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Abstract: Bus—pedestrian crashes typically result in more severe injuries and deaths than any other
type of bus crash. Thus, it is important to screen and improve the risk factors that affect bus-pedestrian
crashes. However, bus—pedestrian crashes that are affected by a company’s and regional characteristics
have a cross-classified hierarchical structure, which is difficult to address properly using a single-level
model or even a two-level multi-level model. In this study, we used a cross-classified, multi-level
model to consider simultaneously the unobserved heterogeneities at these two distinct levels. Using
bus—pedestrian crash data in South Korea from 2011 through to 2015, in this study, we investigated the
factors related to the injury severity of the crashes, including crash level, regional and company level
factors. The results indicate that the company and regional effects are 16.8% and 5.1%, respectively,
which justified the use of a multi-level model. We confirm that type I errors may arise when the
effects of upper-level groups are ignored. We also identified the factors that are statistically significant,
including three regional-level factors, i.e., the elderly ratio, the ratio of the transportation infrastructure
budget, and the number of doctors, and 13 crash-level factors. This study provides useful insights
concerning bus—pedestrian crashes, and a safety policy is suggested to enhance bus—pedestrian safety.

Keywords: bus—pedestrian crash; injury severity; cross-classified multi-level model (CCMM);
heterogeneity; type I statistical error

1. Introduction

Crashes that involve buses are known to result in serious injuries due in part to their physical
characteristics, e.g., heavy weight, large size, and maneuvering restrictions, such as a large minimum
turning radius [1]. In South Korea, according to the data on vehicle crashes in 2015, the fatalities that
occurred in bus crashes represented 2.2% of the total fatalities, which was slightly more than double the
number of fatalities that occurred in taxi crashes. Notably, the fatality rate of bus—pedestrian crashes
was 5.9%, which was considerably higher than the 1.3% fatality rate of bus—vehicle crashes. Due to the
access for passengers to get on and off buses, many conflicts occur between pedestrians and buses,
resulting in a large number of casualties. In order to achieve a sustainable transportation system, the
bus—pedestrian safety should be improved. Recently, despite the pedestrian-oriented policies that
have been implemented to improve pedestrian safety in many countries, pedestrians continue to be
exposed to the risk of crashes with buses [2,3]. Therefore, we should identify the factors that result in
bus—pedestrian crashes and continue to make efforts to eliminate those factors.
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Various factors affect bus—pedestrian crashes. Many studies have considered these factors, such as
drivers, vehicles, roadways, and factors related to the environment. In crashes with buses, pedestrians
are more vulnerable than they are in crashes with autos. Therefore, the severity of the injuries in
bus—pedestrian crashes can depend to some extent on the condition of the bus driver and her/his ability
to deal with dangerous situations. Some studies have focused on the characteristics of commercial
vehicle companies, including the buses and the drivers” working conditions [4-6]. The results of
these studies have indicated that safety-oriented work schedules and safety-related attitudes and
behaviors of bus drivers are essential to safe driving. These factors may be affected by the safety
management practices of companies. In addition, the characteristics of the region where the crash
occurred also can affect bus—pedestrian crashes, and some studies have focused on the regional effects
on bus—pedestrian crashes [1,7]. Therefore, bus—pedestrian crashes can be affected by the crash level
factors, the characteristics of the company, and the characteristics of the region.

Bus—pedestrian crash data, which include both crash level and group level (region and company)
factors, have a cross-classified hierarchical structure. Some research results have indicated that traffic crash
data have a hierarchical structure, usually focused on geographical or regional effects, and multi-level
modeling should be used to account for group-level factors [1,7-15]. Concerning the severity of the
injuries in bus or pedestrian crashes, two-level models were used to account for the correlation of
the crashes in a defined region [1,7]. These models set the crash level factors to a lower level (ie.,
individual or level 1 factors) and the regional group factors to a higher level (i.e., group or level 2 factors).
Unlike the indications of previous studies, bus—pedestrian crashes are affected by the companies that
own and operate the buses involved and by the regions in which the crashes occurred. This means
that bus—pedestrian crashes have two distinct hierarchical paths, and applying a two-level model to
cross-classified hierarchical data may yield a biased estimate of the parameters [12]. Because cross-group
heterogeneity is neglected in hierarchical data, a two-level model can underestimate the standard error,
thereby resulting in a type I statistical error when testing statistical hypotheses [13]. To analyze these two
higher group factors, a cross-classified, multi-level model (CCMM) is required, because it can consider
non-nested groups simultaneously.

In this study, we identified the factors that influence the severity of injuries in bus—pedestrian
crashes, including both the crash-level factors and the regional and company-group factors.

We used CCMM to take into account the heterogeneity in two distinct group level factors, i.e., the
region and the company (cross-classified hierarchical structure). We also compared the results we obtained
with the results of a single-level model and two-level multi-level models to show the need for a CCMM.

2. Literature Review

2.1. Research on the Injury Severity in Crashes Involving Buses and Pedestrians

Table 1 shows that recent studies on the injury severity in bus and pedestrian crashes have developed
various models to identify the factors that influence such crashes, including temporal factors (season and
time of day); individual factors (ages and genders of the drivers and victims); the type of vehicle and
its age and mileage; and environmental and roadway characteristics (surface conditions and width of
the road). Distinctive factors have also been considered to screen the risk factors for bus and pedestrian
crashes. These factors can be classified into pedestrian, bus, regional, and social characteristics. Studies
of the characteristics of pedestrians have taken into account the movement of pedestrians, the colors of
the clothes, and the errors they make. Studies of the characteristics of buses have considered the type of
buses (e.g., school buses and van buses). Regarding the regional characteristics, street pattern, land use,
number of schools or shops, and network type have been considered. Also, for the social characteristics,
land price, household income, and people’s nationalities were considered. In addition, previous studies
used various statistical models, such as ordered logit and average direct pseudo-elastics models, and
more recent studies have used methods based on machine learning, such as clustering-based regression,
classification and regression trees (CARTs), and association rules [16-18].
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Table 1. Summary of studies concerning the severity of crashes involving buses and pedestrians.

Distinctive Factors

30f17

Purpose of the Study

Author

Estimation Model

Study of the effect of street patterns on the

Rifaat et al. [19]

severity of crashes

Moudon et al. [20]

Study of the risk factors of crashes on state
routes and city streets

Study of the risk factors associated with bus

Kaplan and Prato [21]

crashes in the in U.S.

Clustering pedestrian crashes and

Mohamed et al. [22]

Type of Crash
Pedestrian Multinomial logit (ML) Street pattern (grid, Cu'l—de—sac, warped
parallel, mixed)

Average annual daily traffic, home value (0.5

Pedestrian Binary logit km buffer), land uses (Number of Schools and
shops)
. . Type of bus (school bus, van bus), collision
Bus Generalized ordered logit (GOL) type (front, rear, head, end)
. . . Clustering, ordered probit (OP), K-means, Pedestrian’s error, light condition, network
Pedestrian (including bus crashes) ML (road, town, city street)

investigating each cluster’s risk factors

Analysis of unobserved heterogeneity in risk

Aziz et al. [23]

Region (Bronx, Brooklyn, Manhattan, Queens,

Random-parameter multinomial logit
Staten Island)

Pedestrian (including bus crashes) (RPML)

factors of pedestrian crashes

Investigating impact speed of pedestrian

Tefft [24]

Pedestrian’s height, weight, and body mass

crashes

Analyzing the severity of vehicle crashes at

Prato and Kaplan [25]

highway-rail grade crossings

Investigating risk factors of pedestrian at-fault

Islam and Jones [26]

crashes in urban and rural locations

Analysis of injury severity of large truck

Osman et al. [27]

Pedestrian Logistic regression index (BMI)
Bus GOL, ADPE Region (West coast, Canterbury, Southland)
Pedestrian Mixed logit (MXL), ADPE Pedestrian not visible (dark clothing),
pedestrian darting, sitting in roadway
Heavy vehicle (including bus Access control (no control), peak, worker
crashes) GOL present, work zone type (lane closure,
shoulder), location (transition area), on-bridge

Urban, region (Chicago), traffic control device

crashes in work zones

Analysis of the injury severity in pedestrian
crashes in Illinois

Pour-Rouholamin and Zhou [28]

Partial proportional odds (PPO) (traffic signal and sign, no control)

Pedestrian (including bus crashes)
Vehicle maneuver (standing), pedestrian

Analyzing the injury severity to pedestrians in

Lietal. [29]

Classification and regression trees

(CARTSs), random forest movement (driver’s nearside, offside)

Pedestrian

crashes under different weather conditions

Modeling the severity of pedestrian crashes at

Toran Pour et al. [30]

CARTs, boosted decision tree, bagged

decision tree worker, income)

Pedestrian (including bus crashes)

Social characteristics (white-, blue-, pink-collar

mid-block
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2.2. Multi-Level Models in Traffic Safety

There is growing interest in the use of multi-level models to analyze hierarchically structured
traffic crash data, and these models are often referred to as hierarchical models [1,7-15]. Two research
studies have summarized the use of multi-level analysis of traffic crash data and suggested further
studies [14,15]. Among these, Huang and Abdel-Aty (2010) proposed a five-level hierarchy that
represented the spatial distribution, i.e., geographic region, traffic site, traffic crash, driver-vehicle unit,
and occupant [14]. In addition, they mentioned that crash observation could be separated into two
distinct, but not strictly-hierarchical, dimensions at the same time, which is known as cross-classification.
If the reality that the observations simultaneously and independently belong to the two distinct groups
is ignored (by only considering a single context), the results may be misleading and either overestimate
or underestimate the effect of one group [31].

In a variety of areas, such as education, medicine, and crime, the CCMM has been used to analyze
the data with a cross-classified structure. In education, CCMMs have been used to identify the effects
of schools and neighborhoods on the smoking behaviors of adolescents [31]. Because an adolescent
belongs to multiple groups (i.e., school and neighborhood) at the same time, biased estimation results
can occur when ignoring non-hierarchical nesting structures. The study pointed out that the CCMM can
reduce the limitations of existing models. In medicine, the study of nurses with depression disorders
used the CCMM to deal with cross-classified data, including counties, organizational associations,
and workplace groups [32]. In crime, CCMMs have been used to study the consequences of the cases
involving suspected terrorists to consider the effects of terrorist organizations and criminal court
environment [33]. These studies also showed that a better model can be obtained by considering the
effects of higher groups simultaneously.

Similar to these studies, we adopted the CCMM to overcome the limitations of traditional
single-level models and conventional two-level models. Bus—pedestrian crashes are inevitably affected
by two higher groups, i.e., region and company, which violates the assumption of regression that the
crashes are independent of each other. The consequence of failing to consider hierarchical structures
is that standard errors of estimated coefficients may be underestimated, thereby resulting in an
overstatement of statistical significance. In order to prevent unbiased results, we considered two
higher groups simultaneously by using the CCMM. Also, the CCMM allows identification of the effects
of higher groups on observations. By comparing the variances of higher groups in the model, we
confirmed the effects of company and region on injury severities in bus—pedestrian crashes. Lastly, in
the CCMM, we can estimate both effects due to observed and unobserved group factors. In traditional
regression models, dummy variables for groups can be included, i.e., fixed effects models. However,
in these models, it is not possible to distinguish the effects due to observed and unobserved group
factors. The distinguishable results from the CCMM will be more helpful for a clear understanding of
bus—pedestrian crashes.

2.3. Macro-Level Factors in Traffic Safety

The model developed in this study included company-level factors and regional-level factors,
both of which are macro-level factors. Many previous studies have also developed models that
include macro-level factors [34-38]. The factors in the previous studies included demographic,
socioeconomic, land use, road network, and transit characteristics, and they were aggregated using
various geographical units, e.g., traffic analysis zones, block groups, and census tracts [37]. These
factors provide useful insights in terms of long-term improvements in traffic safety. Thus, by analyzing
these factors, researchers can suggest implications for improving traffic safety in both traffic engineering
and non-traffic engineering, which can lead to many aspects of policies and decisions related to traffic
safety investments [37,38].
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3. Data and Methods

3.1. Data Preparation

For this study, we combined three datasets, one each from the Traffic Accident Analysis System
(TAAS), the Transport Workers Management System (TWMS), and the Korean Statistical Information
Service (KOSIS), each of which covered the five-year period from 2011 through to 2015 in South
Korea. The TAAS dataset contains all police-reported crash data, and it is maintained by the National
Police Agency. The bus—pedestrian crash data in TAAS were used in this study. TWMS includes
only bus crashes with information about drivers and companies, and it is maintained by the Korea
Transportation Safety Authority, which operates and manages various transportation safety projects to
prevent the crashes of commercial vehicles. Therefore, it is necessary to match each crash of the two
different datasets to obtain the cross-classified crash structure of companies and regions, because TAAS
has no information on the companies that employ the drivers and TWMS lacks crash-level information.

The TAAS and TWMS datasets were combined based on common variables. We matched 9913
bus—pedestrian crashes from the TAAS and TWMS datasets, using the time and location of each crash,
the gender and age of the driver, the type of vehicle, and the severity of the injuries as matching
variables. As a result of the matching, the bus—pedestrian crashes had both crash-level information
and company-level information (1447 companies). In addition, based on the identification of the region
from which the crash-level information was acquired, we added regional-level information that was
provided by KOSIS for 222 municipalities.

In this database, the severity of injuries was classified into three levels, i.e., fatal injuries (4.5%),
major injuries (50.7%), and minor injuries (44.8%). In the study, a crash identified as a “fatal injury
crash” represents a crash where an injury caused the death of at least one person within 30 days of
the crash. A major injury crash refers to a crash in which at least one person suffered an injury that
required treatment for 3 weeks or more after the crash. A minor injury crash indicates a crash in which
at least one person suffered an injury that required more than 5 days but less than 3 weeks of treatment
after the crash.

The bus-pedestrian crash data comprise two cross-classified levels, i.e., the lower-level for
crash-level factors, and the upper-level for company-level and regional-level factors. The crash-level
factors include driver related factors, the vehicle type and its age, road conditions, and weather
conditions. The company-level factors include information related to the driver and the company, such
as the average age of the drivers, whether the buses are inter-city or intra-city buses, the status of each
company’s safety inspections, the number of vehicles and drivers reflecting the size of the company,
and the number of violations of each company. The regional level factors include the road pavement
ratio, elderly ratio, the ratio of the transportation budget, the number of doctors, population density,
financial independence rate, and the number of vehicles divided by the total population. In the study,
only statistically significant factors were used in the models.

We considered 15 crash-level factors, three company-level factors, and three regional-level factors.
Table 2 provides the descriptive statistics of the factors considered in the model, which include the
mean and the standard deviation. The number of minor injuries, major injuries, and fatal injuries were
4440, 5028, and 445, respectively. The crash-level factors in Table 2 show that the values of individual
crashes were averaged by the level of severity. In the company-level and regional-level factors, the
values of the upper groups, i.e., the groups to which individual crashes belong, were assigned to
the individual crashes, and the values of individual crashes were averaged according to the level
of severity. Table 3 shows the average of factors according to the year (2011 to 2015). About 2000
crashes have occurred every year, but we were unable to identify a specific trend in the factors over
time. In addition, we conducted a variance inflation test to examine the possibility of multi-collinearity
between the factors. The results of the variance inflation factor ranged from 1.01 to 1.16, indicating that
the effects of multi-collinearities were minimal.
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Table 2. Description of factors.
Level of Severity (Mean (Standard
Factor Coding Convention Deviation))
Minor Injury  Major Injury  Fatal Injury
Crash Frequency 4440 5028 445
Company Related
. 1 = if the company operates an

Intercity Bus intercity bus; 0 = otherwise 0.131(0.337)  0.146(0.354)  0.191(0.394)

Average age of drivers Average age of drivers in company 49.56(2.003) 49.52(2.270) 49.60(2.148)

Number of violations Average of the company’s countof 4 ;1) o0y 1618(2360)  1.508(2.281)
law violations

Region Related

Elderly ratio Ratio of elderly in region 11.71(3.640) 12.08(4.240) 12.67(4.846)

Ratio of transportation Ratio of total municipal budget

. P spent on transportation 41.18(13.470)  39.74(13.331)  39.53(17.726)

infrastructure budget .
infrastructure

Number of doctors Number of doctors per thousand 3508(3419)  3.356(3.228)  3.036(2.818)
residents

Crash Related

Crash Location

Intersection 1 = if crash occurred atintersection; ) 140430) 02930455 0.323(0.468)
0 = otherwise

Exclusive bus lane 1 = if crash occurred at exclusive 0.014(0.118)  0.023(0.150)  0.040(0.195)
bus lane; 0 = otherwise

Road Alignment

Right curve 1 =if crash occurred atright curve; o 05401573)  0,0330.180)  0.057(0.232)
0 = otherwise

Left curve 1 =if crash occurred atleft curve; 0 100131y 0.0200.140)  0.018(0.132)
= otherwise

Road Type

Rural road 1 =ifcrash occurred atruralroad; 0 4350 184)  0,049(0.215)  0.081(0.274)
= otherwise

Residential street 1 =if crash occurred atresidential ) 101514 0.0290.168)  0.020(0.139)
street; 0 = otherwise

Road Width

. . 1 = if crash occurred at road which
Medium sized road (13-20 m) has 13-20 m width; 0 = otherwise 0.150(0.357) 0.160(0.367) 0.152(0.359)
. 1 = if crash occurred at road with
Wide road (>20 m) wider than 20 m; 0 = otherwise 0.119(0.324)  0.152(0.360)  0.207(0.405)
Driver Behavior
. 1 =if driver was speeding when the

Speeding crash occurred; 0 = otherwise 0.001(0.026) 0.004(0.066) 0.037(0.190)
1 = if driver violated traffic signal

Signal violation when the crash occurred; 0 = 0.074(0.262) 0.098(0.297) 0.097(0.296)
otherwise
1 =if driver’s speed was 30 to 60

Speed 30-60 km/h km/h just before the crash; 0 = 0.093(0.291) 0.187(0.390) 0.341(0.475)
otherwise
1 = if driver’s speed was faster than

Speed over 60 km/h 60 km/h just before the crash; 0 = 0.003(0.058) 0.017(0.360) 0.121(0.326)
otherwise

Vehicle

. 1 = if driver’s vehicle was older

Vehicle age than 7 years; 0 = otherwise 0.139(0.346) 0.163(0.369) 0.198(0.399)

Roadway/Environment

Weekend 1 = if crash occurred on weekend; 0 = otherwise 0.249(0.432) 0.222(0.415) 0.181(0.450)

Wet road 1 = if crash occurred on wet road; 0 = otherwise 0.113(0.317) 0.137(0.344) 0.191(0.394)

Note. Standard deviations appear in parentheses.
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Table 3. Average of factors for each year.

Year
Factor
2011 2012 2013 2014 2015
Crash Frequency 1953 2059 2104 1906 1891
Company Related
Intercity bus 0.127 0.136 0.156 0.145 0.141
Average age of drivers 49.584 49.524 49.619 49.463 49.525
Number of violations 1.762 1.862 1.629 1.491 1.582
Region Related
Elderly ratio 12.132 11.880 11.911 11.891 11.899
Ratio of transportation infrastructure budget 39.766 39.939 40.316 39.978 41.965
Number of doctors 3.583 3.498 3.330 3.333 3.300
Crash Related
Crash Location
Intersection 0.227 0.257 0.287 0.275 0.317
Exclusive bus lane 0.030 0.023 0.018 0.020 0.006
Road Alignment
Right curve 0.033 0.034 0.030 0.030 0.023
Left curve 0.019 0.022 0.021 0.019 0.012
Road Type
Rural road 0.040 0.051 0.047 0.055 0.026
Residential street 0.050 0.022 0.035 0.046 0.086
Road Width
Medium sized road (13-20 m) 0.153 0.156 0.163 0.159 0.144
Wide road (>20 m) 0.145 0.141 0.158 0.138 0.115
Driver Behavior
Speeding 0.004 0.004 0.004 0.001 0.008
Signal violation 0.082 0.093 0.091 0.080 0.088
Speed 30-60 km/h 0.204 0.206 0.179 0.161 0.165
Speed over 60 km/h 0.023 0.021 0.019 0.015 0.014
Vehicle
Vehicle age 0.165 0.191 0.184 0.221 0.181
Roadway/Environment
Weekend 0.252 0.235 0.230 0.243 0.222
Wet road 0.130 0.154 0.126 0.126 0.108

3.2. Two-Level Multi-Level Model

Single-level modeling assumes that there is no correlation between individual crashes, which
means that the residuals of the model are independent. However, if this assumption is inappropriate
for a given set of data, the model may produce biased results, underestimated standard errors, and
indicate confidence intervals that are too narrow. Therefore, when there is a correlation between the
factors that affect individual crashes and the upper group of the factors, multi-level modeling is suitable
because it prevents inaccurate or biased estimates caused by ignoring the hierarchical structure of the
crash data.

In this paper, we briefly described the specification of a two-level multi-level model. Yoon et al.
(2017) provided a detailed description of the model [1]. We applied a random intercept model that has
been used extensively in previous studies. The model has a constant slope, but the intercept of the
model depends on the upper group, which represents random effects. Given crash data, N, nested
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within | groups, the equation for a random intercept model, which is a coupled model that includes an
individual-level model (level 1) and a group-level model (level 2), is as follows:

Yij = yoo + 25:17/100){;71']’ + Z,?:lVOquj +uo;j + eij, 1)

where the outcome, Y, for crash observation i in group j with the explanatory (level 1) factors, X,
and yyo, is the regression coefficient for the individual-level factors. The random parameter, ¢;;, for
individual crashes is assumed to be distributed normally. For the group-level model (level 2), with an
arbitrary intercept, yqo is the intercept of level 2; Z,; represents the group-level factors for the jth group;
Yoq is the regression coefficient related to the group-level factors; and 1 is the random parameter of
level 2. The intercept of the model varies across groups, but the coefficient of the slope is assumed to
be fixed.

For the continuous outcome, Yjj, it is important to check the normality of the error term (residual)
to obtain unbiased results. Some studies have analyzed the effect of non-normal error distributions (e.g.,
mixtures of normal distributions, lognormal, and chi-squared distributions), and a few studies have
developed a multi-level model that assumes a non-normal error distribution [39-41]. However, the
models can be difficult to apply because of the complexity of estimation. Therefore, if the non-normality
of errors (residuals) cannot be easily solved by, for example, by transforming the dependent variable, it
is worth exploring other approaches, such as non-parametric estimation of random effects.

The variance of outcome (Y};) is divided into two components. One is the variance of ¢;;, which
represents the within-group variability, and the other is the variance of u;, which represents the
between-group variability. The variances are used to compare the relative impacts on the outcome
between the attributes of individuals and groups. In the study, we analyzed whether the severity of
injury was influenced to a greater extent by the attributes of individual crashes or by the attributes of a
higher group, i.e., the company and the region.

3.3. Cross-Classified Multi-Level Model (CCMM)

Because the CCMM has two upper groups, it considers both group-level factors and random
parameters for two different groups. Let us assume that we have crash data, N, cross-classified with |
groups and K other groups. Since a crash belongs to two non-nested groups, i.e., ] and K, at the same
time, the CCMM has group-level explanatory factors, W, and Z;, and random parameters, u;; and
ugpk, for each group. In a cross-classified multi-level model, Equation (1) is modified as follows:

Yij = 6o + 25:1 OpXopij(jk) + Z,?:ﬂ/oquj + YR v Zy+ uo1j + ook + €ij, )

where 0, is the regression coefficient for the individual-level (level 1) factors. For the group-level
model (level 2), the random intercept, 6y, is the intercept at level 2, and )14 and )y, are the regression
coefficients related to the group-level factors.

3.4. Two-Level and Cross-Classified Ordered Multi-Level Models

In the analysis of the injury severity of crashes, the outcome, Y; i, 18 the ordinal outcome. To capture
the ordered nature of the given data in the model, it is necessary to use the cumulative probabilities of
the ordinal outcomes. O’Donnell and Connor (1996) provided a detailed mathematical description of
ordered logit models [42]. The multi-level model for ordinal outcomes is conceptually identical to the
model described above except for the ordinal outcome. If the number of categories for the ordinal
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outcomes is m, the ordered observed outcomes (Y;;) can be generated from the latent continuous
response as follows:
1ifY ;j <6
2if 0, <Yl.; <6
Yij = , , 3)

m lf Om—1 < YZ;

where Yl; is the latent continuous response that represents the levels of injury severity for observation i
and upper group j, and 01, 62, and 6,,_1 are ancillary parameters (known as cutoff points or thresholds).
The probabilities of injury outcomes, 7, 72/, and 7y, are estimated as follows:

7'(11']' = Pr(Yi]- = 1), 7'(21‘]‘ = PI‘(Yl'j = 2), e, nMij = Pr(Yij = M) (4)

The idea of the cumulative probabilities of ordinal outcomes leads to a cumulative logit (nnzi].)

7'(,;11-]- :PI‘(YZ‘]' < m) = nlij+n2ij+"'+nmij (Wl SM). (5)

With this background, we developed a single-level model and three multi-level models. A
single-level ordered logit model (model 1) was developed to compare with the three multi-level models.
Assuming that the model has an ordered outcome (Y;) observed with m categories, the single-level
ordered logit model is as follows:

T
log(l _n; *') =70+ Z?:ﬂﬁﬂxp + b (6)
mi
We also developed a two-level multi-level model for company level factors only (model 2), and
named it the company-only multi-level model (COMM). Assuming that the model has an ordered
observed outcome for a crash, i, nested in a given company, j, COMM is as follows:

T

mij

108[1 g ] = Y00 + Zgzlypoxpij + Z,?:l)/oc,ij + Uoj + Om- 7)
mij

Model 3 is a two-level multi-level model for regional level factors only. We called this model the

region-only multi-level model (ROMM). Assuming the model has an ordered observed outcome for a

crash, i, nested in a given region, k, ROMM is as follows:

*

[y
108(%) = 700 + L1 7p0Xpik + LrqY0rZok + ok + O )
mik
An advanced cross-classified multi-level model (CCMM) that combines company and regional
level factors (model 4) is as follows:

A

(jk)

1055{—1 _ml*] " ] = 6o+ Zﬁ;ﬁpxpi(jk) + Z,?:l)/()lqwqj + YR Vo2 Zek + totj + ok + O (9)
mi(jk

3.5. Intra-Class Correlation Coefficient (ICC)

In order to consider the adequacy of multi-level modeling, the proportions of the variance within
and between groups are required. Using the variance within and between groups, we can calculate
the intra-class correlation coefficient (ICC) to examine the proportion of level specific variance. ICC is
calculated from unconditional multi-level models (models without any input factors). If the value
of the ICC is close to zero, the variation between groups is small, and a single-level model may be
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appropriate. In general, ICCs that range from 5% to 25% are considered to be appropriate for the use of
multi-level modeling in social science [1]:

02 02
ICCy = %(imra —group 1),ICC, = %(imtra — group 2). (10)

2 2 2 2
Oul + GuZ + O¢ Oul + auZ + Oc

An intra-cell correlation can also be calculated:

) )
01T 00

ICCyp = > (intra — cell). (11)

2 2
oul + Ou2 + Oe

The intra-cell correlation refers to the correlation between the severities of two crashes that involve
the same company and occur in the same region. However, the variance parameter, of, at level 1 is not
available due to the absence of the error term, ¢;;, in Equations (4)(6). To overcome this limitation, the
models were re-fitted with an explanatory variable that was specified as being normally distributed.
As a result, in this analysis, the variance parameter, 02, is equal to 1 [9].

3.6. Model Evaluation Measures

We used several measures to evaluate the models we developed. First, the Akaiked information
criterion (AIC) and Bayesian information criterion (BIC) were used as follows:

AIC = 2k — 2LL(full), (12)

BIC = kin(n) — 2LL( full), (13)

where 7 is the number of observations, k is the number of parameters, and LL(full) is the log-likelihood
for the full model.

Besides AIC and BIC, additional performance measures (i.e., precision, recall, F-measure, and
G-mean) were used to compare the effectiveness of the models. Based on the classification tables, we
calculated the true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The
precision, recall (or sensitivity), and specificity were calculated as follows:

TP
Precision — — 2 14
recision = = (14)
TP
Recall tivity) = ———— 1
ecall (or sensitivity) TPTEN’ (15)
e TN
Speci ficity = TN TP (16)

Precision is a measure of a model’s exactness, and models that have higher precision values are
better models. The recall (or sensitivity) measures the effectiveness of the model on the positive/minority
case, while specificity measures the effectiveness of the model on the negative/majority case. To balance
between the FP and FN, we also used some combined performance measures, such as the F-measure

and G-mean [43,44]:
2 X sensitivity X precision

F — measure = (17)

sensitivity X precision

G — mean = +/Sensitivity X Specificity. (18)

The measures were estimated according to the level of severity, and the weighted average was
also estimated based on the observations.
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4. Results

We had two main objectives in this study, i.e., (1) to examine the effect of two upper level (company
and region) factors on the injury severity of bus—pedestrian crashes, and (2) to identify the factors that
influenced the injury severity of bus—pedestrian crashes. Table 4 summarizes for all of the models the
within-group and between-group variances and the ICCs, which are the proportions of the variance
within and between groups. The variances are the results of the unconditional models (models without
any input factors), and the ICCs were calculated based on Equations (7) and (8). Table 5 shows the
results of the evaluation of the model using seven performance measures. Table 6 shows the results,
including the fixed and random effects. The level 2 factors include company-level and regional-level
factors, and the level 1 factors include the crash-level factors as well as the company and regional
factors that were not considered as upper-levels. The models in this study were estimated using HLM
7,1i.e., hierarchical linear and nonlinear modeling software [12].

Table 4. Estimation results for within-group and between-group variances and intra-class
correlation coefficients.

COMM ROMM CCMM

Unconditional company (level 2) variance 0.202 *** NA 0.197 ***

Unconditional region (level 2) variance NA 0.054 *** 0.049 ***

Crash (level 1) variance 1.000 *** 1.000 *** 1.000 ***
Intra-class correlation coefficient (ICC) 16.8% 5.1% 19.7%

Note. *p < 0.10; ** p < 0.05; *** p < 0.01.

Table 5. Model evaluation results.

Single-Level Model COMM ROMM CCMM
AIC 37,511.87 37,253.05 37,373.88 37,137.24
BIC 37,677 .42 37,404.21 37,546.62 37,281.21
Minor Injury 0.451 0.451 0.456 0.472
Precision Major Injury 0.473 0.474 0.473 0.492
Fatal Injury 0.129 0.119 0.124 0.136
Weighted average 0.448 0.447 0.450 0.467
Minor Injury 0.491 0.473 0.488 0.520
Recall Major Injury 0.403 0.415 0.417 0.422
(sensitivity) Fatal Injury 0.231 0.227 0.202 0.218
Weighted average 0.435 0.433 0.439 0.457
Minor Injury 0.516 0.533 0.528 0.533
Specificity Major Injury 0.547 0.560 0.546 0.560
Fatal Injury 0.494 0.513 0.504 0.513
Weighted average 0.531 0.546 0.536 0.546
Minor Injury 0.470 0.462 0.471 0.495
F-measure Major Injury 0.435 0.442 0.443 0.454
Fatal Injury 0.166 0.156 0.153 0.168
Weighted average 0.439 0.438 0.443 0.460
Minor Injury 0.503 0.502 0.507 0.524
G-mean Major Injury 0.470 0.482 0.477 0.467
Fatal Injury 0.338 0.341 0.319 0.327

Weighted average 0.479 0.485 0.484 0.486
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Table 6. Model estimation results for bus—pedestrian crashes.

Single-Level

Fixed Effects COMM ROMM CCMM

Model
Company Related
Tntercity bus NA 0.105 (0.119) NA 0.100 (0.117)
Average age of drivers NA —0.023 (0.015) NA —-0.023 (0.014)
LEVEL2 Nun:1ber of violations NA —0.024 (0.027) NA —0.022 (0.026)
Region Related
Elderly ratio NA NA 0.028 (0.006) *** 0.026 (0.006) ***
Ratio of transportation infrastructure budget NA NA —0.004 (0.002) ** —0.005 (0.002) **
Number of doctors NA NA —0.028 (0.009) *** —0.028 (0.009) ***
Company Related
Intercity bus 0.104 (0.060) * NA 0.101 (0.060) * NA
Average age of drivers —0.017 (0.010) * NA —0.017 (0.010) * NA
Number of violations —0.020 (0.009) ** NA —0.019 (0.009) ** NA
Region Related
Elderly ratio 0.028 (0.005) *** 0.026 (0.006) *** NA NA
Ratio of transportation infrastructure budget —0.005 (0.002) *** —0.005 (0.002) *** NA NA
Number of doctors —0.031 (0.006) *** —0.030 (0.006) *** NA NA
Crash Related
Crash location Intersection 0.276 (0.046) *** 0.280 (0.046) *** 0.281 (0.046) *** 0.284 (0.047) ***
Exclusive bus lane 0.593 (0.149) *** 0.598 (0.151) *** 0.614 (0.151) *** 0.609 (0.152) ***
- Right curve 0.506 (0.119) ™~ 0.488 (0.120) = 0,502 (0.120) 7+ 0485 (0.120) =
LEVELL Road alignment Left curve 0.029 (0.149) 0.019 (0.150) 0.020 (0.149) ~0.026 (0.151)
Road type Rural road 0.231 (0.101) ** 0.242 (0.102) ** 0.217 (0.103) ** 0.224 (0.104) **
Residential street —0.366 (0.109) *** —0.366 (0.110) *** —0.360 (0.111) *** —0.358 (0.111) ***
Road width Medium road (13-20 m) 0.095 (0.057) * 0.098 (0.058) * 0.092 (0.057) 0.095 (0.058)
Wide road (>20 m) 0.269 (0.061) *+* 0.277 (0.062) *** 0.275 (0.062) *** 0.281 (0.062) ***
Speeding 1.779 (0.339) =+ 1.845 (0.340) =+ 1.791 (0.340) =+ 1.854 (0.340) =+
Driverbehavior Signal violation 0.163 (0.073) ** 0.180 (0.074) ** 0.158 (0.073) ** 0.174 (0.074) **
Speed 30-60 km/h 0.948 (0.059) *** 0.942 (0.060) *** 0.949 (0.059) *** 0.942 (0.060) ***
Speed over 60 km/h 2.391 (0.176) *** 2.322 (0.177) *** 2.389 (0.176) *** 2.322 (0.178) ***
Vehicle Vehicle age (>7 years) 0.167 (0.056) *** 0.181 (0.057) *** 0.160 (0.056) *** 0.175 (0.057) ***
Roadway/Environment Weekend ~0.125 (0.048) ™ —0.114 (0.048) *  —0.127 (0.048) *  —0.116 (0.048) =
Wet road 0.230 (0.060) *** 0.232 (0.061) *** 0.238 (0.061) *** 0.239 (0.061) ***
Random Effects
Company (level 2) variance NA 0.1785 *** NA 0.1687 ***
Region (level 2) variance NA NA 0.0346 *** 0.0298 ***
Crash (level 1) variance NA 1.000 *** 1.000 *** 1.000 ***

Note. Standard errors appear in parentheses in the estimates of the parameters.; * p < 0.10; ** p < 0.05; *** p < 0.01.

In order to justify the multi-level approach, we examined the intra-class correlation coefficient
(ICC) values obtained from different models. The ICC values for the COMM and ROMM were 16.8%
and 5.1%, respectively (see Table 4). It indicated that the variances in the severity of bus—pedestrian
crashes among companies and regions were greater than 5%, which justified the use of the COMM
and ROMM. In addition, the use of the CCMM with 19.7% of the ICC was justified based on the
bus-pedestrian crash data.

As shown in Table 4, the variances of the company and region groups estimated by the CCMM
were used to assess the effects of the regional and the company’s characteristics on the severity of
bus—pedestrian crashes. The unconditional company variance in the CCMM was 0.197, which was
significantly larger than the region variance, i.e., 0.049. This implies that the unobserved heterogeneity
was greater among companies than among regions, and the effects of the companies’ characteristics
were dominant in bus—pedestrian crashes. Therefore, an identification of the company-level risk factors
is valuable in the severity of bus—pedestrian crashes.

In addition, the Hausman test was performed to determine whether multi-level modeling
was appropriate. The Hausman test, which can be applied to a wide variety of possible model
misspecifications, determines whether the coefficient estimates from the multi-level model are
significantly statistically different from the fixed effects estimates (assumed to be unbiased). If the null
hypothesis holds, i.e., that higher-level random effects are not correlated with any crash-level factors,
both estimates are consistent and efficient, so we can apply multi-level modeling. In this study, the
p-values of the test were 0.633 and 0.451 for the company-level and regional-level, respectively, which
indicates that we can apply multi-level models to the given data.

Prior to discussing the risk factors, we evaluated the models that were developed in the study, as
shown in Table 5. In terms of statistical fit, we found that the CCMM had lower AIC and BIC values
than the other three models (i.e., single-level model, COMM, and ROMM). In terms of classification
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accuracy, the CCMM also had a lower F-measure and G-mean than the other three models. The results
indicated that the CCMM had the best performance in this study.

We identified the risk factors that significantly increased the likelihood of fatal injuries, i.e., three
regional-level factors and 13 crash-level factors in the CCMM (Table 6). The discussion of the factors is
presented in the next section.

5. Discussion

5.1. Company-Level Factors

Of the company-level factors, the intercity bus, the average age of drivers, and the number of
violations were found to be statistically significant in the single-level model and in ROMM, indicating
that the factors were potentially important risk factors in increasing or decreasing the severity of
bus—pedestrian crashes. In the COMM and CCMM, however, those factors were not statistically
significant. The single-level model and ROMM produced underestimated standard errors of those
factors. This finding showed that ignoring the effects of upper-level groups, i.e., company effects in the
bus—pedestrian crashes, produced type I statistical errors. We confirmed that the CCMM with the ability
to take into account the factors of the non-nested groups simultaneously produced unbiased estimates.

5.2. Regional-Level Factors

Among the factors at the regional level, the elderly ratio, the ratio of the transportation
infrastructure budget, and the number of doctors turned out to be statistically significant in all
models. The elderly ratio factor had a positive coefficient in the CCMM, which means that the higher
elderly ratio was associated with an increased severity of bus—pedestrian crashes. In areas with a high
percentage of elderly people, elderly people are more susceptible to these crashes, and the potential for
a serious crash is greater. The results are consistent with those of previous studies [1,7,45]. In addition,
the result may have been influenced by the regional distribution of residents by age group in South
Korea. Regions with significant elderly populations are generally rural areas, and these areas lack the
budget and qualified personnel for preventing traffic crashes compared to urban areas. This shortage
can lead to more severe injuries. Therefore, regions with high elderly populations require more care
and effort to prevent bus—pedestrian crashes.

The ratio of the transportation infrastructure budget had a negative coefficient in the CCMM. This
means that municipalities with relatively large budgets for their transportation infrastructure may
be able to reduce the number of severe crashes. The transportation infrastructure budget can affect
facilities that are related to traffic safety and road environments, such as curve radius, drainage, and
pavement condition on the roads. For example, in South Korea, those crashes involving children have
been reduced significantly by greatly expanding the budget for safety in school zones.

The number of doctors had a negative coefficient in CCMM. This means that an increase in
the number of doctors is associated with a reduction in the severity of the injury of bus—pedestrian
crashes. The number of doctors represents the level of healthcare available when a crash occurs, such
as emergency medical systems and the quality of service at the local hospital [7]. The results are
consistent with those of previous studies [7,20].

5.3. Crash-Level Factors

The coefficient directions of the crash-level factors were the same in all models. In addition, the
standard errors of the factors in the multi-level models tended to be slightly larger. Fifteen crash-level
factors were statistically significant in all models.

In the event of a crash, factors related to intersections and exclusive bus lanes were associated with
more severe crashes. In the case of exclusive bus lanes, the excessive speed of buses with a separate
travel priority may increase the injury severity of pedestrians in crashes, which was supported by the
findings of previous studies [13,26]. However, the effect of intersections has proven to be controversial.
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Some studies have pointed out that pedestrian crashes that occurred at intersections were relatively
severe [26]. However, Mohamed et al. (2013) found that the injury severity of pedestrians in crashes
that occurred at intersections was relatively lower [22]. They also suggested that pedestrian crashes at
intersections were affected by various conditions, such as the intersection type, control condition, and
the number of pedestrians.

As for the roadway alignment, the right-curve factor was statistically significant with a positive
coefficient, while this was not the case for the left-curve factor. This indicates that the injury severity
on right-curved roads is higher than on straight roads. In South Korea, the driver’s seat is on the left
side of the vehicle. This can make it more difficult to see pedestrians approaching from the right side
of a road that curves to the right due to the long sight distance and the large size of the bus. The rural
road and residential street factors were statistically significant. The coefficient of the rural road factor
was positive, which means that crashes on rural roads are associated with an increased injury severity.
Since rural roads are located outside the city, vehicles can travel faster, drivers may not expect to
encounter pedestrians, and it is difficult to get medical treatment promptly, which can result in serious
injury. Unlike rural roads, the risk factors for residential streets have a negative coefficient, indicating
that crashes on residential streets are associated with a reduced severity of injuries. In general, the
speed of buses on residential streets is low and the drivers can easily see the pedestrians. For a similar
reason, wider roads lead to increases in the injury severity when bus—pedestrian crashes occur [7,28].

Regarding the bus driver’s behavior, speeding and signal violations were statistically significant
and had positive coefficients. These illegal behaviors of bus drivers are more likely to increase the
injury severity [25]. Higher speeds just before a crash were also associated with increasing the injury
severity in pedestrian crashes. Therefore, traffic calming policy can greatly contribute to reducing the
severity of bus—pedestrian crashes.

In the vehicle and roadway environment, older vehicles have been found to be associated with
more severe bus—pedestrian crashes [1]. Weekend and dry road factors are also associated with
decreasing the injury severity of pedestrians in bus—pedestrian crashes [25,27].

6. Conclusions and Recommendation

Multi-level modeling, which is able to consider the upper groups, is very important in the
establishment of policies to prevent bus—pedestrian crashes. This is because most of the government’s
policies related to bus crashes have been developed and implemented on a company basis rather than
an individual basis. In addition, investments in safety facilities for pedestrians and traffic are made by
individual municipalities. Thus, it is necessary to be able to judge the impact of group-level factors on
bus crashes so that proper policies and investments can be established and implemented. Thus, this
study addressed the very important issue of bus—pedestrian crashes.

The objective of this study was to identify the risk factors associated with the injury severity
incurred in bus—pedestrian crashes. The bus—pedestrian crashes that are affected by company and
regional characteristics have a cross-classified hierarchical structure, which is difficult to address
properly using a single-level model or even a multi-level model. Therefore, we used the cross-classified
multi-level model (CCMM) to consider simultaneously the unobserved heterogeneities in two distinct
groups, i.e., companies and regions.

The results of the study showed that the company effect on the injury severity in bus—pedestrian
crashes was 16.8% (ICC = 0.168), and the regional effect on the severity of these injuries was 5.1% (ICC
= 0.051). This justified the application of the COMM and ROMM and, in particular, it suggested the
need for the CCMM to consider both of the upper groups. Also, we found that ignoring the effects
of the upper-level groups, i.e., company effects in bus—pedestrian crashes, produced type I statistical
errors. As a result, it showed the advantage of the CCMM in comparison with a single-level model
and a two-level model.

In the study, we identified the risk factors that significantly increase the probability of fatal
injuries, i.e., three regional-level factors and 13 crash-level factors. The results provided useful insights
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concerning bus—pedestrian crashes. The injury severity may be high in regions where there is a
high percentage of elderly people and a low transportation infrastructure budget. Therefore, local
governments that have large populations of elderly people should pay more attention to traffic plans for
bus systems to reduce the severity of injuries. Also, local governments should recognize that pedestrian
crashes are linked directly to peoples’ lives and increase their budget for traffic safety infrastructure.
As a matter of course, the federal government should provide funding for local governments that
may find it difficult to increase their budgets. The high speed of buses may increase the severity of
bus—pedestrian crashes. On roads where buses travel at high speeds, e.g., wide roads or roads with an
exclusive bus lane, improvements of the designs of the roads and the installation of safety facilities
are required to ensure complete separation of pedestrians and buses. The introduction of a device
capable of detecting pedestrians and automatically braking may also reduce the injury severity. Also,
it is necessary for the managers of bus companies to encourage their drivers to refrain from speeding.

The factors identified in this study are beneficial, but given the constraints associated with
the limited resources, the recommendations should be addressed in the order of their priorities.
These priorities can be presented according to the level of various factors. In general, micro-level
factors (i.e., crash-level factors) can contribute directly to the occurrence of crashes, and more direct
countermeasures should be developed. These micro-level factors (i.e., company-level factors and
regional-level factors) provide useful insights in terms of long-term improvements in traffic safety,
which lead to many aspects of the creation of policies and decisions concerning safety investments.
Therefore, improvements in crash-level factors, such as speeding, can be considered as a priority, while
the effect of company-level and regional-level factors (e.g., socioeconomic and demographic factors)
should be considered from the long-term perspective.

Future research can enhance the understanding the characteristics of bus—pedestrian crashes.
We found that, in South Korea, the effects of a company’s characteristics were more dominant in
bus-pedestrian crashes than the effects of regional characteristics. However, we did not identify a
key factor that is related to the companies. Therefore, efforts are needed to collect additional factors
related to bus companies, such as drivers’ workloads and safety management practices, and to identify
significant factors. In addition, in order to have sustainable transportation systems, an essential effort
is to identify the factors related to their sustainability and provide countermeasures for such systems.

It is necessary to analyze the latest data to identify current issues in bus—pedestrian safety. We
used three datasets from 2011 to 2015, but various bus safety measures, such as installations of collision
avoidance systems and emergency braking systems and the reduction of bus driver’s maximum daily
working time, have been implemented since 2015. An up-to-date analysis could provide new insights
on bus—-pedestrian safety. In this study, we used random intercept models of which the intercept only
varies according to upper groups. It is easy to interpret the results, but it is difficult to analyze the
change of effects of crash level factors based on the company and regional-level factors. A random
slope model that has random effects on the coefficients of crash level factors would be an improvement
despite the difficulty of interpretation.
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