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Abstract: Droughts and heat waves both are natural extreme climate events occurring in most parts
of the world. To understand the spatio-temporal characteristics of droughts and heat waves in China,
we examine changes in droughts, heat waves, and the compound of both during 1961–2017 based on
high resolution gridded monthly sc_PDSI and daily temperature data. Results show that North China
and Northwest China are the two regions that experience the most frequent droughts, while Central
China is the least drought-affected region. Significant drought decreasing trends were mostly observed
Qinghai, Xinjiang, and Tibet provinces, while the belt region between Yunnan and Heilongjiang
provinces experienced significant drought increasing trends. Heat waves occur more frequently than
droughts, and the increase of heat wave occurrence is also more obvious. The increasing of heat wave
occurrence since the 2000s has been unprecedented. The compound droughts and heat waves were
mild from the 1960s to 1980s, and began to increase in 1990s. Furthermore, the significant increasing
trends of the percentage of compound droughts and heat waves to droughts are observed in entire
China, and more than 90% drought occurrences are accompanied by one or more heat waves in
the 2010s. The results highlight the increased percentage of compound droughts and heat waves
and call for improved efforts on assessing the impact of compound extremes, especially in an era of
changing climate.
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1. Introduction

Climate change is expected to cause the hydrologic cycle to speed up and intensify as warming
global temperatures increase the rate of evaporation, in which many hydrological processes are deeply
involved. Climate change may also alter the inherent characteristics of climate phenomena and increase
the risk of climatic extremes [1]. The frequency and severity of climate extreme events have increased
across many regions of the world in the past [2,3], and they are expected to further increase in the
future based on various climate projections [4,5].

Traditionally, estimations of the risks of climate extremes typically focus on an isolated process or
variable, which is usually not capable to fully characterize the impact of extremes due to the fact that
climatic variables are intrinsically interconnected. In addition, resilience, defined as the ability of a
socio-environmental system to absorb disturbances, to withstand natural and anthropogenic hazards,
and to reconfigure after a crucial disturbance [6], has achieved significant attention due to the fact that
it allows multiple risks and their impacts on socio-environmental system and vulnerable people to be
considered together in the context of development programming [7]. Recent studies have begun to
explore trends and changes in compound extremes, such as droughts and heat waves [8–10], and these
studies have recognized the necessity of jointly investigating climate events. Compound extremes,
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which are also referred to as simultaneous, concurrent, or coincident extremes, are commonly defined
as the occurrence of multiple events that lead to extreme impacts [11–14].

Drought is a naturally recurring extreme climate event over land characterized by below-normal
precipitation over a period of months to a few decades [15] and can have devastating impacts on
regional water resources, agriculture, industry, and other social-ecological systems [16,17]. A heat
wave is a period of abnormally high surface temperatures relative to those normally expected [18],
spanning several days to several weeks, and can cause severe damage to society and the environment,
with impacts on human health, air quality, energy demand, and agriculture [19,20]. Although
droughts and heat waves span different time scales, their relationship is widely acknowledged [21],
as they produce positive interaction and feedback together that intensify their effects [22,23]. Higher
temperature accelerates potential evapotranspiration, resulting in more rapid moisture deficit and
may increase drought severity by the increased vapor pressure deficit [23]. Concurrently, the moisture
deficit reduces evaporative cooling leading to increased sensible heat flux and thus increases surface
air temperature that may result in a heat wave or exaggerate its magnitude [24,25].

Due to the monsoon climate interacting with complex geographical conditions, China is frequently
stricken by serious droughts and heat waves. Over the past few decades, droughts and heat waves
have exerted profound economic and societal impacts in China. For instance, a severe drought over
northern China in 1997 resulted in 226 days of zero flows in the Yellow River from Henan to Shandong
provinces, and the total measured length without flow from the river mouth to upstream was about
687 km [26]. In the summer of 2011, severe droughts affected a combined 5.86 million hectares of crops,
leaving a total of 9.17 million livestock and 12 million people short of drinking water [27]. Meanwhile,
the frequency and intensity of hot extremes are increasing, with the five hottest summers in eastern
China between 1950 and 2013 having all occurred after 2000 [28]. The record-breaking heat wave in
2013 in eastern China resulted in deaths among many cities and the estimated direct economic losses
were about 59 billion RMB [29]. During the summer of 2013, more than 5000 heat wave-related illness
cases were reported in China [30].

Although many previous studies have investigated the duration, tendency, and frequency of
droughts and heat waves in national or regional scale in China, their work mostly focuses on either
of them in isolation. However, studies suggest that the combined effect of compound extremes is
stronger than individual extremes [31]. In addition, most of the work merely uses the data from
ground-based meteorological stations, which are too sparse that huge uncertainties may arise due to
interpolation. The characteristics of compound droughts and heat waves in China remains uncertain,
which poses considerable challenges to water security and sustainable development, especially under
changing climatic conditions. In this study, droughts are quantified using the self-calibrating Palmer
Drought Severity Index (sc_PDSI), within the frame of one of the most widely used indices PDSI, which
is considered to be more appropriate for global drought monitoring [32]. The sc_PDSI determines
specific factors for each location separately, uniquely appropriate to that location, and produces fields
of data that can be more validly inter-compared. Many studies have been conducted in China to
evaluate and apply different drought indices, and the sc_PDSI is considered to be one of the best indices
of drought [33,34]. Heat waves are defined as a period of time with daily maximum temperatures
above a threshold, which is defined as a specific quantile in the temperature series rather than a
fixed value for all the regions. The relative definition is more appropriate to characterize heat waves
considering the significant differences of regional climatology over China. Our primary objective is to
provide a comprehensive spatio-temporal analysis of compound droughts and heat waves in China
using the most up-to-date high-resolution gridded data. The results of this paper will enhance our
understanding of compound extremes and provide a reference for analyzing the mechanism of single-
and multi-disaster, as well as assisting in strengthening the capacity to prevent and reduce the negative
impacts of these meteorological disasters in China.
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2. Material and Methodology

2.1. Study Area and Data Sources

China is located in the southeastern Eurasian continent and belongs to the East Asian monsoon
climate, covering approximately 9.6 million square kilometers and has the world’s largest population.
Due to complex natural and social conditions, China is divided into seven regions in Figure 1 according
to natural and socioeconomic situations at the provincial scale like other studies [35]: Northeast China
(NEC), North China (NC), Northwest China (NWC), Southwest China (SWC), Central China (CC),
South China (SC), and East China (EC).

To analyze the most up-to-date drought and heat wave characteristics in China, the selected period
ranges from 1961 to 2017, altogether 696 months. The sc_PDSI data are published by the Climatic
Research Unit, University of East Anglia as the TS3.26 dataset (available at http://www.cru.uea.ac.uk/

data/) with a spatial resolution of 0.5◦ × 0.5◦. The sc_PDSI in the TS3.26 dataset is calculated from time
series of precipitation and temperature and fixed parameters related to the soil/surface characteristics
at each location. Daily maximum temperature data at 0.5◦ × 0.5◦ spatial resolution are obtained by the
China Meteorological Administration (available at http://data.cma.cn/data/detail/dataCode/SURF_CLI_
CHN_TEM_DAY_GRID_0.5.html), which are interpolated using thin plate spline and 3D geospatial
information from 2472 meteorological stations. The temperature dataset has been under rigorous
quality control and no filtering or modification was made for this study. The temperature data is not
available in Taiwan province and thus not discussed in this paper.
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2.2. Evaluation of Heat Waves

Generally, a period of several consecutive days with a maximum temperature above a threshold
is regarded as a heat wave [10]. There is a consensus that 85th or 90th percentile for a given location
can be used as a threshold for determining a heat wave [36–38]. In order to capture severer heat waves,
the daily maximum temperature above the 90th percentile for at least six consecutive days is defined
as a heat wave in this paper [39]. We only considered events that occurred during a five-month warm
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season (May–September) for heat waves, and the threshold values are statistically computed for each
month and grid, respectively.

2.3. Analysis of Compound Droughts and Heat Waves

Drought is defined as sc_PDSI ≤ −1; even when consecutive months have sc_PDSI ≤ −1, it is only
considered as a single drought event. Multi droughts can take place in one year as long as there is one
month has sc_PDSI > −1 among the consecutive drought months. When there is one or more heat
waves that happen during a drought period, we consider this a compound drought and heat wave,
thus ensuring that the numbers of droughts and heat waves are always no fewer than the number of
compound droughts and heat waves.

2.4. Trend Free Prewhitening Mann–Kendall Nonparametric Test

The Mann–Kendall (MK) nonparametric test, proposed by Mann [40] and then modified by
Kendall [41], is based on the correlation between the ranks of a time series and their chronological
order. The MK test has the advantage of being rarely disturbed by outliers, it is easy to calculate, and it
does not assume any special form for the probability distribution function of the data [42].

However, some hydrological time series may usually have a serial correlation, which will increase
the probability that the MK test detects a significant trend, leading to a disproportionate rejection of the
null hypothesis of no trend, whereas the null hypothesis is actually true [43]. On this basis, Serinaldi
et al. [44] compared the results of standard and improved versions of the MK test, and emphasized
the effect of serial correlation on trend detection. Clarke [45] also pointed out the problem of circular
reasoning in hydrological statistics and the failure to account for spatial correlations between variables.
Poppick et al. [46] took the temperature trend as an example to compare parametric statistical methods
and nonparametric methods. Therefore, Trend Free Prewhitening MK (TFPW-MK) [43], which detrends
and pre-whitens the time series before the MK test, is adopted in this paper.

The time series shows an increasing trend when statistic Z is greater than 0, while the trend is
decreasing when Z is less than 0. In the bilateral trend test, if |Z| ≥ Z1−α/2 at a given α confidence
level, the original hypothesis of no trend is unacceptable. The Z values of ±1.96, and ±1.64 are equal
to the confidence levels of 0.05, and 0.1, respectively. Based on these confidence levels, the detected
trend could be classified into six zones according to Z value [47]: (1) Z < −1.96, indicating significant
decreasing trend; (2) Z ∈ [−1.96 to −1.64), indicating weak decreasing trend; (3) Z ∈ [−1.654 to 0),
indicating no significant decreasing trend; (4) Z ∈ (0 to 1.64], indicating no significant increasing
trend; (5) Z ∈ (1.64 to 1.96], indicating weak increasing trend; (6) Z > 1.96, indicating the significant
increasing trend.

3. Results

3.1. Droughts

To better understand the drought patterns over China, the annual average number of drought
occurrences at the decadal level for seven regions is presented in Figure 2 and Table 1. There were
three areas in China that experienced frequent droughts in the 1960s, the first and severest was the
west part of China mainly including Xinjiang, Qinghai, Tibet, and Sichuan provinces, the second was
part of northeastern Inner Mongolia province, and the last was SC and the south half of EC. In the
1970s, NWC continued to be the severest drought-affected region with the annual average number of
drought occurrences equal to 0.76. Frequent droughts were still observed in the Tibet and Sichuan
provinces in SWC. The drought frequency increased a lot in NEC and its adjacent area in northern
NC, while drought frequency reduced more than 30% in SC and EC. NC became the most frequent
drought-affected region in the 1980s throughout China as most of Inner Mongolia and Hebei provinces
experienced very high drought frequency. In the 1990s, except that drought frequency increased in
Ningxia, Shanxi, and Qinghai provinces in NWC, an obvious drought reduction was observed in
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almost entire China. Drought aggravated in NC and NEC in the 2000s, as most of the two regions
suffered from high frequent droughts. In the 2010s, the drought alleviated significant over China,
as SWC was the only region that presented drought increasing, drought reduced to various degrees
in the rest of the six regions. For the entire study period, NC and NWC were the two regions that
experienced the most frequent droughts, while the CC was the least drought-affected region.
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Table 1. Annual average number of drought occurrences for the seven regions at the decadal level.

Region
Period

1960s 1970s 1980s 1990s 2000s 2010s 1960s–2010s

NEC 0.45 0.70 0.54 0.50 0.84 0.61 0.61
NC 0.70 0.67 0.76 0.66 0.90 0.79 0.75

NWC 0.78 0.76 0.63 0.69 0.65 0.57 0.68
SWC 0.64 0.62 0.64 0.60 0.56 0.68 0.62
CC 0.48 0.42 0.44 0.45 0.54 0.48 0.47
SC 0.73 0.45 0.68 0.62 0.74 0.48 0.62
EC 0.60 0.42 0.57 0.50 0.62 0.48 0.53
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The above analyses focus on the frequency of drought occurrence in China, while drought occurs
with spatio-temporal variation in frequency, severity, and duration. Therefore, Figure 3 depicts the
spatial structure of sc_PDSI trends during 1960–2017, which can effectively consider all the features.
TFPW-MK trend test was applied to the monthly sc_PDSI series at each grid over entire China, and then,
the color of each grid was assigned according to the category of Z value. The increasing and decreasing
drought trends were almost impartial over entire China. Significant drought decreasing trends
(i.e., increase of sc_PDSI) were mostly observed Qinghai, Xinjiang, and Tibet provinces, while the belt
region between Yunnan and Heilongjiang provinces experienced significant drought increasing trends.
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3.2. Heat Waves

Figure 4 and Table 2 display the annual average number of heat wave occurrences at the decadal
level over China. It can be seen that heat waves were more frequently occurred than droughts in
China. There were two major areas in China that experienced high frequency heat waves in the 1960s,
the first was CC and its surrounding areas in the adjacent NC, NWC, SWC, SC, and EC regions, and
the second was the north and west parts of Xinjiang province. In the 1970s, the overall heat waves
alleviated a little bit, as the area and degree of high frequent heat waves decreased in CC, and the rest
high frequent heat waves were merely observed in the western Xinjiang province. CC continued to
have a reduced heat wave situation in the 1980s because the high frequent heat wave center moved
southward. Heat waves aggravated in the rest five regions of China, especially in NEC, SC, and SWC.
The heat waves increased in the 1990s as entire China experienced much more frequent heat waves.
One of the obvious changes was that the heat waves in the western Tibet became the severest with the
annual average number of heat wave occurrences over 2.5 in this area. In the 2000s and 2010s, the heat
wave exacerbated unprecedentedly, especially in the 2010s, all the regions had annual average number
of heat wave occurrences over 3.2, and more than half China experienced more than 4 heat waves
per year on average. Although the heat waves of different regions varied a lot in different decades,
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the overall heat waves for all the regions during the entire study period were quite similar, where the
fluctuation of annual average number of heat wave occurrences was small.
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Table 2. Annual average number of heat wave occurrences for the seven regions at the decadal level.

Region
Period

1960s 1970s 1980s 1990s 2000s 2010s 1960s–2010s

NEC 0.92 0.91 1.37 1.40 2.29 4.19 1.85
NC 1.04 0.86 0.97 1.44 2.50 3.95 1.79

NWC 1.12 0.94 0.96 1.64 2.38 3.97 1.84
SWC 1.03 0.62 1.17 1.69 2.14 4.07 1.79
CC 2.07 1.28 1.15 1.35 1.79 3.26 1.82
SC 1.15 0.62 1.26 1.42 1.95 4.18 1.76
EC 1.61 1.01 1.08 1.40 2.14 3.60 1.81

The spatial structure of daily maximum temperature trends analyzed by TFPW-MK method from
the 1960s to 2010s are presented in Figure 5. The increasing trends of daily maximum temperature
were dominant in China, consistent with decadal heat wave variations. TFPW-MK trend test was
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applied to the daily maximum temperature series at each grid over entire China, and then, the color
of each grid was assigned according to the category of Z value. Almost the entirety of China has
experienced increased trends. With half of China experiencing weak increasing trends and the other
half experiencing significant trends, significant increases occurred in NEC; northern NC; NWC, except
Shanxi province and north and west of Xinjiang province; SWC except Guizhou, Chongqing, and
Sichuan provinces; and the south of SC. The only region which presented decreasing trends was the
border region between NWC and CC, where frequent heat waves were observed in the 1960s.
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3.3. Compound Drought and Heat Wave Events

The compound drought and heat wave events over China were calculated based on the gridded
sc_PDSI and daily maximum temperature series. Figure 6 and Table 3 display the annual average
number of compound drought and heat wave occurrences at the decadal level over China. In the
1960s, only the north and west parts of Xinjiang province and the south half of SC presented frequent
compound droughts and heat waves. This is due to the fact that these two areas were the only regions
that both droughts and heat waves occurred frequently. For instance, the CC had the highest frequency
of heat waves; however, the drought in CC was very mild in the 1960s. Owing to the heat wave
reduction in SC and north part of Xinjiang province in the 1970s, the west of Xinjiang province was
the only area that still had frequent compound droughts and heat waves. Because the high frequent
drought affected area and high frequent heat wave affected area did not overlap in the 1980s, the
compound droughts and heat waves were less frequent over entire China, as the annual average
number of compound drought and heat wave occurrences for all the seven regions was below 0.2.
The heat waves worsened over almost all of China after the 1990s, so the high frequency compound
drought and heat wave area was mostly determined by droughts, and therefore the distribution of
compound droughts and heat waves was very similar to the distribution of drought in 1990s, 2000s,
and 2010s.
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Table 3. Annual average number of compound drought and heat wave occurrences for the seven
regions at the decadal level.

Region
Period

1960s 1970s 1980s 1990s 2000s 2010s 1960s–2010s

NEC 0.03 0.14 0.10 0.13 0.34 0.45 0.20
NC 0.09 0.12 0.11 0.23 0.52 0.61 0.28

NWC 0.21 0.23 0.15 0.28 0.30 0.38 0.26
SWC 0.16 0.13 0.14 0.25 0.29 0.53 0.25
CC 0.22 0.15 0.17 0.14 0.19 0.34 0.20
SC 0.27 0.14 0.17 0.15 0.34 0.31 0.23
EC 0.22 0.06 0.13 0.27 0.48 0.35 0.25

By definition, the number of compound drought and heat wave events is always no higher than
the numbers of droughts and heat waves. Since the frequency of the drought occurrence did not
increase significantly in China, so we illustrate the increase of compound droughts and heat waves by
showing the variations of the percentage of compound droughts and heat waves to droughts from
1961–2017, shown in Figure 7. It is very apparent that all seven regions presented significant increasing
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trends. In the 1960s, the average percentages for most regions were less than 30%, while in the 2010s,
the percentages were usually higher than 90%. The results indicated that almost every drought that
occurred in the 2010s was accompanied by one or more heat waves, while 70% droughts occurred
in 1960s without a heat wave. The weakest increasing trend was noticed in CC, this is due to high
frequency of heat waves in the 1960s in this area, so the percentage during that period was high.
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4. Discussion

This paper mainly focuses on the occurrence of droughts, heat waves, and compound of both,
rather than the index values that most scholars have paid attention to in the past. As for drought,
regionality is quite evident. Chen et al. [48] pointed out that drought indicated by SPEI and SPI is
observed to have increased evidently across almost entire China. This increase is much stronger in
the north compared to the south, especially in NWC and NC. Part of the result is consistent with our
trend analysis of sc_PDSI values that the droughts show a significant increasing trend in NC. While
except the Shaanxi province and the northwest of Xinjiang province, the rest areas in NWC present
significant decreasing trend. The variations of drought occurrence confirm again that most areas
in NWC present a decreasing drought trend as the annual average number of drought occurrences
decreases from the 1960s to 2010s. He et al. [49] identified five meteorological drought-prone regions,
i.e., the Huang-Huai-Hai Plain, Northeast China, Southwest China, coastal Southern China, and
Northwest China. Our results show that droughts occur frequently in NWC in the 1960s, and over
time, the frequent drought-affected areas gradually shift to NEC and NC. It is difficult to compare
different results of drought, because the differences in the period of analysis, data sources, the number
of stations (or gridded data), and drought indices collectively contributed to inconsistencies in the
results [50]. For heat waves, accelerated worsening of heat wave in China has been observed and
acknowledged by many researchers [51–53]. Our results demonstrate again that the warming trend is
unprecedented. Although the frequency of heat waves in China has increased, there are still obvious
regional distinctions that the areas showing significant increase are NEC, northern NC, part of NWC,
and part of SWC. The rising trend of heat wave frequency is more significant than that of droughts.
Wu et al. [35] investigated changes in the frequency of compound droughts and heat waves in China
and concluded that an increase in the frequency and spatial extent was mainly shown in NC, SC, and
SWC, while our results show that the most significant increase is NEC, NC, and SWC.

Anomalies in large-scale circulation are vital for trends of both droughts and heat waves.
Historically, drought analysis has focused on the impacts of how precipitation deficits pose on droughts.
However, high evaporative demand due to heat waves can also dry soils and increase drought severity.
The results of this study highlight the increasing possibility of drought occurrences companioned
by heat waves. Therefore, comprehensively account for the relative effects of precipitation deficits,
heat waves, and other variables in producing droughts will be key for improved understanding of
droughts. Land surface modeling will be an important diagnostic tool in such efforts, though more
complete representation of land-atmosphere coupling in models definitely have high standards for
observations [54].

5. Summary and Conclusions

This paper provides a comprehensive analysis of spatio-temporal patterns of droughts, heat
waves, and the compound of both over China from 1961 to 2017. The high spatial resolution gridded
sc_PDSI and daily maximum temperature datasets are used to quantify the characteristics of droughts
and heat waves, respectively. Therefore, the results are credible and can be used to assist with drought
and heat wave mitigation.

Our results indicate that NC and NWC are the two regions that experienced the most frequent
droughts, while the CC is the least drought-affected region. The increase in the occurrence of heat
wave is very significant over the entire China, the occurrence of heat waves began to increase in
the 1990s and has reached an unprecedented severity since 2000. Furthermore, the variations of the
percentage of compound drought and heat wave to drought were analyzed. All the seven regions
presented significant increasing trends, more than 90% drought events occurred in the 2010s were
accompanied by one or more heat waves. The significant increasing trends of compound droughts
and heat waves detected in this paper clearly show that considering the compound disasters and
their impacts on socio-environmental system are basic preconditions for drought and heat wave
management. In addition, the comprehensive analysis of compound droughts and heat waves can
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help to establish resilience and adaptive policies for droughts and heat waves, which could definitely
contribute to the Agenda 2030 [55], especially for Goal 13: take urgent action to combat climate change
and its impacts.

However, beyond Figures 3 and 5 presenting the spatial distribution of sc_PDSI and daily
maximum temperature trends that effectively considered frequency, severity, and duration of drought
and heat wave, the rest of the analyses in this paper are all about the occurrence of droughts, heat
waves, and the compound of both. In the future, it is necessary to conduct comprehensive studies
of frequency, intensity, and duration of compound droughts and heat waves which would provide a
more useful reference for these meteorological disasters risk management.
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