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Abstract: Risk assessment lays a foundation for disaster risk reduction management, especially
in relation to climate change. Intensified extreme weather and climate events driven by climate
change may increase related disaster susceptibility. This may interact with exposed and vulnerable
socioeconomic systems to aggravate the impacts and impede progress towards regional development.
In this study, debris flow risk under climate change was assessed by an integrated debris flow
mechanism model and an inclusive socioeconomic status evaluation. We implemented the method
for a debris flow-prone area in the eastern part of the Qinghai-Tibet Plateau, China. Based on the
analysis of three general circulation models (GCMs)—Beijing Climate Center Climate System Model
version 1 (BCC_CSM), model for Interdisciplinary Research on Climate- Earth System, version 5
(MIROC5, and the Community Climate System Model version 4 (CCSM4)—the water–soil process
model was applied to assess debris flow susceptibility. For the vulnerability evaluation, an index
system established from the categories of bearing elements was analyzed by principle component
analysis (PCA) methods. Our results showed that 432 to 1106 watersheds (accounting for 23% to 52%
of the study area) were identified as debris-flow watersheds, although extreme rainfall would occur
in most of the area from 2007 to 2060. The distributions of debris flow watersheds were concentrated
in the north and transition zones of the study area. Additionally, the result of the index and PCA
suggested that most areas had relatively low socioeconomic scores and such areas were considered as
high-vulnerability human systems (accounts for 91%). Further analysis found that population density,
road density, and gross domestic production made great contributions to vulnerability reduction.
For practical mitigation strategies, we suggested that the enhancement of road density may be the
most efficient risk reduction strategy.

Keywords: climate change; rainfall-induced debris flow; mechanism model; risk
reduction management

1. Introduction

Among the greatest continuing threats to mountainous areas, rainfall-induced debris flows are
particularly hazardous for the direct losses of life and property and ready mobilization into chain-styled
catastrophes [1–3]. The risk of rainfall-induced debris flows will be increased by the underlined
drivers of climate change and variability [4–9]. According to the IPCC Fifth Assessment Report
(AR5) [10], the impacts of climate change may be profound in the future with an associated increase
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in the frequency of extreme rainfall events, bringing extra burden to sustainable development and
poverty eradication in mountainous areas [11]. Especially for the mountain areas in the southwest of
China, with a relatively dense population, vulnerable socioeconomic context, and unstable geological
environment, even a small-scale event might cause heavy casualties, severe structural damages, and a
paralyzed economy. Scientists and practitioners have reached a consensus that it is imperative to carry
out debris flow risk management under climate change [12]. While specialization in different domains
of the debris flow formation mechanism would deepen knowledge further, integrated approaches
based on the theories of geographical complexity, environmental synergy, and regional disaster systems
are particularly beneficial to risk management [13,14].

Risk assessment has laid the foundation for both disaster risk management and climate change
adaptation, thus drawing on criterions and standards worldwide. First formally proposed by the
United Nations’ manual book in the early 1990s, basic terminologies, like risk, hazard, exposure,
vulnerability, and adaptation, constitute the framework of risk assessment. In recent years, the terms
have been defined multiple times and emphasized within their relationships. However, terms remain
blurred and are sometimes contradictory from different research perspectives. One reason is that such
terminologies might not be physical parameters to describe states or processes of a specific disaster,
but rather form a conceptual framework to aid understanding and communication. As for debris flow
risk, it means that an existing and potential hazard may cause adverse effects to debris flow-prone
mountainous villages according to the general definition in “Managing the Risks of Extreme Events
and Disasters to Advance Climate Change Adaptation” (IPCC SREX) [15]. In other words, debris flow
risk is derived from the interaction between debris flow susceptibility and the vulnerability of exposed
elements [16], thus many researches have focused on invesitgating the spatial distribution of both
aspects and the ultimate risk.

From an examination of the historical data and previous literature, debris flow susceptibility
appears to depend on debris flow formation conditions, such as the watershed area, channel gradient,
surface loose material, and rainfall character [5,17]. Methods of debris flow susceptibility assessment
have developed from qualitative analysis to quantitative techniques, and are broadly divided into two
categories: Statistic and dynamic methods. Statistical methods, like logistic regression [18], analytic
hierarchy process (AHP) [19] and improvements [20], fuzzy comprehensive evaluations [21,22], and
neural network [23–25], evaluate indicators of debris flow determined by experts [26]. Dynamic
methods divide an event into physical formulas to obtain the optimal solution, which may require a
highly-compiled dataset for reality validation [27–31]. The scope of application is the major distinction
since the former is commonly used in a country or region while the latter describes the processes within
a watershed. As the high-resolution geographical data from multisource has become available in this
decade, debris flow susceptibility assessments based on dynamic methods have been applied more
widely for the detailed description of complex rainfalls that trigger debris flow [32–35]. Furthermore,
dynamic methods have the potential to address the climate projection data simulated by global/regional
circulation models to implicate the corresponding changes of debris flow susceptibility [36–39].

Additionally, vulnerability factors have emerged as being crucial in the formation of debris
flow risk and are more vital at a local scale [40]. Vulnerability is defined as the embodiment of
individual characteristics facing hazard: Age, livelihood, health, and so on [41–43]. However, such a
definition considers neither individual activity against hazards nor the adaptation of people as a group.
Hence, vulnerability rather presents as a marginalized population lacking access to resources [44].
Within a specific watershed, which is basically administratively equivalent to the scale of a township,
vulnerability refers to the prevailing social and economic conditions [45]. As a result, integrated
evaluation approaches involving the demography, economy, and social factors are needed.

Despite being the subject of widespread concern for decades, comprehensive approaches are still
lacking the incorporation of both a mechanism method and vulnerability evaluation into risk assessment
within the context of climate change. In this paper, the result of debris flow susceptibility under climate
change was simulated by the combination of downscaled future rainfall and a rainfall-triggered debris
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flow dynamics model, and on this basis, the related future risk was assessed through a comprehensive
vulnerability evaluation of a debris-flow-prone area of southwest China, with an area of approximately
112,710 km2. Different from previous research, each watershed in the study area was simulated by a
debris flow trigger mechanism model to assess whether it is a potential debris flow watershed. Though
more precise debris flow trigger mechanism models at the gully scale exist, this study employed
a water–soil coupling mechanism model for the following reasons: The ability to synthesize the
genetic conditions of the debris flow at a watershed scale [46,47]; interaction with the vulnerability
of elements at the township scale; and the development of reasonable risk reduction measures [37].
Meanwhile, we aimed to analyze the impacts of debris flows on societal and economic developments
in mountain areas. The major models, procedures, and evaluation included: (1) Downscaling climate
data and assessing extreme rainfall events in the future; (2) predicting the distribution of debris flow
susceptibility by a water–soil coupling mechanism model; and (3) analyzing the vulnerability of
disaster-prone watersheds and assessing the ultimate risk.

2. Materials and Methods

2.1. Study Area

The debris flow-prone area is a part of the Hengduan Mountains, located in the west of Sichuan
Province, China (Figure 1). Covering 112,710 km2, this area is mainly comprised of hills, mountains,
and a plateau while more than 95% is occupied by mountains. It is in one of the most tectonically
active regions in the world. Among the historical recorded debris flow gullies, this area occupies about
48% (1575) of Sichuan province (3200). It has a subtropical monsoon climate with humid summers
and dry winters. The spatial patterns of rainfall are remarkably different within the debris flow-prone
area. A combination of the complex topography and monsoon climate creates a higher frequency
of extreme rainfall. Meanwhile, this area is sensitive to climate change and the impacts of climate
change may be profound due to the complex topography. Moreover, numerous loose deposits have
been produced recently because of the 5.12 Wenchuan earthquake and the 4.20 Lushan earthquake,
which have drastically increased the risk of rainfall-triggered debris flows in the study area [48,49].
For these reasons, a risk assessment of debris flow under climate change is imperative in this debris
flow-prone area.
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2.2. Assessment Framework

The assessment of debris flow risk was comprised of four steps, which are illustrated in Figure 2.
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2.3. Models

2.3.1. Debris Flow Susceptibility

A water–soil coupling model was used for the debris flow susceptibility assessment [50]. Of all
types of debris flow, shallow soil slopes sliding along bedrock is the most common in mountain areas.
Furthermore, such a type is described as thick over soil failure caused by shear breakage under major
exogenic forces, like precipitation, and is substantially smaller in scale, yet larger in number and
greater in devastation. The formations of this type of debris flow depend on the energy, material, and
triggering conditions. The relative height and terrain slope provide energy conversion gradients, while
extreme rainfalls work as a triggering condition. However, it is difficult to estimate accurately the loose
material of each plot for a large area. This problem can be solved by evaluating the loose material
generation in each plot. In this way, the material condition of debris flow formation is influenced
by geological structure, land cover, and human activity. Thus, the water–soil coupling model was
established for such types of debris flow based on a geomorphology-based distributed hydrological
model and the slope instability mechanism model.

The water–soil coupling process of debris flow formation can be described as having three basic
steps. The first step is to simulate the surface runoff formation process. Due to the large surface slope
of the mountain area and the weak river recharge of groundwater, the 1-D Richards equation set up
by the finite element method was applied to present water flow in unsaturated soils for each raster,
as shown in Equations (1)–(3). Surface runoff yield was based on the excess infiltration mechanism and
calculated by Manning’s formula [51,52]. Secondly, based on the limit equilibrium method of infinite
slopes, the slope stability alongside the instability depth under rainfall infiltration was analyzed by the
safety factors calculation model as expressed in Equation (5) for each raster. If Fs < 1, the soil mass
is unstable and about to transform into sediments. Third, the density of the water–soil mixture was
quantified by the volume of surface runoff and the gross amount of unstable soil mass at the watershed
scale. With this, a qualitative relationship between the density and probability of debris flow was
presented. The density of the water–soil mixture was calculated using Equation (6):

∂θ(z, t)/∂t = (∂/∂z) × [k(θ,z) + qv(θ,z) × (∂θ/∂z)], (1)
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k(θ,z) = k0 × exp(−fz) × Se
1/2
× [1 − (1 − Se

1/m)m]2, (2)

Se = (θ∆t − θr)/(θs − θr), (3)

Se = [1/[1 + (α × ψ)ˆn]]ˆm, (4)

Fs = tanϕ/tanβ + [c + ψ × tan(ϕb)]/(γt × Hs × cosβ × sinβ), (5)

% = (%w vw + %s vs)/(vw + vs). (6)

In Equation (1), k(θ,z) is the unsaturated soil hydraulic conductivity, and its concrete expression is
shown in Equation (2). k0 is the saturated water conductivity of the surface soil layer. Se is the saturated
degree as described by Equation (3). qv(θ,z) is the soil water flux. ψ = (ua − uw) is the matric suction of
the soil from the Van Genuchten model of Equation (4) (ua represents the atmospheric pressure and
was set to zero) [31]. n and m are the parameters of the curve, in accordance with n = 1 − 1/m. θs is the
saturated water content of the soil, θr is the residual water content of the soil, and θ∆t is the soil water
content of the current hour.

To calculate the safety factors in Equation (5), ϕ is the internal friction angle, β is the gradient, c is
the soil cohesion force, ϕb is related to the matrix suction, γt is the wet soil density at time t, Hs is the
soil depth, and Se is the same as above. In Equation (6), %w is the density of the water (%w = 1.0 g/cm3),
and %s is the density of solid particles (%s = 2.7 g/cm3). vw is the volume of the water and vs is the
volume of the failure soil mass.

According to these equations, the probability of debris flow can be predicted for each day in
watershed units. In order to reduce uncertainties, the threshold value of the probability of debris flow
was set to 0–20%, 20–40%, 40–60%, 60–80%, and 80–100%. Then, the debris flow susceptibility was
expressed by the number of events for the future.

2.3.2. Vulnerability

The vulnerability of a local debris flow disaster system varies between research targets and
across scales, depending on the environmental governance, demographic features, and development
status [53]. In this study, vulnerability was expressed as a comprehensive index estimated through
principal component analysis (PCA) and set as a range from 1 to 100. the construction of an evaluation
index system is a commonly used method to integrate different categories of affected elements,
to synthesize the vulnerability index by statistical methods or other mathematical methods, and to
represent the relative degree of vulnerability of the assessment unit [54–57]. Considering the availability
and consistency of socio-economic data in debris flow watersheds which normally correspond to
the township scale, 11 variables (Table 1) were included and were mostly inferred from previous
representative studies [58–60]. The procedures of PCA are described by Jolliffe [61]. In order to facilitate
local disaster mitigation and guide decision-making, vulnerability assessment was established in the
current state.

Table 1. Summary of the variables used in the comprehensive vulnerability index.

Variables Description Methods and Source
Population density Dpop = P/S

Non-agricultural work force
The number of people engage in work
other than agriculture, i.e., industrial
and service employees

Census data (2014)

GDP Gross domestic product Census data (2014)

Town-constructed area
Area of regions with complete
infrastructure facility and public
utilities in town

Census data (2014)

Industrial production density Dip = V/S
Workforce quantity Census data (2014)

population proportion
The proportion of population of a
certain town to that of the
superior county

B = P/P0
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Table 1. Cont.

Variables Description Methods and Source

Population concentration The relative importance of population
distribution for a certain town R = B/(S/S0)

Traffic net density Dti = Lti/S

Traffic trunk influence Influence of different types of traffic
trunk lines

f(xi) = C11 + C12 + . . . + Cim i ∈ (1, 2, 3, . . . , n)
m ∈ (1, 2, 3, . . . , M)

Primacy index

Primacy index means the
transportation radiation force of a
primate city and represents the social
and economic conditions of towns
been affected by the primate cities.

lef (x) =
∑

(n→ u = 1) lefu
fef (x) = min (lef (x))
= min (

∑
(n→ u = 1) lefu) e

= (1, 2, 3, . . . , n)
fe (x) = mine (fef (x))
= mine (min (

∑
(n→ u = 1) lefu) e)

e = (1, 2, 3, . . . , n)
He ∈ {Hf} He {0,1}

parameters
Dpop—density of population, P—the permanent population of a town, P0—the permanent population of a county
Dip—density of industrial production, V—annual industrial production, S—Town area, S0—county area
Dti—density of traffic network, Lti—line length or traffic nodes of traffic network
Cim—influence of m traffic trunk lines, I—traffic type (Roads, railways, airports, etc.), m—traffic trunk level
u—minimum line length from e to f. If lef ≤ 100 km, traffic type is set to roads, otherwise railways.
Then, the shortest path function, fe (x), is determined by comparing the minimum value of the path from the primate city to
region e.
According to the function, an important node, f, is selected as a junction node for region e.
Hi is a Boolean value. When the fe (x) function is true, Hi is 1 or vice versa.
Using the function in a GIS software, the hinterland range of the important node, f, Hm (i) is defined through search and
comparison.

In order to tailor targeted disaster adaptation, the variables retaining a large proportion of the
principal components were analyzed separately to avoid any possible unaffordable adverse impacts of
debris flow. Lower vulnerability scores mean a more resilient watershed to debris flow risk.

2.3.3. Debris Flow Risk Assessment

According to the risk assessment framework [62], the debris flow risk is equal to the product of
debris flow susceptibility and vulnerability as shown in Equation (7):

R = H × V (7)

2.4. Data

The debris flow risk assessment is closely related to both natural conditions and socio-economic
development level, which mainly involve datasets about precipitation, lithology, elevation, soil, land
use, road, population, and GDP.

2.4.1. Daily Precipitation Data

As input data of the water–soil coupling model, daily rainfall projections were obtained from
general circulation models (GCMs) of the NASA Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP) dataset (https://cds.nccs.nasa.gov/nex-gddp/) in RCP4.5 emissions scenarios during a
time period of 2007–2060.

Since uncertainties always exist in climate projection, different GCMs can provide a more useful
reference for debris flow susceptibility prediction so that the uncertainties in climate projection
can be revealed and reduced. Three GCMs from CMIP5 were chosen to project future changes in
precipitation, including the Beijing Climate Center Climate System Model (BCC_CCSM), the Model
for Interdisciplinary Research on Climate, version 5 (MIROC5), and the Community Climate System
Model version 4 (CCSM4).

Additionally, the results from NEX-GDDP could not be directly used in the water–soil coupling
model due to the coarse spatial resolution (25 km × 25 km). Downscaled GCMs’ projection was capable
of representing the long-term ground observations patterns. The previous literatures also indicates

https://cds.nccs.nasa.gov/nex-gddp/
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that downscaled GCMs have great similarity to local extreme events in the flood season [63,64]. Thus,
downscaling techniques were needed to deal with raw data. In general, the local climate is closely
related to land surface, elevation, and other factors. In most previous studies, linking of the statistical
downscaling and spatial interpolation method was an effective approach to obtain high-resolution
rainfall data [65]. In this study, the statistical downscaling approach proposed by Holland [66] was
used, which used a linear correction algorithm to correct the bias of the mean climate in GCMs data.
Moreover, the ANUSPLIN software was applied to interpolate the rainfall surface at a 1 km scale
in terms of the bias-corrected data. Considering that an extreme rainfall event is a major driver of
debris flow susceptibility, the indices of intensity, duration, and frequency were selected to analyze the
differences of extreme rainfall and debris flow susceptibility.

In detail, historical data collected by the local meteorological stations in and around the debris
flow-prone area (Figure 1) from 1981 to 2010 were provided by the National Meteorological Information
Center of China (http://www.cma.gov.cn).

2.4.2. Environment Data

The water–soil coupling model employed multiple data, including land use, elevation (relative
height and slope), surface soil, and a lithology map. Land use data were interpreted from remote
sensing data of Landsat 7, 2015 (https://earthdata.nasa.gov/). A digital elevation model (DEM) of a 30-m
resolution was obtained from the United States Geological Survey (https://earthexplorer.usgs.gov/).
Soil datasets including soil type were provided by the institute of soil science, Chinese Academy of
Sciences, and were converted into a 1 km resolution. The lithology distributions were obtained from a
regional geological map while the soil cohesion, c, internal friction angle, ϕ, and other mechanical
parameters were in accordance with a rock mechanics handbook. The relationship between the matrix
suction and the soil water content was calculated by the Van Genuchten model [67]. The parameters
were also determined.

All data were converted to a 100 m resolution raster in order to calculate in the assessment model.

3. Results

3.1. Projection of Extreme Rainfall

As shown in Figure 3, the spatial variability of extreme rainfall was rather large, as indicated by
the different extreme rainfall indices. This was probably a reflection of the impacts of the complex
topography and monsoons on extreme rainfall events. High frequencies of extreme rainfall were found
in the transition zone from the basin to the plateau. The extreme precipitation index from BCC_CSM
had larger differences, while the CCSM4 model had a higher value than the other two. Spatially,
extreme rainfall was mainly concentrated in the southwest of this area. In detail, almost the whole area
would experience more than 10 extreme rainfall events of Rd25 (Figure 3a–c), and about 92% of the area
would contain more than 100 extreme rainfall events of R5D50 during the time period of 2007 to 2060
(Figure 3d–f). The maximum one-day precipitation ranged from less than 40 mm to more than 400 mm,
while the maximum intensity was about 406 mm. About 96% of the area would experience extreme
rainfall events with a total accumulated precipitation of more than 40 mm. Results from the extreme
rainfall showed that areas with a maximum daily precipitation more than 50 mm are concentrated in
the western part of the study area (Figure 3g–f). This suggests that the increase of extreme rainfall
events would increase the possibility of debris flow events in the study areas under climate change,
while the number of historical debris flow events was more than 10 in most watersheds.

Figure 3(I) presents the number of daily precipitation >25 mm (Rd25), while (a), (b), and (c)
represent the indicator results of each climate model, respectively; (II) shows the number of durations
of 5 days >50 mm (R5D50); and (III) presents the maximum one-day precipitation (RX1). Columns
represent a corresponding model.

http://www.cma.gov.cn
https://earthdata.nasa.gov/
https://earthexplorer.usgs.gov/
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3.2. The Distribution of Debris Flow Susceptibility

Applying the water–soil coupling mechanism model to each watershed obtained results for
different levels of debris flow susceptibility. Results from the BBC_CSM model showed that watersheds
with a probability of debris flow above 80% had the largest range and contained those with a lower
probability. Thus, watersheds with an 80% probability were used for further analysis in order to reduce
uncertainties. In total, 432 of all watersheds were identified as debris flow watersheds and occupied
23% of the whole study area. High-risk areas (the number of events with debris flows >30 t) were
mainly distributed in the counties of Mianzhu, Wenchuan, Leshan, and Mianning (accounting for
29% of all debris flow watersheds). As extreme rainfall events were inherently random, moderate
and low-risk watersheds had greater quantities (accounting for 87% of all debris flow watersheds).
Spatially, watersheds with a moderate and low-risk were more broadly distributed than high-risk
watersheds, while the former were concentrated in the northern part of the study area. Additionally,
the spatial distributions of potential debris flow simulated from MIROC5 and CCSM4 data were
basically the same. In total, 1106 watersheds (accounting for 52%) were forecasted as debris flow
watersheds. Although the hazard areas were larger, either probabilities or frequencies of future debris
flow simulated by the MIROC5 and CCSM4 models were lower than the BCC_CSM model. Comparison
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of the distributions of extreme precipitation with the debris flow susceptibility generally showed
agreement in the debris flow-prone area. However, the mechanism model helped to identify a low
debris flow susceptibility under high frequencies of extreme rainfall events, such as the northwestern
part of this area, by comparison between Figures 3 and 4. Further analysis suggested that the rainfall
threshold of debris flow varied from 30 mm to 50 mm in Figure 4d, indicating that the threshold value
varies from different watersheds.
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probability for the BCC_CSM, MIROC5, and CCSM4 models, respectively. (d) shows the triggering
threshold of rainfall in the disaster-prone-area.

3.3. Vulnerability and Debris Flow Risk Assessment.

Three principal components were retained in PCA for the whole debris-prone area regional
analysis. Together these first three principal components accounted for 73.03% of the variation in the
original 11 variables included in the analysis. The factor loading was dominated by the population and
workforce. The loadings of each variable for the retained principal components are detailed in Table 2.

Table 2. Retained principal components of vulnerability.

PC1 PC2 PC3

Population density 0.901 −0.333 0.191
Town population proportion 0.901 −0.332 0.192
Non-agricultural work force 0.884 −0.37 0.138

Population concentration 0.864 −0.033 −0.001
Primacy index 0.39 0.578 0.444

Traffic trunk influence 0.468 0.533 0.436
Industrial production density 0.591 0.304 −0.691

GDP 0.715 0.05 −0.419
Traffic net density 0.604 0.368 0.004

workforce 0.819 0.153 −0.232

Extraction methods: Principal component analysis.
a. Three components extracted

As shown in Table 2, the first component was heavily loaded on population and workforce.
The second PCA was mainly loaded on transportation related variables. The third component
was loaded on production-related variables. Population density, road density, and gross domestic
production with the heaviest loads of each component were thus selected for further analysis.

A measurement of vulnerability was calculated by integrating different data and was standardized
to a range of 1 to 100 (Figure 5a), where higher values indicated a higher vulnerability towards debris
flow. Consistent with relevant studies, the high vulnerability area towards debris flow (vulnerability
value >90) comprised the most area because of the relatively low social-economic conditions in
mountain areas, which accounted for over 91% of the study area. However, the level of vulnerability
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could also determine the debris flow risk and management strategies. Moreover, the number of debris
flow events had an approximate number by comparing Figure 5c with Figure 5b. Meanwhile, the
number of days with debris flows showed a significant difference between the debris flow susceptibility
(Figure 4a–c) and debris flow risk (Figure 5b,c) by a paired Wilcoxon signed rank test (p < 0.05),
indicating that our indices were suitable for debris flow risk assessment. As shown in Figure 5b–d,
the distribution of debris flow risk showed that 53%, 30%, and 98% of debris flow watersheds would
result in more than 20 times, indicating that a plan for risk management should take climate change
adaptation into consideration in debris flow-prone areas.
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In Figure 6, different vulnerability elements were mainly explained by the GDP, population, and
road density, indicating the effects of socio-economic development on debris risk at a watershed scale.
Results from the impacts of different vulnerability elements on debris flow risk showed that each
selected factor could change the risk level in the study area. Meanwhile, further analysis showed that
changes in one of elements were sufficient to cause the reduction in debris flow risk (Figure 5a–c). These
results suggested that the improvement of socio-economic conditions was pivotal for risk management
practices in the development stage of the study area.
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4. Discussion

4.1. Debris Flow Process Models Enhance Susceptibility Evaluation

Compared with the approaches of debris flow risk assessment using statistical models, results from
the mechanism model were more accurate in describing higher debris flow susceptibility in potential
watersheds. The analysis of climate change potentially increasing the debris flow susceptibility.
The differences between the mechanism and statistic model are due to the influence of environmental
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conditions. Although there was a simple relationship between rainfall intensity and debris flow
event [68], other environmental factors, including topography, soil, and land use, are also significant
drivers of debris flow [69–71]. Different watersheds might offer sufficient conditions to decrease
the rainfall threshold, or otherwise increase debris flow susceptibility. Our results showed that the
threshold ranged from 20 mm to 110 mm. According to previous studies, a rainfall intensity greater
than 30 mm could trigger debris flow in the most debris flow-prone areas [72], which results in a
drastic underestimate of the climate change-affected debris flow occurrences to the selection of a higher
threshold value.

Rather, our results also suggested that the area of debris flow susceptibility was smaller in the
whole debris-flow-prone area. Although many extreme rainfalls would occur in the future, few debris
flow watersheds could be identified by the mechanism model. In consequence, a single precipitation
threshold for all regions is insufficient to indicate debris flow susceptibility under climate change in
risk management implementation. Applying a mechanism model may integrate different influence
factors to assess debris flow susceptibility, and could reduce uncertainties arising from climate change
projection and the process simulation as well.

4.2. Debris Flow Risk Reduction Management in the Future

For our study area, the rainfall threshold of rainfall-triggered debris flows had a wide range.
Meanwhile, the variation in the rainfall intensity that triggered debris flow was large enough to take
precautions so that differentiated risk management should be implemented in debris flow watersheds
to address climate change.

Although a greater than 25 mm rainfall intensity would occur in the whole debris flow-prone
area, the distribution of debris flow watersheds was mainly concentrated in the eastern part of
the disaster-prone area under climate change, where the number of debris flow has increased
continually in recent years [49]. Rainfall intensity, steep slope, and loose materials are pivotal factors for
rainfall-triggered debris flows, which are sufficient in our debris flow watersheds. Meanwhile, previous
studies suggested that the rainfall thresholds for triggering may decrease after an earthquake [73,74].
For risk reduction management under climate change, these watersheds need more attention, regardless
of whether debris flows have been triggered in recent years.

Alongside the continual influence of climate change, the identification of factors of vulnerability
in debris flow watersheds lays the foundation for risk assessment and management. Our results found
that most of the study area showed a relatively high vulnerability to debris flow and the impacts
of elements varied with debris flow watersheds. The debris flow susceptibility was assessed by the
mechanism model and key factors of vulnerability were identified in each of the statistically derived
watersheds, thus we were able to take different measurements for different watersheds. However,
the vulnerability assessment mainly aims to serve risk reduction strategy deployment. In our study,
enhancing road network density was found to be the most efficient strategy among the vulnerability
factors. Moreover, the effects of the road network density could decrease the risk when the GDP
decreased. Even though population density was also decreased in these watersheds, the risk was not
increased rapidly. Because road density is beneficial to the circulation of regional development factors,
it is regarded as the source of disaster resilience. Additionally, regional GDP also had a significant
influence on the debris flow risk of watersheds at which the road density and population were at
comparatively low levels. Meanwhile, rural areas have undergone rapid urbanization in China during
recent decades, which has also provided opportunities for resilient community construction plans to
address climate change and reduce natural hazards [75].

The integration of a debris flow mechanism model and analysis of vulnerability may be more
effective for risk assessment at a watershed scale. Compared with others based on threshold values,
our results highlighted the higher risk areas. Some studies suggested that moderate debris flows could
also damage structures and endanger human lives [76]. Therefore, the selection result of higher risk
areas would provide a more conservative strategy for risk reduction management.
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5. Conclusions

In this study, it was found that integrated models which involve a debris flow mechanism model
and an analysis of vulnerability may be more effective for risk assessment at a watershed scale. Results
from the water–soil process model suggested that the occurrence of debris flows were more than 10 t,
indicating higher debris flow susceptibility under climate change in the study area. Spatially, the risk
area was mainly concentrated in the eastern part. Meanwhile, many non-debris flow watersheds
were identified under climate change. Although debris flow susceptibility is the dominant factor of
the increasing risk, strategies to reduce vulnerability cannot be ignored. To mitigate the impacts of
debris flows under climate change, any improvement of socio-economic conditions can reduce risk on
the mountainous lagging development background, among which the enhancement of road network
density may be the most efficient strategy in practice.
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