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Abstract: Using three official multiregional input–output tables and carbon emission data, we
decompose the change in carbon emission for eight regions of China between 1997 and 2007. We do
so according to the following seven partial effects: (i) Changes in energy end-use structure, (ii) effect
of energy intensity, (iii) the added value’s share of gross output, (iv) changes in sub-industry structure,
(v) changes in the substitution of import for intermediate inputs, and changes in (vi) structure and
(vii) level of final demand. We find energy intensity contributes most to CO2 abatement throughout
China, while other factors vary widely across the different regions. We suggest that governments
consider regional disparity and CO2 flows when formulating policies; structural change with an
eye toward energy-savings and general efficiency improvements, like better insulated buildings, are
among measures we deem effective.
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1. Introduction

As the largest carbon emitter, China has made substantial efforts to reduce carbon emission. At
the 2009 United Nations Climate Change Conference in Copenhagen, China’s government announced
that by 2020 China will reduce its carbon intensity by 40–45% from its 2005 level. In 2015, China
promised in its Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions
that it would achieve its peak carbon dioxide emission around 2030 and make best efforts to peak
earlier, along with lowering carbon dioxide emission per unit of GDP by 60–65% from the 2005 level.
Meanwhile, a large number of studies have been published to uncover the driving force of China’s
carbon emission.

In fact, many papers have studied the sources of carbon emission change in China [1–3]. All
of them have come to a similar conclusion—final uses, including exports, capital investment, and
consumption, largely have caused China to increase its emissions of CO2. That is, China’s efforts at
improving energy efficiency are being outpaced by emission increases due to rises in the final uses
of commodities the nation produces. Nonetheless, each set of researchers has had a particular focus.
Guan et al. (2009) investigated China’s emissions from 2002 to 2005 [3]; Guan et al. (2008) forecast
carbon emissions through to 2030 and Liu et al. (2007) focused strictly on carbon emissions by China’s
intermediate users (commodity production that is not delivered to final uses) [1,2]. But few have
studied emissions changes below the national level. The local characteristics and constraints of each
region are seldom considered, despite the considerable heterogeneity across China’s regions. Therefore,
a regional analysis is necessary since carbon emissions derive from different sources in different regions,
as pointed out by Huang and He (2011) [4].
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To better understand the drivers of aggregate carbon change, the precondition of providing feasible
climate policies is presented. In the literature, two methods are often used: Index decomposition
analysis (IDA) and structural decomposition analysis (SDA) [5–8]. Below, we review several papers
that focus on China’s regional carbon emission change. They use either IDA or SDA methods; the first
three studies use IDA and the others use SDA. Compared to IDA, SDA can touch on issues from both a
supply- and demand-side perspective using rich datasets; it even accounts for the interdependence
of industries.

Feng et al. (2009) investigated the carbon emission change of five regions in China with an IPAT
(Influence, Population, Affluence, Technology) model for the 1949–2002 period [9]. The decomposition
of the change in carbon emissions they used was clear from the acronym IPAT, as it examines the
influences of population, affluence (consumption expenditures per capita), and technology (emission
intensity). They identified major differences in the proximate causes of emission changes between
southeast and northwest China and between its urban and rural areas. In particular, technology
change did not compensate for emission rises due to population growth and the rising wealth of the
typical Chinese citizen. Zhang et al. (2013) decomposed China’s carbon emissions by province using
a logarithmic mean divisa index (LMDI) of changes in four factors: Consumption expenditure per
capita, energy consumption’s share of total household consumption, population structure, and total
population [10]. The first two factors were main drivers of the growth in carbon emissions in their
analysis, yet regional differences were distinct across all four factors. Liu et al. (2010) performed a
similar provincial decomposition and attributed most of China’s CO2 emissions to such major industrial
provinces as Hebei, Jiangsu, Zhejiang, Shandong, Henan, and Guangdong [11].

Several papers adopt SDA by using China’s multiregional input–output (MRIO) tables, but
they either focus on forecasting China’s regional carbon emissions (Liang et al., 2007) or on carbon
accounting [12]. For example, using a 30-province MRIO table for 2007, Feng et al. (2013) pointed out
that the lion’s share of carbon emissions in western provinces derives from consumption in eastern
provinces. Indeed, the share reaches as high as 80% [13]. Meng et al. (2013) explain the relationship
between China’s interregional spillover of CO2 emission and domestic supply chains for 2002 and
2007 [14]. They show that a region’s CO2 emissions depends on its intra-regional production technology
(i.e., the magnitude of regional direct requirements), energy intensity (energy use per unit of gross
output), as well as its position and degree of participation in domestic and global supply chains. To the
best of our knowledge, only Feng et al. (2012) examine China’s regional carbon emission change using
SDA [15]. Using just three regions—eastern, central, and western China—they show how changes in
population, technology, economic structure, urbanization, and household consumption patterns drive
regional CO2 emissions from 2002 to 2007. They find a significant gap between the three economic
zones in terms of CO2 emission and also find that the “greening” of the more developed areas is not
only due to superior technology but also because of externalizing production and pollution to the
poorer regions in China.

We also use SDA, as it allows us to analyze CO2 emission from both the supply and demand sides.
Further, we contribute to the existing literature by, first of all, incorporating the mix of energy resources
and the energy intensity of each into our analysis, something that has rarely (if ever) been examined
within an SDA framework. Burning fossil fuels accounts for over 90% of all carbon emissions in
China [16]. This is not so exceptional, as such a share also holds in the US. Still, per unit of energy
produced, there is great variance in the carbon emissions across the different fossil fuels. For example,
the conversion factor for LPG (Liquefied Petroleum Gas) is three times more efficient than coke oven gas.
Nonetheless, some modest alterations to the structure of energy transformation could reduce China’s
carbon emission substantially. Coal comprised about 70% of fossil fuel consumption in the 1980s and
1990s and only decreased to 60.4% by 2017. Within the country, the west consumes more coal because
of ready access to the resource; indeed, as a result the west’s industry structure is highly oriented
toward energy-intensive industries. So, it should be clear that energy intensity and energy structure
are inextricably intertwined with the analysis of carbon emissions. Most SDA studies successfully
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incorporate many aspects of supply and demand sides of an economy, but energy intensity and the
mix of energy resources typically only are implicitly included in a factor called “carbon intensity.”
Here, we clearly distinguish between the contribution of energy factors to carbon emission changes
and also compare their relative importance to several other factors.

Second, we examine all factors over a ten-year time span, i.e., 1997, 2002, and 2007 MRIO
tables [17,18] (The 2007 table is the most recently published official MRIO table for China table). This
longer period of analysis enables an investigation into how the various processes and factors evolved
during China’s growth spurt. This should enable insight into China’s energy and emissions future.

Third, we decompose carbon emission change into three modules: (a) energy factors, (b) production
factors, and (c) demand factors, altogether including 14 components across the three modules. This
wealth of indicators at the regional level should supply much valuable information. We are particularly
interested in questions that are seldom tackled in other analyses, like the extent to which change in
the use of energy structure affects has altered the production of carbon emissions across the different
regions of China. Such an inquiry should provide some insight into future energy transitions in China.
We also try to analyze the role of interregional trade in emissions production. This should reveal CO2

flows within China and, thus, yield some suggestions to China’s government on how to focus its CO2

reduction targets within its top-down system. Consistent with other studies, we hope to learn the main
forces that are driving China’s regional carbon emission increases and what abatement techniques
are working best. But we do so within a more complete framework, i.e., considering factors from an
energy focus—from both a supply-side and demand-side, which can reveal the relative contribution of
public policies more precisely, at least insofar as proximate causation can be attributed. Finally, our
contribution is particularly unique with respect to regional disparities and, hence, of most help for
regional policy formation.

2. Materials and Methods

2.1. Methods

Focusing only on IDA, Choi and Ang (2003) found symmetry between multiplicative and additive
decompositions in terms of shares and difference [19]. Ang and Zhang (2000) and Ang (2004) review the
different IDA approaches in detail to find that, in most studies, the choice of multiplicative or additive
decomposition is rather arbitrary [6,20]. They suggest some guidelines for identifying what type to
use when. For example, they advocate for an additive decomposition when a quantity indicator is the
object of the analysis and for a multiplicative decomposition when a ratio or share indicator is the object.
They extend this suggestion to SDA [21,22]. That is, a ratio indicator is more conveniently handled
with a multiplicative form, even though an additive SDA can handle the same set of factors [23–25].
Wang et al. (2017) find that equivalent results can be obtained for the two forms once a decomposition
has been obtained using only one of them [26].

We follow Zhang and Lahr (2018) and apply a multiplicative SDA. We do so to address regional
carbon emissions as opposed to energy use, which they examined [27]. Furthermore, we hope to study
regional carbon intensity more deeply in the near future, so it also helps at the outset to develop a
consistent, detailed research approach that has the potential to yield deep insight. This approach can
consider the interdependence of industries, which is generally neglected in IDA. To begin, we define
some terms. In this paper, N denotes the number of industries per region, R denotes the number of
regions, C is the aggregate carbon emission (scalar), and c is the vector with c j

i as carbon emission per
unit of output of industry i in region j (NR× 1 vector).

We can further decompose carbon emission per output c′ into three factors:

c
′

= cc′ × S× E, (1)

where:
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cc: Carbon emission coefficient whose element ck represents the carbon emission coefficient of
fuel k (k× 1 vector);

S: Energy end-use structure matrix whose element s j
ki represents the ratio of amount of fuel k

consumed by sector i in region j (k×NR matrix);
E: Energy intensity diagonal matrix whose diagonal element eii represents the energy consumption

per unit of gross output for each sector in each region (NR×NR matrix);
I: Identity matrix (NR×NR matrix);
A: Matrix with input coefficients (NR×NR matrix), with typical element a js

ik denoting the input of
product i from region j per unit of output in industry k in region s;

L: Leontief-inverse matrix (NR×NR matrix), L ≡ (I−A)−1;
F: Matrix of final demands for each region of destination [NR × (R + 3) matrix], with typical

element f js
i denoting the final demand for commodity i produced in region j by region s to produce

s = 1, 2, . . .R. R + 1 denotes changes of inventories of commodity produced in region j, R + 2 denotes
export of commodity produced in region j, and R + 3 denotes the other item, which is actually the
error item to balance the input–output (I–O) table. Final demand includes urban consumption, rural
consumption, and government consumption and investment. We aggregate these items because they
have detailed regional information. The error (other) item has no apparent economic implication; we
keep it here only to ensure the accuracy of the data;

f: Vector with element f j
i giving the final demand for output of industry i in region j (NR × 1

vector); f is the row sum of matrix F (f=Fh, where h is the (R + 3) × 1 summation vector consisting
of ones.

We can further decompose f into two elements:f=By, where B is the normalized final demand
[NR × (R + 3) matrix], where each cell is derived as the ratio of the corresponding cell in the final
demand matrix to its respective column sum and y is the aggregate final demand for each of (R + 3)
categories [(R + 3) × 1 vector].

To make full use of the information of interregional flows for consumption and capital investment,
we further decompose final demand into (i) a “bridge matrix” B that identifies expenditure shares
separately for each of four final uses and (ii) a four-element vector of final demand totals y. By final use
they are represented, respectively, as matrices Bc, Bi, Bx, Bo and vectors yc, yi, yx, yo. The superscript
c represents the sum of rural consumption, urban consumption, and government consumption and
capital investment and i represents changes in inventories, x stands for exports, and o represents others
(error or discrepancy).

MRIO tables have detailed information about trade flows among regions both for intermediate
transactions and for final demand. We expand our decomposition by introducing the
following variables:

A∗: Matrix constructed by stacking R identical N ×NR matrices of aggregate intermediate inputs
per unit of gross output by industry by region (NR×NR matrix), ∀ j : [a∗] =

∑R
j=1 a js

ik ;

TA: Intermediate trade coefficients that show the input shares of each region in aggregated inputs
by industry by region (NR ×NR matrix), [tA]

js
ik = a js

ik/[a∗] js
ik ; note that

∑
j
[tA]

js
ik = 1 and A=A∗ ◦ TA,

where ◦ denotes Hadamard product (element-by-element multiplication of matrices)
A∗ can be further decomposed into two factors AT and AI, that is, A∗ = AT

◦AI, where AT

represents the technical coefficients that show the intermediate inputs structure (domestic and imported)
and is constructed by stacking NR identical 1 ×NR vectors of aggregated intermediate inputs per
unit of gross output by industry by region as well as input of import per unit of gross output by
industry by region (NR×NR matrix), ∀i, j : [aT] =

∑N
i=1
∑R

j=1 a js
ik + Ms

k (note: Ms
k refers to the share of

imported intermediate inputs to total inputs of industry k at region s and AI represents the substitution
coefficients of imported inputs, showing the domestic input shares in aggregated intermediate inputs
(domestic and imported) by industry by region (NR×NR matrix). [aI]

js
ik = [a∗] js

ik/[aT];
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We know that

C = c′Lf = c′(−A)−1f = cc′SE(−A)−1f

= cc′SE(−A∗ ◦TA)
−1By

= cc′SE(−AT
◦AI

◦TA)
−1
(BcYc + BiYi + BxYx + BoYo)

(2)

Thus,
C1
C0

=
cc′1S1E1L1f1
cc′0S1E1L1f1

(2.1)

×
cc′0S1E1L1f1
cc′0S0E1L1f1

(2.2)

×
cc′0S0E1L1f1
cc′0S0E0L1f1

(2.3)

×
c
′

0(I−AT
1 ◦A

I
1◦T

A
1 )
−1

f1

c
′

0(I−AT
0 ◦A

I
1◦T

A
1 )
−1

f1
(2.4)

×
c′0(I−AT

0 ◦A
I
1◦T

A
1 )
−1

f1

c
′

0(I−AT
0 ◦A

I
0◦T

A
1 )
−1

f1
(2.5)

×
c′0(I−AT

0 ◦A
I
0◦T

A
1 )
−1

f1

c′0(I−AT
0 ◦A

I
0◦T

A
0 )
−1

f1
(2.6)

×
c′0L0(Bc

1Yc
1+Bi

1Yi
1+Bx

1Yx
1+Bo

1Yo
1 )

c′0L0(Bc
0Yc

1+Bi
1Yi

1+Bx
1Yx

1+Bo
1Yo

1 )
(2.7)

×
c′0L0(Bc

0Yc
1+Bi

1Yi
1+Bx

1Yx
1+Bo

1Yo
1 )

c′0L0(Bc
0Yc

0+Bi
1Yi

1+Bx
1Yx

1+Bo
1Yo

1 )
(2.8)

×
c′0L0(Bc

0Yc
0+Bi

1Yi
1+Bx

1Yx
1+Bo

1Yo
1 )

c′0L0(Bc
0Yc

0+Bi
0Yi

1+Bx
1Yx

1+Bo
1Yo

1 )
(2.9)

×
c′0L0(Bc

0Yc
0+Bi

0Yi
1+Bx

1Yx
1+Bo

1Yo
1 )

c′0L0(Bc
0Yc

0+Bi
0Yi

0+Bx
1Yx

1+Bo
1Yo

1 )
(2.10)

×
c′0L0(Bc

0Yc
0+Bi

0Yi
0+Bx

1Yx
1+Bo

1Yo
1 )

c′0L0(Bc
0Yc

0+Bi
0Yi

0+Bx
0Yx

1+Bo
1Yo

1 )
(2.11)

×
c′0L0(Bc

0Yc
0+Bi

0Yi
0+Bx

0Yx
1+Bo

1Yo
1 )

c′0L0(Bc
0Yc

0+Bi
0Yi

0+Bx
0Yx

0+Bo
1Yo

1 )
(2.12)

×
c′0L0(Bc

0Yc
0+Bi

0Yi
0+Bx

0Yx
0+Bo

1Yo
1 )

c′0L0(Bc
0Yc

0+Bi
0Yi

0+Bx
0Yx

0+Bo
0Yo

1 )
(2.13)

×
c′0L0(Bc

0Yc
0+Bi

0Yi
0+Bx

0Yx
0+Bo

0Yo
1 )

c′0L0(Bc
0Yc

0+Bi
0Yi

0+Bx
0Yx

0+Bo
0Yo

0 )
, (2.14)

where 0 represents the starting year and 1 denotes the ending year.
Carbon emission change can be decomposed into 14 partial effects (see Table 1): (2.1) denotes the

effect of changes in carbon emission coefficient—in our analysis, we keep carbon emission coefficients
constant across the period, thus, it has no contribution, so the following factors must remain the main
forces driving carbon emission change; (2.2) denotes the effect of changes in energy end-use structure;
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(2.3) represents the effect of changes in energy intensity, that is, energy consumption per unit of gross
output; (2.4) measures the effect of changes in intermediate input structure (technology effect); (2.5)
represents the effect of changes in import substitution of production structure; (2.6) shows the structure
effect of changed interregional trade in intermediate inputs; (2.7) denotes the effect of changes in
composition of consumption and capital; (2.8) gives the effect of changes in level of consumption;
similarly, (2.9) and (2.10) represent the effect of changes in composition and level of inventories changes,
respectively; (2.11) and (2.12) show the effects of changes due to export structure and level; and (2.13)
and (2.14) are for error items. It is alternatively called “discrepancy” by national statistical agencies.
It is a line item that expedites balancing of I–O accounts. It does not have any apparent economic
meaning and is, fortunately, consistently very small and, hence, insignificant in the overall scheme
of things. When we decompose for each region, we replace the vector c

′

by diagonal matrices with
the same elements on the main diagonal and zeroes elsewhere and pre-multiply all numerators and
denominators with (NR×NR) region aggregation vectors, one for each region.

Table 1. Definition of notation.

Notation Definition

Energy factors cc 1 Carbon emission coefficient
S 2 Energy end-use structure
E 3 Energy Intensity

Production pattern AT 4 Intermediate input structure
AI 5 Import substitution (domestic supply ratio)
TA 6 Interregional trade in intermediate input

Demand pattern Bc 7 Composition of consumption and capital
Yc 8 Level of consumption and capital
Bi 9 Composition of inventories
Yi 10 Level of inventories
Bx 11 Composition of export
Yx 12 Level of export
Bo 13 Composition of others (error term)
Yo 14 Level of others (error term)

We also develop a decomposition that is the polar opposite to the one identified above. In any case,
our final decomposition result is the geometric average (Fisher index) of two polar decompositions,
which, according to Dietzenbacher and Los (1998) [28], is very close to the average of all possible
decompositions. We understand that the geometric mean of all decompositions is better than using
the mean of the two polar decompositions (Dietzenbacher and Los, 1998 [28]). Also, at least in theory,
the Sato-Vartia ideal decomposition (De Boer, 2009a,b) seems better than the geometric mean of the
polar decompositions [29,30]. However, the former approach demands obtaining solutions to all 14
elementary decompositions and the latter requires an extension to 14 factors. Both require substantially
more effort with no guarantee of a substantially improved result. The extension to a Sato-Vartia
decomposition at least is beyond the scope of the present piece.

There are some issues we should mention or some aspects that are missing in this paper that
deserve attention in the near future. Some determinants in this equation are potentially collinear
and such apparent dependencies can induce some bias in the results of decomposition analyses [31].
But as Dietzenbacher, Lahr, and Los (2004) point out, the remedy could be worse than the disease
when analyzing such a complex issue, so we choose not to correct for such potential dependencies
here [32]. Further, Guan et al. (2012) and Liu et al. (2015) worry about uncertainty in Chinese emissions
data [33,34]. In the present paper, we use provincial energy consumption data for two reasons: First,
high-quality data with provincial detail are not reported in the national statistical system, which
remains the only truly reliable data repository in China. This likely also explains why it continues to be
used by so many researchers (c.f., Zhang and Lahr (2018) and Feng at al. (2013) [13,27]). Second, our
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focus on factors’ relative contributions to emissions change over a specific period softens the seriousness
of such data issues to some extent. Nonetheless, if other reliable sources should arise, an analysis like
this can be redone and enrich this line of research.

2.2. Materials

2.2.1. Data Source

The main data are 1997 (China National Information Center, 2005), 2002, and 2007 MRIO
tables [17,18], provincial final energy consumption data by industry [35–37], and CO2 emission factors.
In this analysis, the 2007 MRIO table is the latest and all three tables we use are fortunately comparable
since they are compiled by the same team. Unlike other national data, it typically takes many years
to collect data and thoroughly balance the I–O accounts. Nonetheless, we contend that our present
analysis will yield some valuable insight that could assist in China’s carbon abatement programs. We
perform a dynamic analysis on China’s regional carbon emission change across ten years using the
latest official, published data. Such a historical review can help us all to better understand the carbon
abatement potential for each factor we employ in our analysis; it can be a foundation for formulating
present and future policies. In this vein, I–O analysis is a coarse forecasting tool. With all of this in
mind, our analysis could also inform feasible policies instruments for today’s practice.

2.2.2. Data Compilation

Deflation of Tables

Since I–O tables are in value terms and both MRIO tables are in nominal prices, we adjusted
the values in an attempt to eliminate price effects. We inflated the 1997 and 2002 I–O tables to make
their values consistent with those in 2007. This enabled us to use data in prices to which the reader
can best relate, i.e., in prices of the most recent year’s in our data. The biproportional-adjustment
technique RAS is commonly used, at least in academic literature, toward such ends [38]. For the
deflators, please see [39]. The 1997 MRIO table was published in 2005. We used different deflators
for different industries. For some industries, the deflator even came from finer industries, with value
added as weight. The 2002 and 2007 MRIO tables were published in 2012 by the same authors. The
tables have the same categories for industries and regions. Table 2 shows the detailed information for
the eight regions. Note, there are two minor differences between the 1997 MRIO and the 2002 and 2007
MRIO tables, which we have adjusted according to [40] (We omitted the detailed data processing for
space limitation, but we are glad to provide all these materials upon request).

Table 2. Regional classifications.

Region Provinces (Municipalities)

North East (NE) Liaoning, Jilin, Heilongjiang
North Municipalities (NM) Beijing, Tianjin
North Coast (NC) Hebei, Shandong
East China (EC) Shanghai, Jiangsu, Zhejiang
South China (SC) Guangdong, Fujian, Hainan
Central China (CC) Shanxi, Henan, Anhui, Hubei, Hunan, Jiangxi
Northwest China (NW) Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang, Inner Mongolia
Southwest China (SW) Sichuan, Chongqing, Guizhou, Yunnan, Guangxi, Tibet

Construction of Trade Coefficients

Referring to the construction of the trade coefficient matrices for intermediate transaction matrix,
we assign the trade coefficient to be zero when the use of an industry’s output by an industry is zero;
we assign the same value as the corresponding trade coefficient for the other year when the total use
was zero in one year but positive in the other. This implies in these situations that all carbon emission
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changes will be attributed to changes in the input structure and none to changes in trade structure
when all other values remain equal.

Carbon Coefficients

The final energy consumption data are from the energy year book in corresponding years. When
we calculate the energy structure for each industry, so we need to transform all fuels types into a single
set of physical units—standard coal equivalents. To make all data comparable, we also calculate the
carbon emission coefficient per standard coal equivalent by fuel type (see Table 3).

Table 3. Carbon emission coefficient for fuels.

No. Name Carbon Emission
Coefficient (Physical Unit)

Carbon Emission Coefficient
(Standard Coal Equivalent)

1 Raw coal 1.978 kg/kg 2.769 kg/kg
2 Cleaned coal 2.492 kg/kg 2.769 kg/kg
3 Other washed coal 0.791 kg/kg 2.769 kg/kg
4 Briquettes 1.825 kg/kg 2.555 kg/kg
5 Coke 3.042 kg/kg 3.132 kg/kg
6 Coke oven gas 0.742 kg/m3 1.299 kg/kg
7 Other gas 0.232 kg/ m3 1.299 kg/kg
8 Crude oil 3.065 kg/kg 2.146 kg/kg
9 Gasoline 2.985 kg/kg 2.029 kg/kg

10 Kerosene 3.097 kg/kg 2.105 kg/kg
11 Diesel oil 3.167 kg/kg 2.169 kg/kg
12 Fuel oil 3.237 kg/kg 2.266 kg/kg
13 PLG 3.1667 kg/kg 1.847 kg/kg
14 Refinery gas 2.653 kg/kg 1.688 kg/kg
15 Natural gas 2.184 kg/cu.m 1.643 kg/kg
16 Other petroleum product 3.065 kg/kg 2.146 kg/kg
17 Other coking products 3.043 kg/kg 3.132 kg/kg

Note: Electricity and heating are produced by above fuels, to avoid double counting of carbon emissions, we assume
their carbon emission coefficients are zero.

In this paper, we use original IPCC (Intergovernmental Panel on Climate Change) coefficients,
but we also use China’s calorific values to get an adjusted emission coefficient [41]. As we attempt to
compare the relative effect of the various drivers of China’s regional emission change, not the absolute
level of emissions, consistency of the data and method is more important than perfect accuracy with
respect to the energy content of coal in China.

At the regional level, however, energy use is included in five sectors. To preserve as much
information as possible, we only aggregated further to five sectors when performing an operation with
energy data (see Table 4 for detailed sector information).
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Table 4. Industrial Classifications.

No. Name Category 1 Category 2

1 AGRI Agriculture Agricultures
2 INDU Industry Mining

Food products
Textile and wearing apparel
Wooden products
Paper and printing
Chemical products
Non-metallic mineral products
Metal products
Machinery
Transportation equipment
Electronic products
Other manufacturing products
Electricity, gas, and water supply

3 CONS Construction Construction
4 TRAD Trade and transport Trade and transport
5 SERV Services Services

Note: Category 1 is based upon energy balance table by province (municipality, autonomous district). Category 2 is
derived from China’s MRIO tables.

3. Result

3.1. Descriptive Statistics

From 1997 to 2007, carbon emissions in China soared, particularly during the second half. The
growth rate rose from 3.2 to 13.3 percent during the two periods, leading to about 3.9 billion tons of CO2

emission in 2007 (please see Figures 1 and 2). The situation varied across regions. We found emissions
on the north coast rose fastest with an average annual rate of 12.2 from 1997 to 2007, while central
China contributed the largest share of China’s emissions in 2007. On the contrary, north municipalities
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Up to this point, we have attempted to reveal a general understanding of temporal and spatial
variations regarding China’s CO2 emissions. The following structural decomposition analysis yields a
deeper perspective on the driving forces behind their changes.

3.2. Structural Decomposition Analysis (SDA) for CO2 Emission

We categorize all the factors into three groups and the analysis below is accordingly based on this
classification. The first group is mainly energy factors and includes energy-use structure and energy
intensity. In this paper, the emissions are calculated according to end-use energy consumption by
sector. The second group focuses on the supply side, which focuses more in the industry mix and input
mix. The third group concentrates on the demand side, particularly on the expenditure structure and
relative levels of final demand.

3.2.1. Energy Factors

The energy factors include energy structure and energy intensity. During the whole period, the
change of energy consumption structure decreases China’s CO2 emission slightly. However, in most
regions, energy structure contributed to emission reduction, particularly over the 1997–2002 period.
However, in the north municipalities it played a most important role in total emissions reduction (see
Table 5 for the decomposition result). In 1997, the region consumed about 30% coal and 20% coke and
these fuels produce much more CO2 emissions than do other fuels (see Table 3 for the last column).
By 2002, the northern municipalities fuel mix was just 20% coal and 12% coke and instead consumed
more natural gas, other gas, refinery gas, and other petroleum gas. This change in fuel mix greatly
reduced their carbon emissions from 1997 to 2002. Other regions also reduced their coal consumption,
resulting in a negative effect on emissions. We ask readers to pay particular attention to central China,
where energy consumption structure had a positive effect from 1997 to 2002, but the largest negative
effect from 2002 to 2007. Coal’s share of the fuel mix in this region accounted for more than half of its
total energy use; accordingly, central China has a greater potential to change its energy structure and
thus carbon abatement.
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Table 5. Carbon emission result in the 1997–2002 period.

Region Energy Factors Production Pattern Demand Pattern Total

Energy
Structure

(%)

Energy
Intensity

(%)

Production
Technology

(%)

Domestic
Supply

(%)

Interregional
Trade

(%)

Consumption
and Capital

Structure (%)

Consumption
and Capital
Level (%)

Inventory
Structure

(%)

Inventory
Level
(%)

Export
Structure

(%)

Export
Level
(%)

“Other”
Structure

(%)

“Other”
Level
(%)

(%)

NE −2 −39 −13 −9 9 3 42 −2 −1 −2 9 0 1 −3
NM −6 −23 −2 6 −28 −8 43 20 −6 1 15 −6 21 27
NC 0 −17 −6 −3 −27 −8 41 8 −4 2 9 −12 45 29
EC −2 −36 −6 −6 11 −2 33 −1 −1 4 18 1 −3 9
SC −1 −41 −5 −9 15 1 31 −12 2 1 27 1 9 19
CC 1 −27 −10 −12 −12 −6 46 5 −3 0 7 4 24 18
NW −2 −20 −4 0 −11 −1 47 5 −3 0 6 −3 10 23
SW −1 −21 −4 −2 9 0 47 −31 6 1 6 0 0 10

China −1 −28 −7 −6 −4 −3 42 −1 −1 1 10 1 14 16

Note: 1. As the “other” item in final demand does not have any economic implications, we do not report its decomposition result. Accordingly, the total result approximates the sum of all
listed factors. 2. “Total” refers to changes in CO2 emission in the 1997–2002 period.

Table 6. Carbon emission results in the 2002–2007 period.

Region Energy Factors Production Pattern Demand Pattern Total

Energy
Structure

(%)

Energy
Intensity

(%)

Production
Technology

(%)

Domestic
Supply

(%)

Interregional
Trade (%)

Consumption
and Capital

Structure (%)

Consumption
and Capital
Level (%)

Inventory
Structure

(%)

Inventory
Level
(%)

Export
Structure

(%)

Export
Level
(%)

“Other”
Structure

(%)

“Other”
Level
(%)

(%)

NE 0 −16 9 0 5 8 32 1 1 0 19 −3 0 56
NM 1 −57 6 1 16 18 25 −21 15 5 31 −17 8 30
NC 1 −18 10 7 16 6 39 −6 12 0 18 −12 13 87
EC 0 −23 5 4 −15 5 38 0 1 10 40 0 −2 64
SC −1 −3 2 10 −2 10 28 11 −8 −17 45 −2 2 74
CC −3 −29 9 7 −2 −5 41 0 12 1 12 9 5 56
NW −1 −41 6 −1 32 11 28 −8 8 11 18 −14 3 53
SW 1 −29 7 3 −10 1 40 47 −27 −1 13 12 1 57

China 0 −25 7 4 3 4 36 3 4 1 22 0 4 62

Note: 1. As the “other” item in final demand does not have any economic implication, we do not report its decomposition result. Accordingly, the total result approximates the sum of all
listed factors. 2. “Total” refers to changes in CO2 emission in the 2002–2007 period.
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Table 7. Carbon emission results in the 1997–2007 period.

Region Energy Factors Production Pattern Demand Pattern Total

Energy
Structure

(%)

Energy
Intensity

(%)

Production
Technology

(%)

Domestic
Supply

(%)

Interregional
Trade (%)

Consumption
and Capital

Structure (%)

Consumption
and Capital
Level (%)

Inventory
Structure

(%)

Inventory
Level
(%)

Export
Structure

(%)

Export
Level
(%)

“Other”
Structure

(%)

“Other”
Level
(%)

(%)

NE −1 −55 −4 −6 12 10 70 −2 3 −3 35 −5 0 53
NM −5 −82 4 1 −7 15 69 0 2 6 54 0 −1 58
NC 1 −35 5 4 −11 1 82 3 6 4 30 1 27 115
EC −2 −61 −1 0 −5 3 66 −2 2 16 62 −3 −2 73
SC −3 −45 −4 2 13 11 59 −5 1 −16 71 −2 10 92
CC −1 −57 −1 −3 −14 −12 86 7 7 2 22 0 38 74
NW −3 −60 0 −5 23 11 71 −1 4 12 31 −6 0 76
SW 0 −51 2 −1 0 0 73 4 5 1 19 5 11 67

China −1 −55 0 −1 −1 1 74 2 4 1 35 0 16 75

Note: 1. As the “other” item in final demand does not have any economic implications, we do not report its decomposition result. Accordingly, the total result approximates the sum of all
listed factors. 2. “Total” refers to changes in CO2 emissions in the 1997–2007 period.
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China’s energy production structure has not changed much since the 1990s, that is, coal production
accounts for about 78–80%, oil about 10–17%, and gas 2–4% [35]. The nation’s energy consumption
structure is decided to a large extent on the pattern of available energy resource supply. From the
regional perspective, Shanxi, Shaanxi, Inner Mongolia, Henan, Guizhou, and Shandong produced
most of China’s coal. This partly explains why the north coast and the central coast are reluctant to
transform their energy fuel mix.

On the other hand, energy intensity improvements were a main contributor to carbon emission
reduction across all regions, although it appears to have been offset by the final demand factors in
both periods. We discuss this in more detail later. Energy intensity greatly reduced CO2 emission in
south, northeast, and east China from 1997 to 2002 and in north municipalities and northwest China
from 2002 to 2007. Garbaccio et al. (1999) and Fisher–Vanden et al. (2004) showed that technology
progress and R & D inputs drive China’s progress in energy intensity [42,43]. We believe they are
largely behind the tremendous energy intensity improvements in south China and east China. After
Xiaoping Deng’s speech in 1992, China’s government has given eastern coastal areas preferential
policy for foreign investment. This in turn has promoted coastal development both in technology and
management; since then, energy has been used more efficiently. Industry upgrading also has led to
improvements in energy intensity in north municipalities. By transferring traditional industries out of
Beijing and Tianjin, the region concentrates more on tertiary sector and becomes less energy required.
When observing northeast (1997–2002) and northwest China (2002–2007), we find both achieved great
efficiency improvements in the industry when compared to other regions. Particularly in northeast
China, Liaoning province played a leading role.

3.2.2. Production Pattern

Changes in production technology reflect changes in the interindustry structure (due to
technological change, factor substitution, changing output compositions within industries, etc.)
on changes in CO2 emission. From 1997 to 2002, the change led to CO2 emission reduction in all regions.
This suggests that the new technologies enabled the more production with fewer CO2 emissions.
However, from 2002 to 2007, this phenomenon reversed.

The domestic supply ratio in intermediate production can be defined as the material replacement
effect of the production process from imports. When the domestic supply ratio of intermediate
input rises, the energy input in production naturally increases; accordingly, production enables more
CO2 emissions, given all else remains unchanged. It also can be easily understood from an import
perspective, since increasing the share of imports used certainly reduces CO2 emissions, at least from a
production liability perspective (i.e., the pollution is essentially exported). The import substitution
reduced CO2 emission in all regions except north municipalities and northwest China in 1997–2002
but, in the second five-year period, a larger domestic supply ratio means more carbon emissions were
produced. This was the case in all regions except northeast and northwest China.

Interregional trade in intermediate inputs had significant influence on emission reduction in north
municipalities and the north coast in 1997–2002. This shift means that more inputs were supplied from
other regions (apparent pollution havens); by exploiting this possibility the north municipalities and
the north coast were able to reduce their own emissions. Among all the factors, its absolute influence
ranks second for these two regions. In the 2002–2007 period, however, emissions in east China and
southwest China declined substantially via this factor.

3.2.3. Demand Pattern

Level Effect

We have reported six factors in demand patterns in Table 5, Table 6, and Table 7. These factors can
be categorized into two groups: A structure effect and a level effect. It is not surprising that all level
effects play a major role in emission growth. Deeper observations suggest that total urban consumption



Sustainability 2019, 11, 3254 14 of 18

and government consumption increased 2.18 and 1.9 times, respectively, in 2002 from 1997. From 2002
to 2007, exports and capital investment became the main drivers of emission growth, where the former
increased 2.69 times and the latter 2.05 times. This is clearly reflected in our decomposition result.
In the 2002–2007 period, the level of export growth alone contributed more than half of all emission
growth compared with the sum of rural, urban, government consumption and capital investment. It
can be easily inferred that a big part of China’s CO2 emission growth is due to consumption by the
other countries. Although all regions had different performances in terms of changes in final demand
level, they shared the general upward trend.

Structural Effect

It is not surprising that for such a big developing country like China, the level of final demand
expanded rapidly. It might be more interesting to take a close look at the change in final demand
structure. A major advantage of MRIO tables is that they include interregional flow information; thus,
we can analyze the effect of change in interregional trade to CO2 emissions. We choose to use a bridge
matrix (i.e., the structure of final demand—a catenation of the matrices Bc, Bi, Bx, Bo) in our analysis
because we are particularly interested in emissions caused by final demand across the different regions
and such a matrix can display the change in a vivid way. The final-demand bridge matrix shows the
structure of consumption bundles in final demand. More importantly, when analysis is performed at a
regional level, we can easily derive how a 1% change in one region’s demand is satisfied by production
that emits carbon in other regions. In essence, we can learn how the change in interregional trade
affects emissions.

From 1997 to 2007, each region tended to be the main supplier of its own final demand, but this
gradually changed soon after. In 1997, each region contributed over 90 percent of its total final demand
in consumption and capital investment. The biggest self-sufficiency ratio was 95% for the north coast
and the smallest self-sufficiency ratio is 90% for northwest China. While in 2002, all other regions
still keep the ratio ranging from 85% to 96%, except north municipalities, which had a self-sufficiency
ratio of 79%. Through 2007, change was rather fundamental; all regions’ self-sufficiency declined to
between 71% and 87%. That is, northwest China only produced 71% of the final demand that it needed,
whereas northeast had 13% of its final demand met by other regions.

To make it clearer, we present the bridge matrix change during 1997–2002 and 2002–2007,
respectively, in Tables 8 and 9 at the regional level. The diagonal elements in the table list the changes
in the self-sufficiency ratio. Not surprisingly, CO2 emissions of most regions declined from 1997 to
2002 as most regions reduced their self-sufficiency ratio to some extent. The self-sufficiency ratio of
south China only reduced slightly, about 0.07 percent, yet the region provides more to other regions
against 1997, thus the bridge matrix still contributed positively to CO2 emissions.

Table 8. Bridge matrix changes at the regional level from 1997 to 2002 (%).

Region NE NM NC EC SC CC NW SW

NE 2.60 2.69 0.87 −0.06 0.26 0.16 0.98 0.54
NM 0.16 −14.01 4.04 −0.01 0.06 0.08 0.37 0.35
NC −1.50 4.06 −9.60 −1.14 −0.60 −1.06 −0.91 −0.71
EC −0.84 2.20 1.55 0.67 0.36 0.26 0.80 0.58
SC −0.41 5.07 3.14 0.54 −0.07 0.55 −1.25 −0.77
CC −0.81 1.24 0.91 0.29 −1.27 −0.32 −0.45 −0.99
NW 0.21 1.23 0.61 0.21 0.05 0.11 −4.43 0.45
SW 0.46 1.14 0.75 0.20 0.20 0.16 2.09 −1.77

Note: The values are based on the authors’ calculations.
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Table 9. Bridge matrix changes at the regional level from 2002 to 2007 (%).

Region NE NM NC EC SC CC NW SW

NE −8.29 0.46 0.51 0.59 1.13 1.65 1.21 0.82
NM 2.51 6.38 6.60 0.80 1.36 2.54 2.72 1.84
NC 0.70 −3.05 −6.47 0.48 1.35 4.29 2.15 2.01
EC 0.51 −2.08 −2.15 −4.43 2.77 2.52 0.45 0.24
SC 4.58 −1.70 1.50 2.56 −6.61 −11.00 −6.53 −4.92
CC 0.21 −1.31 −0.30 1.62 1.37 −20.83 0.47 0.84
NW 0.69 0.59 2.07 0.95 1.51 3.78 −14.39 3.23
SW 0.74 −0.18 −0.07 0.01 1.79 2.33 3.02 −16.52

Note: The values are based on the authors’ calculations.

The same analysis of change from 2002 to 2007 is more interesting. During this period, almost
all of the regions reduced their self-sufficiency ratio, yet their structure changes still contributed
positively to CO2 emissions, with the exception of central China. The phenomenon definitely shows an
interregional trade effect. Take northwest China as an example. From 2002 to 2007, its self-sufficiency
ratio reduced by 14.4%, yet it provided more of its production to all the other regions; these ratios
changed in the range of 0.6% to 3.8%. Note that this region had minimum levels of consumption
and capital investment in both 2002 and 2007, which implies that CO2 emission reductions occurred
because of decreases in its own final demand, particularly in household consumption and capital
investment. However, these gains were fully offset by rises in production to meet demands from all
other regions.

We can gain further insight regarding the industry structure change. From 2002 to 2007, of all the
products that flowed out of northwest China to other regions, construction, trade, and transportation
and electricity, gas, and water supply apparently increased their shares. These sectors are known to be
more CO2-intensive than others. So, the above explains how the tilting of the structure of final demand
toward household consumption and capital investment in northwest China increased that region’s CO2

emissions. The analysis can also be extended into more detail, such as for different groups like urban
consumption, rural consumption, government consumption, and capital investment, respectively. For
space limitation reasons, we do not discuss it further here.

The effect of export structure is relatively easy to understand and it works through the interaction
of export shares among regions and among sectors within the region itself. For example, when the
effect contributes positively to the CO2 emission in certain region, it means either the region’s export
share of total export in China increased or the region is inclined to export carbon-intensive products
during the study period. From 1997 to 2002, all regions increase their export share, except northeast
China and southwest China. For southwest China, the intersectoral structure change within the region
finally surpassed the export share change among regions, thus had a slight positive effect on CO2

emissions. Similarly, we found that during the second period, export share decreases in both south
China and southwest China. Although export share in the northeast also decreased to 85% in 2007
from 2002, the products moved more to chemical, metal, and machinery sectors, which in turn leads to
zero effect on CO2 emissions. The analysis is similar for the structure of inventory change.

4. Conclusions

The growing connections and interactions between industries and regions are becoming more and
more prevalent in the economy system. Taking this into consideration, we use structural decomposition
analysis to study the driving forces of China’s regional carbon emission change from 1997 to 2007.
Our study could incorporate energy factors, supply factors, and demand factors. Different from most
studies, the further decomposition of energy factors into energy intensity and energy structure changes
enabled us to see the role of energy transition in China’s changing regional carbon emissions. We found
that energy transition contributed only modestly to almost all regions during the study period. Still, it
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displayed great potential for improvements in the future. Our results provide a lot of information for
policy formation; below we emphasize the most important items.

We found some conclusions common across China’s regions. For example, the increase in
consumption played an important role for increasing carbon emissions and improvement in energy
intensity has been the main force in abating carbon emissions across China. Yet differences between
regions existed; energy intensity contributed about 35% to carbon abatement for north China but 82%
for north municipalities in the 1997–2007 period. While other factors also affect each region’s change
to various degrees, even the influence on China can be absolutely ignorable. Similarly, the role of
a factor can change and in different directions in different subperiods, even if it appears to have no
affect over the longer period. Therefore, policies should be designed to focus on specific spatial and
temporal characteristics, instead of being designed as uniform national policies. China has top-down
management, so its government must be particularly careful when formulating policies for matters
that display interregional disparities. In this vein, it should develop provincial targets and, perhaps,
decompose even provincial targets into targets for their subjurisdictions.

Along with China’s infrastructure construction and regional specialization, interregional
commodity flow is becoming more frequent. Feng et al. (2013) used 2007 a 30-province I–O
table and found that 57% of China’s emissions are related to the goods that are produced outside the
province and up to 80% of the emissions from the goods consumed in coastal areas are imported from
less developed regions, such as western and central China [13]. We found interregional carbon flows
had greatly increased due to higher regional trade during the study period, particularly from 2002
to 2007. For example, the carbon emissions produced by northwest China grew significantly due to
intermediate input and final demand in other regions, even though its sufficiency ratio declined by
more than 14%. This absolutely suggests that we should expect the carbon transfer among regions
within China to expand rapidly in the future, increasing differences between the production- and
consumption-based accounting of carbon emissions. The government should consider this when
decomposing respective provincial targets on carbon emissions and perhaps subsidize those regions
with net carbon emission outflows to make all the regional responsibilities fairly consistent with the
degree of the carbon emission produce versus the goods they consume. Thus, carbon emission targets
in China can be fairly and efficiently reached to militate against carbon leakage within China.
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