
sustainability

Article

Multicriteria Approach to Sustainable Transport
Evaluation under Incomplete Knowledge:
Electric Bikes Case Study

Wojciech Sałabun 1,* , Krzysztof Palczewski 1 and Jarosław Wątróbski 2
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Abstract: The problem of sustainable city transport is a growing field of study, and will be addressed
in this paper. With the rising significance of present transportation systems’ negative externalities on
the environment, such as the unavoidable increase of air pollution levels, cities seek sustainable means
of transport and reduction of combustion cars’ utilization. Moreover, improvements in the area of
renewable energy sources have led to rising trends in sustainability, driving the usage and production
of electric vehicles. Currently, there is an increasing tendency of looking for more sustainable transport
solutions, especially in highly congested urban areas. It seems that in that case, electric bicycles can be
a good option, as they yield more benefits in comparison to cars, especially combustion cars. In this
paper, we identify an assessment model for the selection of the best electric bicycle for sustainable
city transport by using incomplete knowledge. For this purpose, the Characteristic Objects METhod
(COMET) is used. The COMET method, proven effective in the assessment of sustainable challenges,
is a modern approach, utterly free of the rank reversal phenomenon. The evaluated model considers
investigated multiple criteria and is independent of chosen alternatives in the criteria domain. Hence,
it can be easily modified and extended for diverse sets of decisional variants. Moreover, the presented
approach allows assessing alternatives under conditions of incomplete knowledge, where some data
are presented as possible interval numbers.

Keywords: sustainability; city transport; decision-making; multi-criteria decision analysis; rank
reversal; fuzzy logic; incomplete knowledge

1. Introduction

More than 50% of the world’s population lives in urban areas, and it is estimated that by 2045 the
number of people living in cities will increase up to 1.5 times—which is around 6 billion people [1].
There are more than 1 billion motorized vehicles worldwide, and with rising income levels, one should
expect continuous expansion [2,3]. As a result of high flows of people into cities, transport systems
are on the verge of transformation. With rising numbers of people dwelling in urban areas, many
challenging needs and problems arise regarding sustainable development, where the critical element
is the sustainable transport. The importance of this issue is not only proven by the critical postulates of
the Sustainable Development Goals [4], but also by negative aspects current urban transport poses,
such as elevated levels of air pollution or more frequent premature deaths from human exposure
to harmful pollutants [5]. Diseases caused by pollution were responsible for an estimated 9 million
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premature deaths in 2015 three times more deaths than from AIDS, tuberculosis, and malaria combined
and 15 times more than from all wars and other forms of violence [6].

Sustainable urban transport has become more complex and more significant to sustainability
policies [6]. Thus researchers investigate this ongoing challenge through diverse and innovative
means [7,8]. This problem is examined not only concerning modern metropolitan areas [9], but also to
cities in developing countries [10,11]. The vital role of transport in the sustainability of the cities has
been ascertained in previous papers, motivating researchers to explore new solutions in the area [12].
Consequently, new approaches have been proposed that aim to improve current transportation systems
and solve prevailing environmental and economic aspects concerned with currently unsustainable
transportation [13,14]. However, the previous works examine the problem of transport systems as a
whole, often only regarding the supply chain, entirely omitting or briefly investigating specifically
urban transportation [15]. Furthermore, researchers in the sustainable city transport discipline need
to consider a broad spectrum of criteria, such as environmental, economic, social, legal and political
issues [16]. Such multidimensional matter requires the use of various techniques to address this
problem, such as fuzzy logic or multi-criteria decision analysis (MCDA) methods [17–19]. Currently,
the evaluation of sustainable transport is an emerging area that researchers handle more frequently
with the use of MCDA methods, proven to be effective in such challenges [20–22], as well as in
evaluating other sustainable decision problems [23,24]. With growing attention towards sustainability
assessment, one should also consider renewable energy sources, which is a popular subject in many
kinds of research. Studies have shown that zero-emission energy sources, highly demanded by modern
cities, are tending to be more accessible and cleaner [25,26]. Researchers have used various methods
to investigate renewable energy sources problems, such as evaluating locations for offshore wind
farms using PROMETHEE for Sustainability Assessment (PROSA) method [27,28], or investigating
the design of wind farms using Analytic Network Process (ANP) and Analytic Hierarchy Process
(AHP) methods [29]. Consequently, with greener energy, studies showed that there is a rising interest
in sustainable means of transport, such as electric vans or public city buses [30,31].

The key to sustainable urban transport is finding optimal means of transport, which would satisfy
both the needs of the present and the future. In this area, multiple various research and practical
initiatives undertaken in the recent years can be indicated [32–34]. They include both works focused
on formulating a strategy of building and developing sustainable city transport [35–37], as well as
papers of tactical [38–40] and operational [41] scope, focused for example on selection and evaluation
of selected variants of sustainable city logistics [42–44]. It should be pointed out that the dynamic
development of technology allows to undertake new attempts in searching for new and updating
the existing sustainable options in city logistics and transport (for example the search for a portfolio
of apropriate variants of sustainable city transport should be conducted in multiple layers [45] with
the use of the complete set of available transport options [46]. As other types of solutions, such as
car sharing, proved to be promising sustainable transport fields, it should be pointed out that their
optional coexistence in a single unified system of sustainable city logistics [47–50] should be considered
with other pro-ecological variants of city logistics such as ebikes, emotors, bikes. Naturally, a holistic
approach to sustainable city transport requires to take into account a set of external conditions (e.g.,
climate conditions), technical or urbanistic options, which condition obtaining the desired effects [51]
while sustaining an appropriate level of safety. As indicated, the coexistence of different modes of
sustainable transport is therefore essential and in this context, the use of e-bikes may fill this gap.
Electric bicycles are relatively cheap, and their cost of use is significantly lower compared to, e.g.,
fuel-powered personal cars [52]. Furthermore, they create a great opportunity concerning more rapid
movement around the city, especially in congested city centers and are more comfortable than other
ecological means of transport, such as traditional bicycles. Electric bikes are less safe (higher speed of
movement) and do not require any physical activity compared to traditional bikes. However, they
empower many positive externalities such as negligible emissions of pollutants, reduction in harmful
noise levels and impacting overall awareness towards a sustainable future, to name a few. Today, many
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modern cities are limiting the usage of combustion vehicles and some are planning to completely
withdraw existing ones or ban future sales [53]. With the encouragement of sustainable means of
transport, one can expect an increasing trend towards electric vehicles in the foreseeable future [54].
The dynamically developing technology causes that the set of available sustainable transport variants
(e.g., ebikes, electric powered or hybrid cars, emotors) grows rapidly. In such context, it becomes
necessary to develop methodological foundations for the evaluation of sustainable transport options.
The specifics of this problem, implicating the natural lack of selected data (e.g., malfunction reports
data, loss of value of newly-introduced variants over a few-year time span), result in the necessity to
develop the methodological guidelines in the environment of incomplete knowledge in the model.

In this paper, the ongoing challenge of sustainable transport will be addressed, which is the
selection of the most rational electric bicycle. The paper shows step by step how to identify
multi-criteria decision-making assessment model. For this purpose, the Characteristic Objects METhod
(COMET) is used, which was proven successful in other sustainable development problems [55].
The COMET method, as one of the multi-criteria decision-analysis technique based on a rule set, is
completely free of the rank reversal paradox, which is a key in a proper analysis [56,57]. The obtained
model is used to rank the considered bicycles and choose the most rational from the set of ten proposed
products. Methodically, work presents a successful attempt of building integrated, inference based
model, that aggregates full data with incomplete expert knowledge. In a practical sense, the authors’
contribution is an attempt to build a reference ranking of ebikes for a carefully selected extensive set of
ebikes, which can provide useful knowledge both for particular decision makers as well as for local
communities and policy makers, where the evaluation and selection of sustainable transport variants
is at stake.

The rest of the paper is organized as follows: in the next section, the Fuzzy Set Theory preliminaries
are outlined. In Section 3, the COMET method is described as a useful tool to identify multi-criteria
decision models. Subsequently, in Section 4, an experiment to build a decision model for an assessment
of electric bicycles is described step by step, and the results are presented. The conclusions and the
possible future directions are presented in Section 5.

2. Fuzzy Set Theory: Preliminaries

The fuzzy set theory was developed by Lofti Zadeh, who introduced the idea of fuzzy sets in [58].
The growing importance of the Fuzzy Set Theory in model creation in numerous scientific fields has
proven to be an effective way to approach and solve multi-criteria decision problems [59–61]. The
necessary concepts of the Fuzzy Set Theory are described as follows [62–64]:

Definition 1. The fuzzy set and the membership function—the characteristic function µA of a crisp set A ⊆ X
assigns a value of either 0 or 1 to each member of X, and the crisp sets only allow a full membership (µA(x) = 1)
or no membership at all (µA(x) = 0). This function can be generalized to a function µÃ so that the value
assigned to the element of the universal set X falls within a specified range, i.e., µÃ : X → [0, 1]. The assigned
value indicates the degree of membership of the element in the set A. The function µÃ is called a membership
function and the set Ã = (x, µÃ(x)), where x ∈ X, defined by µÃ(x) for each x ∈ X is called a fuzzy
set [65,66].

Definition 2. The triangular fuzzy number (TFN)—a fuzzy set Ã, defined on the universal set of real
numbers <, is told to be a triangular fuzzy number Ã(a, m, b) if its membership function has the following
form [65,66] (1):

µÃ(x, a, m, b) =



0 x ≤ a
x−a
m−a a ≤ x ≤ m
1 x = m
b−x
b−m m ≤ x ≤ b
0 x ≥ b

(1)
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and the following characteristics, Equations (2) and (3):

x1, x2 ∈ [a, b] ∧ x2 > x1 ⇒ µÃ(x2) > µÃ(x1) (2)

x1, x2 ∈ [b, c] ∧ x2 > x1 ⇒ µÃ(x2) > µÃ(x1) (3)

Definition 3. The support of a TFN—the support of a TFN Ã is defined as a crisp subset of the Ã set in which
all elements have a non-zero membership value in the Ã set [65,66], Equation (4):

S(Ã) = x : µÃ(x) > 0 = [a, b] (4)

Definition 4. The core of a TFN—the core of a TFN Ã is a singleton (one-element fuzzy set) with the
membership value equal to 1 [65,66], Equation (5):

C(Ã) = x : µÃ(x) = 1 = m (5)

Definition 5. The fuzzy rule—the single fuzzy rule can be based on the Modus Ponens tautology [65,66].
The reasoning process uses the IF–THEN, OR and AND logical connectives.

Definition 6. The rule base—the rule base consists of logical rules determining the causal relationships existing
in the system between the input and output fuzzy sets [66,67].

Definition 7. The T-norm operator (intersection)—the T-norm operator is a T function modelling the AND
intersection operation of two or more fuzzy numbers, e.g., Ã and B̃. Basic requirements for a function T is
described by four properties: boundary Equation (6), monotonicity Equation (7), commutativity Equation (8),
and associativity Equation (9) (for any a, b, c, d ∈ [0, 1]).

T(0, 0) = 0, T(a, 1) = T(1, a) = a (6)

T(a, b) < T(c, d) ⇔ i f a < c and b < d (7)

T(a, b) = T(b, a) (8)

T(a, T(b, c)) = T(T(a, b), c) (9)

In this paper, the product is used as the T-norm operator [65–67], Equation (10):

µÃ(x)ANDµB̃(y) = µÃ(x) · µB̃(y) (10)

Definition 8. The S-norm operator (union), or T-conorm—the S-norm operator is an S function modelling
the OR union operation of two or more fuzzy numbers, e.g., Ã and B̃. Basic requirements for a function S is
described by four properties: boundary Equation (11), monotonicity Equation (12), commutativity Equation (13),
and associativity Equation (14) (for any a, b, c, d ∈ [0, 1]).

S(1, 1) = 1, S(a, 0) = T(0, a) = a (11)

S(a, b) < S(c, d) ⇔ i f a < c and b < d (12)

S(a, b) = S(b, a) (13)

S(a, S(b, c)) = S(S(a, b), c) (14)

In this paper, the bounded sum is used as the S-norm operator [65–67], Equation (15):

µÃ(x)ORµB̃(y) = (µÃ(x) + µB̃(y)) ∧ 1 (15)
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3. The Characteristic Objects Method

Many MCDM methods exhibit the rank reversal phenomenon; however, the Characteristic Objects
Method (COMET) is completely free of the this problem. In previous works, the accuracy of the COMET
method was verified [68]. The formal notation of the COMET method should be briefly recalled [62–64].
The whole decision-making process by using the COMET method is presented in Figure 1.

Generate the
rule base on the

basis of the
Characteristic

Object

Pairwise
comparison of all

Characteristic
Objects by an

expert

Triangular fuzzy
numbers are

determined for
each criterion

MCDM problem

Generate
Characteristic

Objects based on
TFN

Initiate the
process

COMET step #2

Obtained MEJ
matrix

Calculated
estimated

preference value for
each Characteristic

Object

COMET step #3 COMET step #4 COMET step #5

Inference using
rule base

Final ranking

Select the
decision criteria

Determine the set
of alternatives

Select a group of
experts

Modelling
structure of
the problem

Expert evaluation of
the Characteristic

Objects
Obtainment of the

rule base
Evaluation of the
set of alternatives

COMET step #1

Figure 1. The procedure of the Characteristic Objects Method (COMET) to identify
decision-making model.

Step 1. Definition of the space of the problem—the expert determines the dimensionality of the
problem by selecting r criteria, C1, C2, · · · , Cr. Then, a set of fuzzy numbers is selected for each
criterion Ci, e.g., {C̃i1, C̃i2, · · · , C̃ici} (16):

C1 = {C̃11, C̃12, . . . , C̃1c1}
C2 = {C̃21, C̃22, . . . , C̃2c2}
· · ·
Cr = {C̃r1, C̃r2, . . . , C̃rcr}

(16)

where C1, C2, · · · , Cr are the ordinals of the fuzzy numbers for all criteria.
Step 2. Generation of the characteristic objects—the characteristic objects (CO) are obtained with the

usage of the Cartesian product of the fuzzy numbers’ cores of all the criteria:

CO = C(C1)× C(C2)× · · · × C(Cr) (17)

As a result, an ordered set of all CO is obtained:

CO1 = C(C̃11), C(C̃21), . . . , C(C̃r1)

CO2 = C(C̃11), C(C̃21), . . . , C(C̃r2)

· · ·
COt = C(C̃1c1), C(C̃2c2), . . . , C(C̃rcr )

(18)

where t is the count of COs and is equal to:

t =
r

∏
i=1

ci (19)

Step 3. Evaluation of the characteristic objects—the expert determines the Matrix of Expert Judgment
(MEJ) by comparing the COs pairwise. The matrix is presented below:
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MEJ =


α11 α12 · · · α1t
α21 α22 · · · α2t
· · · · · · · · · · · ·
αt1 αt2 · · · αtt

 (20)

where αij is the result of comparing COi and COj by the expert. The function fexp denotes the mental
judgement function of the expert. It depends solely on the knowledge of the expert. The expert’s
preferences can be presented as:

αij =


0.0, fexp(COi) < fexp(COj)

0.5, fexp(COi) = fexp(COj)

1.0, fexp(COi) > fexp(COj)

(21)

After the MEJ matrix is prepared, a vertical vector of the Summed Judgments (SJ) is obtained
as follows:

SJi =
t

∑
j=1

αij (22)

Eventually, the values of preference are approximated for each characteristic object. As a result,
a vertical vector P is obtained, where the ith row contains the approximate value of preference for COi.

Step 4. The rule base—each characteristic object and its value of preference is converted to a fuzzy
rule as:

IF C(C̃1i) AND C(C̃2i) AND . . . THEN Pi (23)

In this way, a complete fuzzy rule base is obtained.
Step 5. Inference and the final ranking—each alternative is presented as a set of crisp numbers,

e.g., Ai = {αi1, α2i, αri. This set corresponds to the criteria C1, C2, · · · , Cr. Mamdani’s fuzzy inference
method is used to compute the preference of the i− th alternative. The rule base guarantees that the
obtained results are unequivocal. The bijection makes the COMET completely rank reversal free.

4. Study Case

This paper presents the assessment model of decision-making concerning sustainable city
transport. Selecting an optimal electric bike, especially considering multiple criteria, is a complex
challenge. Such compound problems require the expert’s knowledge to establish the requirements for
the model and therefore, based on the expert’s opinion, eight criteria were selected. Hence, the space
of the investigated problem is equal to 8. Based on [69–80], the following criteria are specified:

• C1—battery capacity, expressed in Ampere hours (Ah) [73];
• C2—charging time of the battery, expressed in hours (h) [73,74];
• C3—number of gears (derailleur), expressed in units [75];
• C4—power of the engine, expressed in Watts (W) [74,76];
• C5—the maximum speed reached solely by electric mode, expressed in kilometers per hour

(km/h) [78];
• C6—driving range of the bicycle by electric mode using fully loaded battery, expressed in

kilometers (km) [77,78];
• C7—weight of the bicycle, including battery expressed in kilograms (kg) [78];
• C8—price in US dollars [74,79].
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In this study case, the considered problem is simplified to a simple structure which is presented
in Figure 2. In that way, we have to identify four related models, where each one requires a lot smaller
number of queries. The decision model can be presented as the following models:

• battery effectiveness assessment model with two inputs (9 characteristic objects and 36 pairwise
comparisons are needed);

• engine assessment model with two inputs (9 characteristic objects and 36 pairwise comparisons
are needed);

• drive system assessment model with three inputs (27 characteristic objects and 351 pairwise
comparisons are needed);

• comfort of usage assessment model with two inputs (9 characteristic objects and 36 pairwise
comparisons are needed);

• electric bicycle assessment model with three inputs (36 characteristic objects and 351 pairwise
comparisons are needed).

battery
effectiveness
assessment

model

engine
assessment

model

battery capacity

charging time

number of gears

engine power

maximum speed

range

drive system
assessment

model

weight

price

electric bicycle 
assessment

model 
 comfort of

usage 
assessment

model

C1

C2 

C3

C4 

C5

C6

C7

P1 

P2 

P3 

P4 

C8

P 

Figure 2. The hierarchical structure of the electric bicycle assessment problem.

In Table 1, criteria are presented along with their respective linguistic values. Table 2 presents 10
exemplary ebikes along with the explanation of the model foundations, whereas the complete model
for 64 bikes is presented in Section 4.7.

Table 1. Selected criteria C1–C8 and their characteristic values {low, medium, high}.

Ci Name Unit Low Medium High

C1 battery capacity Ah 4 9 15
C2 charging time hours 3 5 8
C3 number of gears units 1 7 21
C4 engine power W 250 350 500
C5 maximum speed km/h 20 27 35
C6 range km 20 60 100
C7 weight kg 10 20 25
C8 price USD 300 2500 6300
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Table 2. The performance table of the alternatives A1–A10.

Ai Name C1 C2 C3 C4 C5 C6 C7 C8

A1 Emu Crossbar 14.5 [6, 8] 7 250 25 [55, 100] 23 1560
A2 Xiaomi QiCycle 5.8 3 3 250 20 45 14.5 950
A3 ANCHEER Plus 8 5 21 250 25 [25, 50] 23 615
A4 ECOTRIC 12 [5, 8] 7 500 32 55 24.9 999
A5 Merax 26” Aluminum 8.8 [5, 6] 7 350 32 [35, 45] 22 690
A6 Kemanner 8 [4, 6] 21 250 25 [35, 70] 20 [615, 700]
A7 Rattan 10.4 [4, 5] 7 350 32 50 23.5 740
A8 Aceshin 8 [4, 6] 21 250 30 40 22.2 730
A9 Shaofu 6AH 4.4 3 1 350 25 20 12 390
A10 Carrera Crossfuze 11 [6, 7] 9 400 25 80 20.3 2300

In order to identify the final model for the electric bicycle assessment, we first have to determine the
following assessment models, i.e., battery effectiveness, engine, drive system and comfort of the usage.

4.1. Battery Effectiveness Assessment Model

The expert identified two important criteria for the battery effectiveness assessment model, battery
capacity, expressed in Ampere-hours [Ah] and charging time expressed in hours [H]. The former is a
profit type criterion; hence the value increase implies the preference increase, whereas the latter is a
cost-type criterion; hence the value increase implies the preference decrease. It should be noted that
the relationship is rarely linear in such complex problems. The triangular fuzzy numbers of criteria C1

and C2 are depicted in Figure 3. The characteristic objects CO1–CO9 are created using the Cartesian
product of the fuzzy numbers’ cores of criteria C1 and C2 and are presented in Table 3. The space of
the problem, including characteristic objects and alternatives, is presented in Figure 4.
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Figure 3. The sets of triangular numbers for each considered criterion Cj and the aggregated criteria Pi,
where i = 1, 2..., 4; j = 1, 2..., 8.

Table 3. The results for criteria C1 (battery capacity), C2 (charging time), and P1 values for each COi.

COi C1 C2 P1

CO1 4 3 0.3333
CO2 4 5 0.1667
CO3 4 8 0.0000
CO4 9 3 0.8333
CO5 9 5 0.5000
CO6 9 8 0.1667
CO7 15 3 1.0000
CO8 15 5 0.6667
CO9 15 8 0.5000
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4 6 8 10 12 14 16

C
1

2

3

4

5

6

7

8

9
C

2

characteristic objects

interval decisional alternatives

point decisional alternatives

Figure 4. The space of the problem for the identification of P1.

The expert performed 36 pairwise comparisons of the characteristic objects. As a result, the
Matrix of Expert Judgment (MEJ) was determined, where each αij value was calculated using the
Equation (21). The MEJ matrices are presented in Figures 5 and 6, where the αij values of either 0,
0.5 or 1 are represented by white, black and gray boxes, respectively. Consequently, the vector of the
Summed Judgements (SJ) was calculated using Equation (22), and hence, it was to used to calculate
the values of preference (P), presented in Table 3.

4.2. Engine Assessment Model

The expert identified two criteria for the engine assessment model, namely engine power,
expressed in Watts [W] and maximum speed reached by electric bicycle in electric mode expressed
in kilometers per hour [km/h]. Both are profit type criteria, hence as stated before, with the increase
in values, preference increases. The triangular fuzzy numbers of criteria C4 and C5 are depicted in
Figure 3. The characteristic objects CO1–CO9 are created using the Cartesian product of the fuzzy
numbers’ cores of criteria C4 and C5 and are presented in Table 4. The space of the problem, including
characteristic objects and alternatives, is presented in Figure 7.

Table 4. The results for criteria C4 and C5 and their characteristic objects’ values of preference P for COi.

COi C4 Engine Power C5 Maximum Speed P2

CO1 250 20 0.0000
CO2 250 27 0.3750
CO3 250 35 0.7500
CO4 350 20 0.1250
CO5 350 27 0.5000
CO6 350 35 0.8750
CO7 500 20 0.2500
CO8 500 27 0.6250
CO9 500 35 1.0000
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(a) (b) (c)

Figure 5. The matrix of expert judgement for P1 (a), P2 (b), and P3 (c).

(a) (b)

Figure 6. The matrix of expert judgement for P4 (a), and P (b).
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C
4
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24
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34
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C
5

characteristic objects

point decisional alternatives

Figure 7. The space of the problem for the identification of P2.

4.3. Comfort of Usage Assessment Model

Two important criteria were selected for the engine assessment model, range, expressed in
kilometers [km] and weight of the bicycle in kilograms [kg]. The first one is a profit type criterion and
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the second one is a cost-type criterion. The triangular fuzzy numbers of criteria C6 and C7 are shown
in Figure 3. The characteristic objects CO1–CO9 are created using the Cartesian product of the fuzzy
numbers’ cores of criteria C6 and C7 and are presented in Table 5. The space of the problem, including
characteristic objects and alternatives, is presented in Figure 8.

Table 5. The results for criteria C6 (range) and C7 (weight) and their characteristic objects’ values of
preference P for COi.

COi C6 C7 P3

CO1 20 10 0.2500
CO2 20 20 0.1250
CO3 20 25 0.0000
CO4 60 10 0.6250
CO5 60 20 0.5000
CO6 60 25 0.3750
CO7 100 10 1.0000
CO8 100 20 0.8750
CO9 100 25 0.7500

20 30 40 50 60 70 80 90 100

C
6

8

10

12

14

16

18

20

22

24

26

28

C
7

characteristic objects

interval decisional alternatives

point decisional alternatives

Figure 8. The space of the problem for the identification of P3.

4.4. Drive System Assessment Model

For the model of drive system assessment, the variables from previous models are used, namely
battery effectiveness assessment model and the engine assessment model, P1 and P2 respectively.
Additionally, the third criterion is included—the number of gears available in the bicycle derailleur
system C3. The aggregated variables P1, P2 and criterion C3 are all profit type. The triangular fuzzy
numbers of criterion C3 is presented in Figure 3. The characteristic objects CO1–CO12 are presented in
Table 6.
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Table 6. The results for P1 battery assessment, C3 number of gears and P2 engine assessment and their
corresponding characteristic objects’ values of preference P for Oi.

COi P1 C3 P2 P4

CO1 0 1 0 0.0000
CO2 0 1 1 0.3750
CO3 0 7 0 0.2500
CO4 0 7 1 0.6250
CO5 0 21 0 0.1250
CO6 0 21 1 0.5000
CO7 1 1 0 0.3750
CO8 1 1 1 0.7500
CO9 1 7 0 0.6250
CO10 1 7 1 1.0000
CO11 1 21 0 0.5000
CO12 1 21 1 0.8750

4.5. Electric Bicycle Assessment Model

The final model for the electric bicycle assessment has three input variables. Two aggregated variables
were used, the output variable from the drive system assessment and the output variable from the comfort
of usage assessment. Moreover, we include the third input—the criterion price C7. The aggregated variables
P1, P2 are both profit type, whereas the criterion C7 is cost type. The triangular fuzzy numbers of criterion
C7 is shown in Figure 3. The characteristic objects CO1–CO12 are presented in Table 7.

Table 7. The results for P3 (drive system assessment), P4 (comfort of usage assessment) and their
corresponding characteristic objects’ values of preference P for COi.

COi P3 P4 C8 P

CO1 0 0 300 0.2222
CO2 0 0 2500 0.1111
CO3 0 0 6300 0.0000
CO4 0 1 300 0.6667
CO5 0 1 2500 0.5556
CO6 0 1 6300 0.4444
CO7 1 0 300 0.6667
CO8 1 0 2500 0.5556
CO9 1 0 6300 0.3333
CO10 1 1 300 1.0000
CO11 1 1 2500 0.8889
CO12 1 1 6300 0.7778

4.6. Final Ranking

The final preference and the ranking for the ten considered alternatives of electric bicycles are
presented in Table 8. Concerning the case with the full knowledge, when we always assume the best value
of the interval, then the best variant is bicycle Emu Crossbar (preference value 0.6119), slightly exceeding
the Rattan bicycle (preference value 0.6056). Undoubtedly, the worst alternative is the ANCHEER Plus
model (preference value 0.3752). The second worst, however, not that close to the least optimal one, is the
Xiaomi QiCycle model (preference value 0.4063). The Emu Crossbar scored such high results due to the
fact, that has the most extended range (up to 100 km) and the highest battery capacity (14.5 Ah), which
outweighs its disadvantages, such as high price. However, when considering Rattan model (second
best), it is worth stating that, although it has lower battery capacity than Emu Crossbar, it has also lower
charging time (which is cost type), hence the overall preference for battery assessment is greater in Rattan
model. Compared to Emu, Rattan is also two times cheaper and has a higher preference regarding engine
assessment. However, its rather average range contributed to only second place.
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Table 8. Considered alternatives and their results A1–A10.

Ai P1 P2 P3 P4 P

A1 [0.4722, 0.5926] 0.2679 [0.5275, 0.5727] [0.3781, 0.8000] [0.4219, 0.6119]
A2 0.5133 0 0.2758 0.4281 0.4063
A3 0.4333 0.2679 0.3880 [0.0969, 0.3313] [0.3752, 0.4693]
A4 [0.3333, 0.5833] 0.8594 [0.6973, 0,7910] 0.3306 [0.5308, 0.5686]
A5 [0.3778, 0.4867] 0.7344 [0.6671, 0.7079] [0.2156, 0.3094] [0.5264, 0.5778]
A6 [0.3333, 0.5833] 0.2679 [0.3505, 0.4442] [0.2656, 0.5938] [0.4116, 0.5959]
A7 [0.5389, 0.7055] 0.7344 [0.7275, 0.7900] 0.3188 [0.5800, 0.6056]
A8 [0.3333, 0.5833] 0.5156 [0.4433, 0.5371] 0.2575 [0.4414, 0.4804]
A9 0.3733 0.3929 0.2873 0.225 0.4261
A10 [0.3704, 0.4630] 0.4345 [0.5340, 0.5687] 0.6800 [0.4802, 0.4918]

However, these were the rankings under assuming full knowledge as the best value from the
uncertainty intervals. When we do take them into account, the final ranking has to be interpreted
differently—taking into example the Emu Crossbar, which the final preference interval is equal to
[0.4219, 0.6119]. While considering the highest values from intervals made Emu clearly the the first, it
is worth noticing how broad the interval is, mainly due to the fact that his range C6 and his preference
value for comfort of usage assessment P4 have extensive intervals, 55–100 (km) and [0.3781, 0.8000],
respectively. Thus, under some degree of uncertainty, the final ranking varies greatly. Hence, the Emu
still might be first, but one has to be aware of the fact that considering the lowest values from the
interval, Emu belongs closer to the end of the ranking.

On the contrary, the Rattan bicycle (second place), which also exhibits the problem of uncertainty,
has a much lower range of the interval [0.5800, 0.6056]. Even with the lowest value, Rattan still has a
high preference value (P = 0.5800), whereas Emu had (P = 0.4219). Therefore, interval numbers can
be a useful indicator of the stability of the final ranking, under conditions of incomplete knowledge,
which can easily change the definitive ranking of alternatives.

4.7. Practical Exploitation of the Identified Model

The proposed methodological aspects of the identification of the assessment model in the conditions
of incomplete knowledge are presented on a set of 10 arbitrarily selected decision variants. In practice,
the number of possible decision options is often much higher. Therefore, as a result of the analysis
of literature and websites [81–87], the set of evaluated variants was extended by another 54 decision
alternatives. The extended set was assessed using the identified model and decision-making system
available on wwww.comet.edu.pl. Table 9 presents the analyzed set together with the determined
assessments of preferences (P). The worst option was the California Bicycle Factory Retro S bike (with
0.3669 point). It had a low battery capacity (it was 8 ah), which was not compensated by charging time
(it was 4 hours), low number of gears, low engine power, high weight, high price ($2499) and average
maximum speed. The next variant was only improved by 0.0229 of point. On the other hand, the best
option was the Blix Sol bike, which was rated 0.687 of point. The parameters were mostly medium;
however, the low price and big range were crucial to the victory of this option.

wwww.comet.edu.pl
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Table 9. The results of the model for a wider domain of e-bikes according to [81–87].

Ai Name C1 C2 C3 C4 C5 C6 C7 C8 P

A1 2017 Raleigh Detour iE 11.6 4 9 250 32 80 21.7 2399 0.5779
A2 Aceshin 8 [4, 6] 21 250 30 40 22.2 730 [0.4414, 0.4804]
A3 ANCHEER Plus 8 5 21 250 25 [25, 50] 23 615 [0.3752, 0.4693]
A4 BESV CF1 8.4 5 10 250 28.8 64 22.4 1799 0.4810
A5 BESV PSA1 10.5 5 7 250 30.4 72 19.5 1999 0.5569
A6 Blix Aveny 11 3 7 350 32 96 23.5 1899 0.6849
A7 Blix Sol 11 3 7 350 32 88 22 1599 0.6870
A8 California Bicycle S 8 4 1 250 32 56 22.6 2499 0.3669
A9 Cannondale E-Rigid 11 3.5 8 350 32 100 22.6 3490 0.6280
A10 Carrera Crossfuze 11 [6, 7] 9 400 25 80 20.3 2300 [0.4802, 0.4918]
A11 Coboc ONE Soho 9.6 2.5 1 250 24.8 88 13.1 5520 0.4016
A12 CUBE Cross Pro 400 11 3.5 9 250 32 96 22.7 2599 0.6236
A13 Desiknio Pinion Classic 7 3 6 250 24.8 80 15.7 6135 0.3945
A14 Desiknio Single Urban 7 3 1 250 24.8 80 13.1 4415 0.3898
A15 EcoMotion Tour e-Road 10.4 4 7 350 32 83 20.2 1299 0.6763
A16 E-Glide SS 10.4 5 1 350 32 56 17.1 1099 0.4893
A17 E-Glide ST 11.4 6 10 500 32 80 24.4 1699 0.5838
A18 e-Joe Gadis 11 5 7 350 32 72 24.9 1699 0.5555
A19 E-Lux Monaco 10.5 6 9 500 32 88 24.8 1995 0.5912
A20 ECOTRIC 12 [5, 8] 7 500 32 55 24.9 999 [0.5308, 0.5686]
A21 Emazing Coeus 73h3h 8.7 4 7 350 32 88 20.2 1800 0.6591
A22 Emazing Selene 73h3h 8.7 4 7 350 32 88 21.9 2000 0.6336
A23 Emu Crossbar 14.5 [6, 8] 7 250 25 [55, 100] 23 1560 [0.4219, 0.6119]
A24 Espin Flow 11.6 4.5 8 350 35 80 24.3 1888 0.6095
A25 EUNORAU E-TORQUE 12.5 5 7 350 32 72 24.6 1599 0.5694
A26 eVox KAB 375 7.8 4 8 350 35 100 20.4 2199 0.6831
A27 Gazelle Avenue C8 14 4 8 250 32 100 23.8 2999 0.6167
A28 Gazelle CityZen C8 HM 11 3.5 8 350 32 94 23.1 2999 0.6204
A29 Gazelle CityZen T9 HMB 13.4 4 9 350 32 100 24.1 3499 0.6089
A30 GenZe 200 Series 9.6 3.5 8 350 32 56 22.6 1899 0.5399
A31 IZIP E3 Brio 11.6 5.5 7 250 32 80 25 1699 0.5600
A32 IZIP E3 Loma 11 5.5 7 250 32 80 24.9 1699 0.5582
A33 Juiced OceanCurrent 8.8 4 8 500 35 64 23.1 1299 0.6144
A34 Junto Gen 1 11.6 6 11 350 32 96 22.1 2222 0.6140
A35 Kalkhoff Agattu B7 11 3.5 7 250 32 100 24 2499 0.6353
A36 Kemanner 8 [4, 6] 21 250 25 [35, 70] 20 [615, 700] [0.4116, 0.5959]
A37 Merax 26” Aluminum 8.8 [5, 6] 7 350 32 [35, 45] 22 690 [0.5264, 0.5778]
A38 Optibike Rocky Mount. 11.6 5 11 500 35 96 24.4 3995 0.5768
A39 Orbea Katu-E 10 11 3.5 8 250 32 96 22.9 2999 0.6114
A40 Populo Lift V2 8.7 4.5 7 250 32 56 22.1 1399 0.5273
A41 Populo Scout 13 4.5 8 350 32 80 24.7 1699 0.6010
A42 Populo Sport 10.4 3 1 250 32 48 15.7 999 0.5028
A43 Populo Sport V3 8.7 4.5 1 250 32 56 16.7 999 0.4813
A44 Propella 2.2 7-Speed 6.8 2.5 7 250 28.8 56 16.8 1299 0.5486
A45 Propella V2.0 Single-Speed 6.8 2.5 1 250 25.6 56 13.6 1199 0.4495
A46 PUBLIC D8 Electric 8.8 4.5 8 350 32 88 24.8 2199 0.5841
A47 Pure Cycles Volta 8-Speed 5.8 4 8 250 32 40 17 1999 0.4433
A48 Rattan 10.4 [4, 5] 7 350 32 50 23.5 740 [0.5800, 0.6056]
A49 Raleigh Sprite iE 8.8 5 7 350 32 64 24.5 1899 0.5116
A50 Raleigh Superbe iE 8.8 4.5 7 350 32 64 22.7 1799 0.5450
A51 Riese & Müller Mixte 13.4 3.5 10 350 32 100 21.9 3879 0.6238
A52 Riese & Müller NuVinci 11 3.5 1 250 32 100 24.8 4489 0.4592
A53 Schwinn Monroe 250 11.6 4.5 1 250 32 72 18.8 1199 0.5335
A54 Schwinn Monroe 350 14 6 1 350 32 88 20.4 1499 0.5732
A55 Scott E-Sub Evo 11 3.5 8 350 32 100 22.4 4199 0.6060
A56 Shaofu 6AH 4.4 3 1 350 25 20 12 390 0.4261
A57 Specialized Como 2.0 12.8 3.5 9 250 32 96 21.5 2600 0.6411
A58 Specialized Como 3.0 12.8 4 9 250 32 80 20.7 2950 0.5711
A59 Specialized Vado 3.0 12.5 3.5 10 250 32 100 24.5 3200 0.6027
A61 Trek Lift+ Lowstep 11.6 4 10 250 32 80 20.3 2799 0.5718
A62 Trek Neko+ 11.6 4 10 250 32 80 19.1 2999 0.5717
A63 VoltBike Urban 13 5.5 6 350 32 80 23.4 1199 0.6085
A64 Xiaomi QiCycle 5.8 3 3 250 20 45 14.5 950 0.4063
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It can often happen that some parameters describing variants are uncertain, e.g., the maximum
distance may depend on the weight of the passenger, orography of the city and the climate (cold climate
shorter distance). The given catalog values are very often averaged experimental results, therefore it
seems justified to use interval numbers. It is difficult to assume that the vehicle will be moved in the
same conditions as in laboratory tests.

5. Conclusions

Sustainable development is becoming a more complex problem, one that requires a modern
approach with the use of various methods. In this paper, the sustainable city transport challenge was
addressed in the context of selecting the electric bicycle. Methodically, the paper presents a successful
attempt to adapt an MCDA method called COMET to the needs of evaluation of sustainable transport.

The fuzzy set theory with the COMET method was used to investigate and create the decision
model under the condition of full knowledge and with some degree of uncertainty, using the interval
numbers. As a result of the preformed research, also a practical contribution in the sustainable
transport domain was obtained. The presented model for ebikes evaluation based on an extensive
set of available options contains important domain knowledge supporting the decision makers in
the process of evaluation and selection of proper variant of sustainable transport. Eight criteria were
taken into consideration (battery capacity, charging time, number of gears, engine power, maximum
speed, range, weight, and price); however, to reduce the amount of pairwise comparison, the final
assessment model was restructured into sub-models, significantly reducing the complexity of the
problem and restructuring the criteria into groups. Ten alternatives to electric bicycles were examined
in details (from an extensive set of bikes presented in Table 9. The practical implications in the domain
of sustainable transport provide a reference model for ebikes. It is worth adding that the proposed
approach has considerable practical usability. The freely available software on the comet.edu.pl
website results in the model being easy to validate even for non-experienced users.

For further study, it would be valuable to extend this model with additional criteria and
sub-models, creating an even more detailed selection of electric bicycles. Additionally, further works
concerning the incomplete knowledge case could be performed.
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