlighted in red.
Based on previous studies of applicability of monthly weather forecasts for the optimization of the
hydro power plant production (see [16]), the meteorological data spatially aggregated for the Verzasca
catchment have been used as a surrogate for the canton Ticino (Figure 3) and the runoff, production
and consumption data are for the Canton Ticino (see Figure 4).

It should be stressed that this study is based on simplified assumptions in that the meteorological
conditions of the Verzasca catchment are representative for the whole Canton Ticino, which represents
about 10% of the area of the Canton Ticino. However, several important hydro power plants, the main
drivers for the energy production in Ticino, are located also outside the Verzasca catchment and thus
the runoff from the whole Canton is taken as a surrogate variable. Unfortunately, the meteorological
observations and forecasts have been available for the Verzasca catchment only. Missing or erroneous
values have been replaced by applying a smoothing spline interpolation method.

Figure 2. Location of the Canton Ticino (blue) in Central Europe (lower part) and in Switzerland
(upper part) with the Verzasca catchment shown in red.

www.swissgrid.ch
www.swissgrid.ch
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Figure 3. Daily aggregates from the Verzasca catchment of the meteorological input data: Wind,
Radiation, Precipitation, Temperature. In blue, the calibration (training) period (1 January 2015–31
December 2017) and in red the validation (testing) period (1 January 2018–31 October 2018) is shown.
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Figure 4. Daily aggregates from the Canton Ticino of the consumption, production and surface runoff
data. In blue, the calibration (training) period (1 January 2015–31 December 2017) and in red the
validation (testing) period (1 January 2018–31 October 2018) is shown.

In Table 1, the used data are summarized. It is important to note that the meteorological data have
been interpolated to a grid with 200 m resolution for the Verzasca catchment. In addition, although the
proxy for the surface runoff is simulated for the whole Canton, the spatial resolution of the hydrological
model is only 500 m and thus prone to huge uncertainties and errors as well. Thus, both aspects,
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the uncertainty caused by downscaling and interpolation methods and the small fraction taken as
a meteorological surrogate of the total area, should be taken into consideration in the verification
results. Most probably, the analysed methods could yield better results with more precise input data
with higher spatial resolution. Thus, one additional interesting aspect of this analysis is the problem of
upscaling and how this very localized information of the Verzasca catchment can be used to predict
the energy production/consumption for a whole canton.

Table 1. Categorical and hydro-meteorological data [units] used for modelling the consumption/
production of the Canton Ticino.

Dependent Weekday Holiday Temp. Precip. Radiation Wind Runoff

Consumption 1–7 0–1 [◦C] [mm] [J/m2] [m/s][kWh]

Production 1–7 0–1 [◦C] [mm] [J/m2] [m/s] [m3/s][kWh]

In order to make the results of the different models comparable, the input data have been
pre-processed equally. In a first step, all the variables have been standardized (i.e., subtraction of the
mean and divided by the standard deviation), which is also known as feature scaling in ML. Preliminary
analysis of the different input variables identified the supreme importance of the Temperature for
the consumption model and the Runoff for the production model. In Figure 5, the results of the
relative influence of variables analysis for the GBM (see [17]) for the consumption and production
model are shown. The other methods show similar results for the ranking of the importance of the
different variables.
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Figure 5. Relative influences (in percentages) of the variables based on the Gradient Boosting Machine
(GBM) for the consumption (left) and the production (right) model.

In a second step, the temperature (for the consumption models) and the runoff (for the production
models) have been decomposed into different scales by the use of the non-decimated wavelet method
(details can be found in [18]). For this study, the most simple Haar wavelet has been applied,
which corresponds to, simply speaking, successive differencing and smoothing of the variable over
steadily increasing time-intervals. This wavelet transformed series allow the capturing of different
intrinsic details relevant for different time scales, which could be of importance for predicting
scale dependent properties and which would hardly be identified otherwise. The advantages of
decomposition methods for forecasting models have been shown in the work of Hu [19].
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For analysing and comparing the ML methods, the data sets have been split into a training period
(1 January 2015–31 December 2017) and a testing period (1 January 2018–31 October 2018) as indicated
in Figures 3 and 4. In the first part of this analysis, observed meteorological data from the Verzasca
catchment and surface runoff simulated by the hydrological model PREVAH [20] for the Canton of
Ticino have been used in order to exclude uncertainties and errors stemming from numerical weather
prediction systems. In the second part, the meteorological observations have been replaced with
the monthly ensemble forecasts (ENS) calculated at the European Centre of Medium-range Weather
Forecast (ECMWF) and delivered from MeteoSwiss. The version of the meteorological forecasts used
in this study consists of 51 ensemble members and are issued twice a week with lead-times of 45 days
(see [21] for details). Within this study, only 32 days are used as current skill levels do suggest no
utility for further forecast horizons.

2.2. Models

For the MLR model, the reader is referred to the statistical literature (see, for example, [22]).
In order to allow maximal transparency and reproducibility, all these analysed techniques are
implemented in the freely available statistical scripting language R [23]. However, only concise
details about the used R packages and their parameter settings will be given here and the reader
is referred to the corresponding web pages for more details. Some of these ML techniques are also
included in the R package caret [24], which facilitates a fine-tuning and sensitivity analysis of the
model hyper parameters.

2.2.1. Multivariate Adaptive Regression Splines (MARS)

MARS is a nonparametric statistical method in which the data sets are partitioned into
basis functions (BFs), which represent piecewise linear segments (splines) of differing gradients.
The connection/interface points between the pieces, called knots, are placed at random positions
within the range of each input variable. The MARS estimate of the unknown regression function f (x)
can be written as an additive function of the product basis functions [25]:

f (x) = β0 +
M

∑
m=1

βmBm(x), (1)

where β0 is the coefficient of the constant basis function B0(x) = 1, Bm(x) is the mth basis function,
which may be a single spline function or product of two or more, βm is the coefficient of the basis
function, and M is the number of basis functions in the model. The essential part of the MARS model
is the so-called hinge function, which maps a variable x to x? as:

x? = max(x− c, 0), (2)

where c is the knot of the basis function. The basis function Bm(x) itself is defined as [26]:

Bm(x) =
Km

∏
k=1

[
max

(
sk,m

(
xv(k,m) − tk,m

)
, 0
)]

, (3)

where v(k, m) represents the explanatory variables associated with the basis function Bm and Km is
the level of interaction between v(k, m) variables and tk,m is the location of the knot. The flexibility
of the MARS model results from the smooth connection of splines without making assumptions
about the functional relationships between the dependent variable and the predictors. The MARS
algorithm is based on an adaptive regression approach running a forward and a backward procedure
for generating the base functions and selecting the locations of the knots. At each forward step,
the entire domain is split into subregions and the knots and their corresponding basis functions are
added; at the backward step, the redundant basis functions are deleted to avoid overfitting [27]. This
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process is known as “pruning” and the optimal number of knots can be find using cross-validation.
After determination of the optimal MARS model, the parameter relative importance based on the
contributions from the input variables can be assessed with the help of the analysis of variance
(ANOVA) decomposition procedure [28]). In order to estimate the quantiles of the predicted variable,
a second model will be fitted to the residuals. In the most simple approach, a linear variance model is
applied, which incorporates heteroscedasticity properties of the residuals (i.e., linear changes in the
spread of the residuals).

MARS is implemented in the R package earth [29] and the model parameters have been tuned
with caret.

2.2.2. Quantile Regression (QR)

Standard linear regression models focus on finding a conditional mean function describing
the linear relationship between the predictor and the independent variable(s), whereas Quantile
Regression (QR) models look at different quantiles of the response defined by the conditional-quantile
function [4,30,31]. Thus, the full conditional distributional properties of the response variable can be
analysed without making any assumptions about the error distribution [16]. Hence, in QR models,
the relationship between the predictor and the independent variable(s) will not be described with
a single slope parameter, like in linear regression models, but a set of parameters βτ dependent on
the quantile τ have to be estimated. Koenker and Bassett [30] define the τth regression quantile
(0 < τ < 1) as any solution, βτ , to the quantile regression minimization problem

min
βτ∈IR

n

∑
i=1

ρτ (yi − ξτ (xi, βτ)) , (4)

where ρτ (yi − ξ (xi, βτ)) is a function of τ and yi − ξτ (xi, βτ). This kind of loss function is most often
called check or pinball loss function and is defined as [4,32]:

ρτ (yi − ξ (xi, βτ)) =

{
τ (yi − ξ (xi, βτ)) ∀yi ≥ ξτ (xi, βτ)

(τ − 1) (yi − ξ (xi, βτ)) ∀yi < ξτ (xi, βτ) ,
(5)

where {xi : i = 1, ..., n} denotes a sequence of explanatory variables and ξτ

(
xi, β̂τ

)
is formulated as

a linear function of parameters. In Koenker [4], a description is given how the resulting minimization
problem can be solved by linear programming methods.

Quantile Regression Neural Network (QRNN)

The theoretical support for the use of quantile regression within an Artificial Neural Network
(ANN) in order to estimate potentially nonlinear quantile models has been outlined by White [33] and
in [5,34,35] some applications are shown.

In QR, the parameters βτ have to be optimized by solving the optimization problem defined
in Equation (4). In an ANN with a hidden layer, the parameters include the hidden layer weights,
the hidden layer biases, the output weights and the output biases. In order to solve nonlinearities,
an activation function (e.g., the sigmoid function) has to be applied to each node (neuron) in the hidden
and the output layer, which maps the inner dot product of the weights and the input (plus bias) into
a specified range (e.g., between 0 and 1 in case of the sigmoid function). The risk of overfitting the ANN
can be reduced by adding a weight decay regularization term to the check function in Equation (4).

One major drawback of this approach is the separate estimations of the quantiles, which could lead
to erroneous crossing of quantiles [36]. This problem has been solved by [37], who introduced an efficient,
flexible nonlinear quantile regression model, the monotone composite quantile regression neural network
(MCQRNN). This method estimates simultaneously multiple non-crossing quantile functions and allows
for optional monotonicity, positivity/non-negativity, and additivity constraints. Therefore, it combines
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elements drawn from the standard QRNN model [5,33,34], the monotone multi-layer perceptron
(MMLP) [38,39] and the composite QRNN (CQRNN) [40]. The basis of the MCQRNN is the multi-layer
perceptron (MLP) neural network with partial monotonicity constraints [41]. The MCQRNN model
is available in QRNN [5,37]. The number of hidden layers have been optimized using a grid search
approach by running the model with different numbers of hidden layers and choosing the number,
which minimizes the validation error function (for example the Mean Absolute Error).

Kernel Quantile Regression (KQR)

Support Vector Machines (SVM) have been applied successfully to many different real-world
problems like electricity load [42] and consumption forecasting [43] and is based on the statistical
learning theory [44]. Basically, the SVM maps nonlinearly the original data into a higher dimensional
feature space using a kernel (e.g., the Gaussian Radial Basis Function) before solving the machine
learning task as a convex optimization problem. For Support Vector Regression (SVR) purposes, a loss
function has to be trained, which penalizes high and low misestimates. Therefore, a flexible tube of
minimal radius is formed symmetrically around the estimated function, the so-called hyperplane,
such that the absolute values of errors less than a certain threshold ε are ignored both above and below
the estimate. In this manner, points outside the tube, the support vectors, represents the hyperplane
and are penalized. Thus, support vectors are the most influential instances that affect the shape of the
tube and define the margins of these hyperplanes. Hence, a multiobjective function f (x) is constructed
from the loss function with at most ε deviation from the actually target values yi and as flat as possible
properties of the tube. Flatness in case of a linear function f (x) = 〈ω, x〉+ b, where 〈., .〉 denotes the
dot product, ω the weights and b the bias, can be achieved by minimizing the norm ‖ω‖2 = 〈ω, ω〉.
These constraints results in a convex optimization problem [45]):

minimize
1
2
‖ω‖2 (6)

subject to

{
yi − 〈ω, xi〉 − b ≤ ε

〈ω, xi〉+ b− yi ≤ ε
(7)

and can be solved using quadratic programming techniques. For nonlinear functions, the data have
to be mapped into a higher dimensional space, which can be done efficiently by the use of kernels.
Most often, the Gaussian radial basis function is applied for SVR, which is a general purpose kernel
and is defined as:

k(x, y) = exp−σ‖x− y‖2, (8)

where σ is the width parameter controlling the trade-off between error due to bias and variance [46].
In case of the KQR, the loss function given in Equation (5) will be used to estimate f (x). More detail
about Support Vector Regression and KQR can be found in [6,45].

The KQR is one out of many different kernel based ML techniques implemented in kernlab [47].
The parameter C, which regularizes the weight assigned to the loss function, i.e., the minimization of
the error, and the geometric property, i.e., the flatness, of the tube, is tuned with a grid search approach.

Quantile Regression Forest (QRF)

Random Forest (RF) models have been explained in detail for example in [48]. Here, only a brief
summary of this ML technique will be given. Regression trees divide the original data space into small
partitions in which the interaction is easier to be fitted.The recursive partition makes the model look
like a tree. Each node on the tree represents a small data space corresponding to a simple model [49].
The RF model creates a large number of trees as base models by randomly selecting a subset of
attributes in each splitting on randomly selected subsets of the training data. Essentially, RF combines
many regression trees into an ensemble to produce more accurate regressions by drawing several
bootstrap samples from the original training data and fitting a tree to each sample [50]. Within a RF,
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predicted responses Ŷ for k = 1, . . . , m new data points resulting from a vector of predictors, Xk, are
modelled as a weighted average of responses, Y of y = 1, . . . , training data points, with weights W
depending on the predictors [51]

Ŷk =
n

∑
j=1

Wj(Xk)Yj. (9)

The weights sum to one and are nonnegative. Each RF is composed of many trees. Each tree t is
grown by repeatedly splitting a bootstrap sample (an independent sample selected with replacement)
of the training data. Each split s represents a value of a predictor. The combination of predictor and
split is derived such that it leads to the smallest total impurity, defined as the sum of squared deviations
about the group mean. Splitting occurs repeatedly until a minimum number of observations in the
partition is attained, at which point the partition becomes a terminal node. New predictions of the
response are the average of all observed values that fall in each terminal node for each tree, averaged
over all trees. Averaging over all trees provides predictions that are dependent on the full training
data set including responses and predictors. Random forests give an accurate approximation of the
conditional mean of a response variable. However, a generalisation of random forests introduced
by [7] allows the estimation of conditional quantiles. This method is called Quantile Regression Forests.
The trees in QRF are growing as in the standard random forests algorithm. The conditional distribution
is then estimated by the weighted distribution of observed response variables, where the weights
attached to observations are identical to the original random forests algorithm. The main difference
between QRF and RF is that, in the latter, for each node in each tree, only the mean of the observations
that fall into this node are kept and all other information are neglected. In contrast, quantile regression
forests keep the value of all observations in this node, not just their mean, and assesses the conditional
distribution based on this information. In [52], QRF has been applied successfully for calibrating
meteorological ensemble forecasts.

QRF is implemented in the R package quantregForest [53]. The tuning of the model parameters
(e.g., mtry: the number of variables randomly sampled as candidates at each split) has been done with
the greed search approach.

Gradient Boosting Machine (GBM)

As mentioned previously, common ensemble techniques like RF rely on simple averaging of
models in the ensemble. The boosting methods differ by constructing an ensemble sequentially by
training, at each particular iteration, a new weak, base-learner model, most frequently a decision tree,
with respect to the error of the whole ensemble learnt so far. An overview of boosting techniques is
given by [54].

In [17,55], a gradient-descent based formulation of boosting methods was derived, where the new
base-learners are constructed to be maximally correlated with the negative gradient of the loss function,
associated with the whole ensemble. Given a dataset (x, y)N

i=1, where x = (x1, . . . , xd) refers to the
explanatory input variables and y to the corresponding labels of the response variable, the objective

is to reconstruct the unknown functional dependence x
f→ y with our estimate f̂ (x), such that some

specified loss function ψ(y, f ) is minimized:

f̂ (x) = arg min
f (x)

ψ(y, f (x)). (10)

After initialization of f̂x to be a constant the Gradient Boost algorithm of Friedmann [17] proceeds with
the iteration of

• Computation of the negative gradient:

zi = −
∂ψ(yi, f (xi))

∂ f (xi)

∣∣∣∣
f (xi)= f̂ (xi)

. (11)
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• Fitting a regression model, g(x), predicting zi from the covariates xi

• Choosing a gradient descent step size as:

ρ = arg min
ρ

N

∑
i=1

ψ(yi, f̂i + ρg(xi)). (12)

• Updating the estimate of f (x) as
f̂ (x)← f̂ (x) + ρg(x). (13)

At each iteration, the algorithm determines the direction, the gradient in which it needs to improve
the fit to the data and selects a particular model.

For the squared error cost function, for example, the negative gradient is simply equal to the
residuals and thus the trees are iteratively fitted to the residuals [56]. However, gradient boosting
can be applied to any differentiable cost function. Ref. [57] showed that the gradient tree boosting
algorithm predicts the quantile, when a weighted cost function is implemented.

The performance of gradient boosting can be improved with bagging [17]. For example, in decision
tree models, each tree is grown using a simulated training dataset, constructed from a fraction of the
original training set using bootstrapping. The problem of overfitting can be avoided if the contribution
of each tree is scaled by a learning rate (shrinkage). This helps to constrain the fitting procedure and
thus balance the predictive performance of the resulting model (e.g., [58]).

In this work, GBM has been applied with the help of the R package gbm. The number and
depth of trees, the learning rate, and the bagging percentage are hyper-parameters that must be tuned.
The size and number of trees are selected using cross-validation.

2.3. Estimation of the Quantiles

For the Quantile Regression based models (QR, QRNN, QRF, KQR, GBM), the quantiles can be
estimated directly by implementing the check function (Equation (5)) as a loss function. For the MLR
and the MARS model, the quantiles can be estimated from prediction intervals for specified confidence
levels, whereas, for the MLR, the model error ε is assumed to be normally distributed with zero mean
and constant variance, and the residuals of the MARS model can be modelled with an extra variance
model in order to allow heteroscedasticity. In the most simple case, the residuals are assumed to vary
linearly with the predicted response. In this study, possibly nonlinearities in the variance model have
also been investigated, but did not show any improvements.

2.4. Forecast Combination

A possibility to address under-dispersion and forecast bias is the use of the Non-homogeneous
Gaussian Regression (NGR) method or Ensemble Model Output Statistics (E-MOS) and is based on
multiple linear regression. More information about the MOS technique can be found for example
in [59,60]. Its extension for ensembles is explained in [11] and a brief summary of this method is given
hereafter. Let y denote again the variable of interest (e.g., energy consumption) and let f1, f2, . . . , fK be
the corresponding forecasts of the K ML models. If N (µ, σ2) denotes a Gaussian density with mean µ

and variance σ2, the NGR predictive distribution is given by Gneiting, et al. [11]:

y| f1, . . . , fK ∼ N (a0 + a1 f1 + · · ·+ aK fK, b0 + b1s2), (14)

where s2 =
1
K

K

∑
k=1

(
fk −

1
K

K

∑
k=1

fk

)2

.

It should be noted that each ML model is driven by a hydro-meteorological forecast ensemble
consisting of N members. However, these ensemble members are exchangeable, i.e., at each forecast
initiation, the members are chosen randomly and have no individually distinguishable characteristics.



Sustainability 2019, 11, 3328 12 of 22

Thus, the predictive mean is equal to the regression estimates for the ensemble means and forms
a bias-corrected weighted average of the different forecasts (K ML models), whereas the predictive
variance depends linearly on the variance of the K ML models plus the variance of N ensemble
members of each ML model.

The coefficients a0, . . . , ak, b0, and b1 are estimated by the maximum likelihood method, which
can be done by maximising the log-likelihood function of the model (Equation (14)) and is equivalent
to minimising the ignorance score (see [11] for further details).

2.5. Verification

In most publications, the ML methods are evaluated using some classical verification measures,
like the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE). In this paper,
the Coefficient of Determination will be used, which is also called R2 in statistics and is the proportion
of the variance in the dependent variable that is predictable from the independent variable(s):

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳ)2 , (15)

where yi are the observed values, ŷi are the predicted values, and ȳ is the mean of the observations
(see, for example, [61]). For the monthly forecasts, the Nash–Sutcliffe efficiency coefficient has been
used, which is almost identical to the R2 (see [62]). The difference is that the predicted values ŷi of the
statistical models in Equation (15) are replaced with model simulations, which are not directly inferred
from the observed values and thus allows negative results (whereas the R2 is defined between zero
and one only).

All these measures are useful for verifying the accuracy of single, deterministic forecasts. Since the
results in this study will include informations about the predictive uncertainty, derived from quantiles,
such measures will only highlight some aspects of the forecast performance. Thus, the prediction
and forecast quality has to be evaluated not only regarding accuracy, but should also include the
sharpness of the forecast. This means that the verifying observation should not only be as close as
possible to the forecast mean (median), but also the prediction intervals should be as narrow as possible.
The assessment of the forecast accuracy and sharpness can be verified by the Continuous Ranked
Probability Score (CRPS, [63]). Although this measure is usually applied to continuous variables,
it can be re-written in order be applied to quantiles directly (see [64] for details). The CRPS compares
the forecast probability distribution with the observation and both are represented as cdfs. If F is
the predictive cdf and y is the verifying observation, Ref. [64] showed that the CRPS can be defined
equivalently as standard form,

CRPS(F, y) =
∫ ∞

−∞
(F(t)− I{y ≤ t})2 dt, and as (16)

= 2
∫ 1

0

(
I
{

y < F−1(τ)
}
− τ

) (
F−1(τ)− y

)
dτ. (17)

Thus, in the standard form (Equation (16)), an ensemble of predictions can be converted
into a piecewise constant cdf with jumps at the different models (ensemble members), and I{.}
is a Heaviside step function, with a single step from 0 to 1 at the observed value of the variable.
For the quantile forecast qτ = F−1(τ), the integrand in Equation (17) equals the Quantile Score (QS),
i.e., the mean of the check function (Equation (5)). More details about the QS can be found in [28,65].
This means that the CRPS corresponds to the integral of the QS over all thresholds, or likewise the
integral of the QS over all probability levels [64,66]. Hence, the CRPS averages over the complete
range of forecast thresholds and probability levels and is negatively oriented, meaning the smaller the
better. It is also possible to construct weighted versions of the CRPS emphasizing user defined regions
of interest (see [67]). Following the work of [64], four different quantile weight functions have been
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analysed with center, tails, right and left tail emphasis. In Table 2, these functions are summarized.
This decomposed analysis could be interesting for applications, where not only the quality of the
forecast is analysed during average conditions, but also to evaluate which model is better for predicting
extremes (for example during dry and hot periods, resp. cold and wet periods).

Table 2. Weight functions for the quantile weighted versions of the CRPS, where q is the quantile
forecast, defined in [67].

Emphasis Quantile Weight Function

w1: center q(1− q)
w2: tails (2q− 1)2

w3: right tail q2

w4: left tail (1− q)2

3. Results and Discussion

Regarding the evaluation and comparison of the predictive uncertainties of various ML models,
only a very limited number of works exists, mostly with the focus on one specific model only.
For example, in [68], confidence intervals for the Gaussian Process (GP) regression have been reported
and, in [69], prediction intervals have been studied for the energy load forecasts using the generalized
extreme learning machine.

Most recently, a comprehensive literature review article about the application of ML methods for
the prediction of energy consumption has been published by Mosavi and Bahmani [70] showing that
the number of publications dramatically increased within the last 5 to 10 years. However, the majority
of the papers are dealing with short-term (hourly to daily) and long-term (yearly) predictions and only
a few (e.g., [68]) with medium-term predictions (weekly to monthly time scales). The main difference
to the results presented here is that non of these studies used monthly forecasts with daily resolution,
but monthly aggregates (sums, averages) where the information of the temporal evolution within
the upcoming weeks got lost. The same is true for the prediction of the energy production (see [71]).
In [72], different models for forecasting the wind power generation have been compared with different
time horizons, but without using hydro-meteorological forecasts.

Additionally, no articles have been found from a keyword search including CRPS (Continuous
Ranked Probability Score) AND Machine Learning AND energy consumption OR production.
In addition, the method of the NGR approach for optimally combing the different forecasts has
not been applied for predicting the energy consumption/production.

3.1. Evaluation Based on Observed Meteorological Input Data

The different models for the prediction of the consumption and the production have been
evaluated using the Coefficient of Determination (R2) and the Continuous Ranked Probability
Score (CRPS). Whereas the former has been calculated using the pairs of measured data and
the median (0.5 quantile) of the different ML methods, the latter has been evaluated for the
{0.01, 0.25, 0.5, 0.75, 0.99} quantiles.

The effect of applying the wavelet transformation to the most important variables
(i.e., the temperature for the consumption and the runoff for the production model) has been analysed
at first. The results for the consumption model without wavelet transformation are shown in
Table 3 in brackets indicating that the R2 of all the models improved after including the wavelet
decomposed variables. The same order of improvements could be achieved for the production model
(not shown here). For the training of the different ML models, the cross validation methods have been
applied by repeated randomly splitting the training period into a calibration and a validation period
(with a minimum block size of one month to circumvent errors caused by distorted autocorrelation
properties). In order to apply the modified CRPS (see Section 2.5, Equation (17)), the quantiles of the
predictions have to be calculated as explained in Section 2.3.
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The results of the R2 and the CRPS and its adaptation for emphasising four different quality
criteria (see Table 2) for the consumption and the production models are given in Tables 3–6.

Table 3. R2 for predicting the consumption for the training and the testing period in the Canton
Ticino. In brackets, the results for applying the different models without using the wavelet transformed
temperature variable and in bold the results of the best performing models are shown.

Consumption MLR MARS QR QRNN QRF KQR GBM

Training 0.68 0.84 0.69 0.87 0.82 0.89 0.89
(0.62) (0.76) (0.62) (0.76) (0.75) (0.82) (0.78)

Testing 0.72 0.82 0.73 0.80 0.83 0.81 0.83
(0.66) (0.74) (0.66) (0.73) (0.77) (0.68) (0.71)

Table 4. CRPS for the testing period of the predicted quantiles of the consumption in the Canton Ticino
(in bold the results of the best performing models are shown).

Consumption MLR MARS QR QRNN QRF KQR GBM

CRPS 3.75 2.97 3.88 3.29 2.88 3.13 2.93
w1 (center) 0.77 0.61 0.79 0.65 0.60 0.64 0.59
w2 (tails) 0.64 0.54 0.71 0.67 0.49 0.58 0.56
w3 (right tail) 1.05 0.87 1.16 0.99 0.81 0.96 0.92
w4 (left tails) 1.14 0.89 1.14 0.98 0.88 0.89 0.83

Table 5. R2 for predicting the production for the training and the testing period in the Canton Ticino.

Production MLR MARS QR QRNN QRF KQR GBM

Training 0.45 0.62 0.44 0.73 0.72 0.70 0.75
Testing 0.45 0.61 0.43 0.51 0.54 0.59 0.61

Table 6. CRPS for the testing period of the predicted quantiles of the production in the Canton Ticino
(in bold the results of the best performing models are shown).

Production MLR MARS QR QRNN QRF KQR GBM

CRPS 16.92 13.83 17.16 15.86 16.06 15.10 15.02
w1 (center) 3.50 2.85 3.55 3.13 3.32 3.09 3.06
w2 (tails) 2.91 2.42 2.96 3.34 2.77 2.72 2.7
w3 (right tail) 5.01 4.04 5.14 4.46 4.68 4.36 4.21
w4 (left tail) 4.91 4.08 4.92 5.14 4.74 4.55 4.69

All of the ML methods show an improvement of the accuracy for the daily predictions of the
consumption of about 10% in the testing period. It is interesting to see that there is no clear preference
of the ML method and all work almost equally well (R2 between 0.80 and 0.83). Regarding the
production, the MARS, KQR and GBM method show better results in comparison to QRNN and QRF.
However, also for the production, all of the ML methods show an improvement of the R2 between
5–15%.

Another important aspect is the analysis of the predictive uncertainty. In addition, regarding
this quality, evaluated with the CRPS, the ML methods are able to improve the skill. However,
there is a greater variability between the different methods. For the consumption models, the QRF
method shows the best sharpness and the reliability properties indicated by the lowest CRPS value.
When different weights to the quantiles are applied (as defined in Table 2), the QRF is better in
representing the tails and the right tail of the variables range, whereas the GBM method is preferable,
when the emphasis is on lower tails. Both methods are comparable good in improving the quality,
if the emphasising region is in the center. For the production model, the MARS model shows the best
results for the CRPS and the weighted CRPS.
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3.2. Monthly Forecasts

In order to evaluate the monthly forecasts, each of the 51 ensemble members has been taken as
input to the energy consumption and production model. For verifying the accuracy, the mean of these
51 forecasts has been calculated and verified with the Nash–Sutcliffe efficiency coefficient, whereas,
for the CRPS, the averaged quantiles are used (see [73]). The resulting total predictive uncertainty
comprises the uncertainty of the ML model and the NWP based forecast uncertainty, which increases
with the lead-time. Since ensemble weather prediction systems are known to show bias and dispersion
errors different calibration methods have been developed. Here, the NGR technique [11] is applied,
which yields probabilistic forecasts that take the form of Gaussian predictive probability density
functions (pdfs). The NGR predictive mean is a bias-corrected weighted average of the individual
forecast models, with coefficients that can be interpreted in terms of the relative contributions of
the used models. The NGR predictive variance is a linear function of the forecast variance. In this
study, the NGR is applied in order to optimally combine the results of the different ML models (MLR,
MARS, QRNN, QRF, KQR, GBM). Each model is run with 51 ensemble members stemming from
the ENS forecast system. Thus, the overall variance will be the sum of the intra model variance and
the inner model variance, which will be estimated for each lead time separately given the previous
forecasts. The difference between the intra model and the overall variance can be seen in the example
consumption forecast in Figure 6 on the left. In this example, the mean of four different models is
shown plus/minus 3 times the standard deviation (approximately the 99.7% interval) for the four
models (in light blue). In grey, the 99.7% interval is indicated after adding to the intra model variance
the variance of the 51 ensemble members for each model. In Figure 6 on the right, the NGR results for
this example are shown demonstrating the increased accuracy and the reduction of the uncertainty.
It is also interesting to see how the difference between the intra and overall variance almost vanishes
in this example because of the optimization of the NGR parameters for each lead-time separately.
However, it should be mentioned that this example is a forecast from summer 2018 with a stable high
pressure area over Europe lasting for a long period. This is reflected by a low increase in the ensemble
spread with the lead-time.

Figure 6. Example of a consumption forecast with simple averaging (left side) and the NGR approach
(right side). The intra model uncertainty is in light blue and the overall uncertainty in grey is shown
(mean plus/minus three times the standard deviation, i.e., the 99.7% interval).

Alternatively, the GBM has been tested for the combination of the various ML methods also.
However, because of the limited amount of monthly forecasts available (only starting from Spring
2018 with a total of about 20 weeks of monthly forecasts issued once or twice per week), such data
intense methods could not be used successfully. Nonetheless, in future studies, such ML methods
for the combination will be tested thoroughly having longer time-series of forecast data at disposal.
Despite the sample size of the available ENS forecast, the importance of the model combination can be
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seen quite clear indicated in a much lower CRPS value for the consumption and the production model
(Figures 7 and 8). For clarity and better of reading purposes, only the results for the MLR, MARS,
QRF and the NGR are shown.

0 5 10 15 20 25 30
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0
CRPS

MLR MARS QRF

NGR

Figure 7. CRPS of the monthly forecasts (with daily resolution) for the consumption with a forecast
horizon of 1 to 32 days (x-axis). For reasons of readability, only three methods (MLR—black,
MARS—green, QRF—blue) and the NGR results (in magenta) are shown. Since the CRPS is negatively
oriented (i.e., the lower the CRPS value, the better), the NGR shows the best performance for all
lead times.
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Figure 8. CRPS of the monthly forecasts (with daily resolution) for the production with a forecast
horizon of 1 to 32 days (x-axis). For reasons of readability, only three methods (MLR—black,
MARS—green, QRF—blue) and the NGR results (in magenta) are shown. Since the CRPS is negatively
oriented (i.e., the lower the CRPS value, the better), the NGR shows the best performance for all
lead times.

Since the CRPS is averaged over all forecasts, a more detailed look at examples of a single
monthly consumption forecast for the middle of August 2018 is shown in Figure 9 for the MLR,
MARS, QRF and the NGR model, resp. of a single monthly production forecast for the same period
in Figure 10. In both figures, the 50% (in light blue) and the 99% (in grey) prediction intervals are
indicated, which are much wider for the production forecasts and results in greater CRPS values.
These examples also help to explain some additional properties of the resulting CRPS shown in
Figures 7 and 8. For the consumption and the production, the forecasts based on the MLR are quite
linear and the weekly cycle is not reproduced properly. This lacking periodicity and big uncertainty
(especially for the production) is reflected in the CRPS as well, showing peaks of very high CRPS values
(i.e., bad forecasts) every weekend. This periodicity is much better captured with the MARS and the
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QRF model. However, both models show a uniform behaviour of the uncertainty. Only after combining
the different predictions is the variability of the forecast improved, showing lower uncertainty in
the beginning of the forecast period, which increases with lead time and thus reproduces better the
meteorological uncertainty depending on the lead time.
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Figure 9. Example of monthly consumption forecasts of the MLR, MARS, QRF model and the NGR
combination from the middle of August 2018 (in light blue, the 50% and in grey the 99% prediction
intervals are shown).

Decision makers and energy producers could benefit from the outcome of this study in
several ways:

• The usage of hydro-meteorological data, even with low spatial resolution and high uncertainty,
in combination with ML methods, will significantly improve the predictability of the energy
consumption/production

• The time-scale decomposition of the most important variables (temperature, resp. runoff) enhances
the quality of the predictions

• Monthly weather forecasts produce skillful energy forecasts and could be used gainfully for
long-term planning (e.g., changes of the hydro-power management according to forecasts of dry
summer periods and taking into consideration a potential increase of the PV production)
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• The estimation and the verification of the predictive uncertainty lead to more reliable predictions
and forecasts, which allow end-users to evaluate potential risks and losses, having more
trustworthy information available

• The application of various models and ensembles and their optimal combination reduces biases
and improves the overall forecast quality and reliability

• Since hydro-meteorological data are the most important drivers of the forecast models and are
often publicly available, the proposed methods could be easily transferred to different locations,
catchment or regions
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Figure 10. Example of monthly production forecasts of the MLR, MARS, QRF model and the NGR
combination from mid of August 2018 (in light blue the 50% and in grey the 99% prediction intervals
are shown).

4. Conclusions and Outlook

The accurate and reliable prediction of the energy consumption and production for the coming
days and weeks are important for many ecological and economic aspects. In this study, the prediction
of energy consumption and production is based on variables, which are available from meteorological
data providers. Prediction processes that possess nonlinear properties are very attractive for Machine
Learning methods. Thus, several ML methods have been compared with an emphasis on the
estimated predictive uncertainties, highly relevant information for the end-users to aid with effective
decision-making, which is most often neglected in the ML applications. Therefore, not only the
accuracy of the predictions has been verified by the Coefficient of Determination (resp. the Nash
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Sutcliffe Efficiency Measure), but also the predictive uncertainty has been evaluated by the Continuous
Rank Probability Score. As benchmark models, the Multiple Linear Regression and the Quantile
Regression Models have been used in order to see the possible gains in applying computational more
intense models.

For the production models, the different ML methods show some significant improvements.
The consumption, especially during the testing period (2018), shows quite linear behaviour, which is
probably caused by the long lasting dry period from April to October in 2018. Thus, the improvements
stemming from capturing nonlinearities is rather limited. Nonetheless, the ML methods show some
potential to improve the skill also for this period; especially, the predictive uncertainty can be estimated
sharper and more reliable in comparison to the linear models. Additionally, the first tests of applying
the ML methods for forecasting the monthly consumption and production highlight the importance
of applying different approaches and combining the results optimally, for example by the use of the
Nonhomogeneous Gaussian Regression approach.

This study should be considered as a basis for evaluating the potentials of ML methods with
very limited input and rough approximations and simplified assumptions, nonetheless with quite
promising results. In particular, the proposed methods for improving the prediction and forecasting
performance, like the wavelet decomposition of the main input variables (temperature and runoff),
the incorporation of monthly weather forecasts, the optimal combination of different models and
taking into account the predictive uncertainty in order to increase the reliability, will enhance the
applicability of ML methods for the predictions of the energy consumption/production. Next, the very
short-term forecasts/nowcasts (with lead-times less than 48 hours) will be coupled with an energy
consumption/production model in order to evaluate the gains of applying prediction models for
the next hours up to two days at very local scales. Furthermore, the incorporation of additional
informations (e.g., economic predictors) and different sources of energy production (e.g., PV and wind)
and their impact in the modelling chain will be tested. This will lead to much more complex methods,
where probably other ML methods like Deep Learning could be more expedient.
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