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Abstract: With the acceleration of urbanization, there is an increasing trend of heavy pollution. PM2.5,
also known as fine particulate matter, refers to particles in the atmosphere with a diameter of less than
or equal to 2.5 microns. PM2.5 has a serious impact on human life, a sustainable city, national economic
development, and so on. How to forecast the PM2.5 concentration accurately, and then formulate
a scientific air pollution prevention and monitoring program is of great significance. This paper
proposes a hybrid model based on echo state network (ESN) and an improved particle swarm
optimization (IPSO) algorithm for the Beijing air pollution problem, and provides a method for PM2.5

concentration forecasting. Firstly, the PSO algorithm is improved to speed up the search performance.
Secondly, the optimal subset of the original data is selected by the convergence cross-mapping (CCM)
method. Thirdly, the phase space reconstruction (PSR) process is combined with the forecasting
model, and some parameters are optimized by the IPSO. Finally, the optimal variable subset is used
to predict PM2.5 concentration. The 11-dimensional air quality data in Beijing from January 1 to
December 31, 2016 are analyzed by the proposed method. The experimental results show that the
hybrid method is superior to other comparative models in several evaluation indicators, both in
one-step and multi-step forecasting of PM2.5 time series. The hybrid model has good application
prospects in air quality forecasting and monitoring.

Keywords: air quality; PSO; ESN; hybrid model; PM2.5 forecasting; sustainable development

1. Introduction

With the advancement of industrialization, air pollution has become increasingly serious, and the
problems of air quality have attracted more and more public attention. Beijing-Tianjin-Hebei area, the
Yangtze River Delta, and the Pearl River Delta have been included in key air pollution monitoring areas.
Air quality is a reflection of the degree of air pollution and is judged by the pollutant concentration in
the air [1]. Air pollutants include soot, total suspended particulate matter, inhalable particulate matter
(PM10), fine particulate matter (PM2.5), CO, NO2, O3, SO2, volatile organic compounds, etc., where
PM2.5 refers to particles in the atmosphere with a diameter less than or equal to 2.5 microns, which can
enter the lungs [2]. Although PM2.5 is only a small component in the earth’s atmosphere and has a small
particle size, it contains a large amount of toxic and harmful substances, has a long residence time in the
atmosphere, and has a long transportation distance, which has an important impact on air quality and
visibility, and has direct or indirect effects on human health and plant growth [3]. Forecasting of PM2.5
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concentration is of great significance for building sustainable cities. PM2.5 forecasting contributes to
environmental improvement and to implement air quality citizen science, i.e., all those studies by which
citizens could be more directly involved in participatory environment monitoring and sustainable
cities. Therefore, it is necessary to monitor and forecast the PM2.5 concentration in real time. In order
to strengthen the management of air quality, the Ministry of Environmental Protection in China has
released a daily report of the Air Quality Index (AQI) since 2012 [4].

Air pollution in North China is serious, and environmental issues are receiving more and more
attention. Particularly, the air pollution problem in Beijing area has attracted the most attention. It is
important for China’s sustainable development to monitor and forecast of the PM2.5 concentration in
Beijing area, with Beijing’s unique political, economic, and cultural status. China’s Environmental
Status Bulletin issued by the Ministry of Environmental Protection shows that although the air quality
of PM2.5 in the Beijing-Tianjin-Hebei metropolitan region has improved compared with previous
years, it is still the most polluted area in China, and the number of cities in the Beijing-Tianjin-Hebei
region accounts for more than five of the 10 cities with relatively poor air quality in 74 cities each
year. Therefore, the Beijing-Tianjin-Hebei urban agglomeration, as the representative area, is chosen to
forecast the PM2.5 concentration data in the Beijing area in order to provide an effective method for
regional monitoring and control.

At present, researchers at China and abroad have conducted a lot of research on the generation,
dissemination, and forecasting of PM2.5. Among them, the model of air quality forecasting develops
rapidly which can be roughly divided into two categories: the numerical forecasting model and the
statistical forecasting model [5,6]. Numerical based forecasting models are based on different chemical
mechanisms and chemical kinetic equations which is a kind of chemical transport model. However,
due to the large number of parameters in the model, the application is difficult, the forecasting accuracy
is not very high, and the calculation amount is large [5,7]. Statistical-based predictive models do not
rely on chemical mechanisms and chemical kinetic equations, and can be forecasted by analyzing their
regularity [6,8]. The accuracy of statistical forecasting is higher than that of numerical forecasting,
and the statistical forecasting model is simple, fast, and low cost.

The method of air quality forecasting based on machine learning belongs to statistical forecasting
and has become the main research direction of PM2.5 forecasting [9]. These methods, such as
backpropagation neural networks (BPNN) [10], support vector regression (SVR) [11], radial basis
function neural networks [12], echo state networks (ESNs) [5], and other machine learning models,
have been widely used in air quality forecasting. Although the machine learning model has achieved
significant results in air quality forecasting, there are still some problems, such as manual adjustment
of parameters, input variable redundancy, and so on [13].. Therefore, more and more demands make
us develop more effective AQI series modeling methods. With the development of artificial intelligence
technology, intelligent optimization algorithms are gradually welcomed in air quality forecasting [14].

In recent years, some researchers have applied intelligent optimization algorithms to the modeling
process of time series forecasting [15–17]. They use various intelligent optimization algorithms to select
input variables, optimize model structure and adjust parameters which have attracted more and more
attention from researchers of different backgrounds. In 2016, Niu et al [15] proposed a new short-term
forecasting for the PM2.5 concentration based on complete ensemble empirical mode decomposition
method and the grey wolf optimization (GWO) algorithm. In 2017, Sun et al [16] proposed a hybrid
model based on principal component analysis and the cuckoo search (CS) optimized Least Squares
Support Vector Machine for air quality forecasting and monitoring. In 2018, Li et al [17] established
a forecasting model of atmospheric PM2.5 and nitrogen dioxide (NO2) concentration based on SVR.
The Quantum PSO algorithm is used to select the optimal parameters that affect the performance of
the SVR model. In 2019, Zhu et al [11] focused on modeling and forecasting atmospheric pollution
data, and proposed a two-step hybrid model of NO2 and SO2 forecasting based on data preprocessing
and intelligent optimization algorithms (CS and GWO). In the above popular variants, the intelligent
optimization algorithm and the machine learning model have achieved good results in forecasting AQI
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time series. It has a significant effect on improving forecasting accuracy and efficiency of the model
and system.

Aiming at the problems in PM2.5 forecasting, this paper proposes a hybrid method based on ESN
and classical PSO [18] to improve the forecasting accuracy of the PM2.5 concentration. First of all,
this paper improves the classical PSO algorithm, which improves the search ability of the algorithm
and maintains a good balance between exploration and development. Then, the CCM [19] method is
used to analyze the correlation of the original data, and the relevant variables are retained. After that,
the improved PSO algorithm is used to optimize the embedding dimension and delay time of the
PSR [20] process, and the hyper-parameters of the ESN model. Finally, the optimized PSR method is
used to map the optimal variable subset to the high dimensional space, and the optimized ESN model
is used to predict the PM2.5 concentration. The establishment of the hybrid forecasting model might
provide a basis for the government to formulate environmental protection policies, help the society in
sustainable development, and provide suggestions for citizens to go out for activities and health care.

2. Methods

2.1. Echo States Networks

Recurrent neural networks [21] have a rich nonlinear dynamics mechanism, but the training
process is mostly based on the gradient principle, resulting in suboptimal speed and local optimal
problems. In addition, the output of the recurrent neural network is a function of time. The training
process of recursive connection weights in the network is related to the output, so it is difficult to
guarantee the stability of the network. To solve these problems, Jaeger proposed an improved recurrent
neural network reserve pool construction [22]. The internal unit of the ESN reserve pool is a simulated
neuron, which is a linear or sigmoid function. In 2004, Jaeger et al [23] proposed a method for learning
nonlinear systems, ESN model, which caused a strong reaction from the academic community, making
ESN one of the research hotspots in the field of time series prediction.

The ESN is a three-layer recursive neural structure that includes an input layer, a hidden layer,
and an output layer, as shown in Figure 1. In ESN, the hidden layer, also known as the reserve pool,
contains hundreds of sparsely recursively connected neurons. Prior to network training, the random
input initialization of the reserved pool and the random initialization of the internal connection weights
are no longer changed given the network parameters. All we need is to get the connection weight
between the reserve pool and the output layer through training.

Figure 1. The structure of echo state network (ESN).

The state equation of ESN is:

x(t) = φ(Winu(t) + Wxx(t− 1) + Wbacky(t− 1) + bx). (1)

The output equation of ESN is:
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y(t) = wTx(t) + b, (2)

where, u(t) ∈ RM×1 is the M-dimensional input vector, y(t) ∈ RM×1 is the M-dimensional output vector,
bx ∈ RN×1 is the input layer offset, b ∈ RN×1 is the output layer offset, x(t) ∈ RN×1 is the internal state of
the reserve pool at time t, which is obtained from the input u(t) at time t and the state x(t− 1) at time
(t− 1). φ(·) indicates the activation function. The elements in the input weight matrix Win ∈ RN×N

take values in the interval [γ,γ] and γ is positive real numbers less than one, called input transform
coefficients. The sparsity range of the connection weight matrix Wx ∈ RN×N in the reserve pool is
[1%, 10%], that the less the connection weight, the smaller the sparsity. In general, the spectral radius
of the connection weight matrix Wx is less than 1, in order to ensure the stability of the network.
As time t goes on, the impact of x(0) is getting smaller and smaller, which reflects the state of the
network with state forgetting. Wback ∈ RN×M is the output feedback matrix, which feeds back the
output from the previous moment to the current time state. However, due to the particularity of time
series prediction, the target output y(t− 1) at the previous moment is also the input u(t) of the current
moment, so Wbacky(t− 1) can also be merged into Winu(t). In order to simplify the representation,
the neuron input in the reserve pool is fixed to 1, and only connected to the output, not connected to
the neurons in the input pool and the reserve pool, besides bx and b can be merged into matrices Wx

and w. Then the upper formula can be abbreviated for:

x(t) = φ(Winu(t) + Wxx(t− 1)), (3)

y(t) = wTx(t), (4)

where there is a linear relationship with it, so it can be solved by linear regression. Compared with the
traditional recurrent neural network, ESN solves the problem that the model structure is difficult to
determine, simplifies the process of solving unknown parameters, and makes up for the shortcomings
of traditional RNNs, such as slow convergence speed and ease of falling into the local optimum [24].
The structure of the sparse reserve pool ensures that the network has rich dynamic characteristics,
good generalization ability, and predictive performance.

2.2. Particle Swarm Optimization

2.2.1. Basic Method

The PSO algorithm was first proposed in 1995 by American social psychologist James Kennedy
and electrical engineer Russell Eberhart [18]. The basic idea of the PSO algorithm is to simulate the
foraging process of bird populations and to model their social behavior. Researchers have found
that birds often change direction, disperse, and suddenly gather during flight. Their behavior is
unpredictable, but the entire team is always consistent and maintains the most appropriate distance
between individuals that no collisions will occur [25]. Through the study of the behavior of similar
biological groups, it is found that there is a social information sharing mechanism in the biological
group, which provides favorable conditions for the evolution of the group and is also the basis for
the formation of the PSO. The most important feature of the algorithm is that it is easy to implement,
with few control parameters and fast calculation speed. Like other evolutionary algorithms, PSO also
achieves the search for optimal solutions in complex spaces through cooperation and competition
among individuals. In general, the problems that genetic algorithms can solve can basically be solved
by PSO, and the efficiency may be higher.

If the overall size is N, the position of particle i(i = 1, 2, · · · , N) in the search space can be expressed
as x = (x1, x2, · · · , xD), and the flight speed can be expressed as v = (v1, v2, · · · , vD). Then in the
generation (t + 1), the particle i update its position and speed according to the following formula:

vid(t + 1) = ωvid(t) + c1r1(pid(t) − xid(t)) + c2r2
(
pgd(t) − xid(t)

)
, (5)
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xid(t + 1) = xid(t) + vid(t + 1), (6)

where d = 1, · · · , D, pid is the optimal position vector searched by the particle i, which is called the
individual history optimal. pgd is the optimal position vector searched by all the particles, which is
called the group history is the best. ω is the coefficient that maintains the original speed, which is
called inertia weight. c1 and c2 are constant called learning factor, which reflects the information
exchange between particles. c1 is the weight coefficient of the particle tracking its own optimal value,
which means that the particle knows itself while c2 is the weighting coefficient of the particle tracking
population optimal value, indicating the particle’s understanding of the whole group. r1 and r2 are
random numbers that is uniformly distributed within the interval [0, 1].

The update formula of speed consists of three parts: the first part is the a priori velocity of the
particle, which represents the current state of the particle, its role is to balance the global and local
search capabilities; the second part is the "individual cognition" part of the particle, which represents
the particle’s understanding of its behavior, and its R. OLE is to make the particle have sufficient
global search ability, and the third part is the "social cognition" part of the particle, which is the "social
cognition" part of the particle. Information sharing and cooperation between subsystems. These three
parts together determine the search ability of particles in the search space. From the perspective of social
psychology, the PSO algorithm can be described as the process of seeking consensus, individuals often
remember their beliefs, and consider the beliefs of their peers. When individuals better understand the
beliefs of their peers, they adjust themselves adaptively. The individual historical optimal position pid
of the particle i is updated by the following formula:

pid(t + 1) =
{

xid{t + 1 , i f xid{t + 1 ≤ pid{t
pid{t , i f xid{t + 1 > pid{t

. (7)

The global historical optimal position pgd of the entire group is updated by the following formula:

pgd(t + 1) = min(pid(t + 1)), i = 1, · · · , N. (8)

2.2.2. Algorithm Improvement

PSO is widely used in various optimization problems because of its superior performance, but at
the same time it is easy to fall into local optimum. This paper makes some improvements to the
PSO algorithm:

(1) Since the initial position of the particles is randomly generated, it is difficult to ensure the
quality of the initial particles in the classic PSO. In some cases, the distribution of particles in space is
not uniform. Therefore, after a period of iteration, the particles may convergence prematurely, causing
adverse effects. The theory of good point [26] set was originally proposed by Hua Luogeng, which is an
effective method for uniformly selecting points. Compared with the method of random initialization,
the points can be more evenly distributed in the search space. Therefore, this paper applies the good
point set to the PSO algorithm to generate the initial population.

(2) Combining chaotic mapping with PSO algorithm improves the ergodicity and randomness of
the new solution. Based on the randomness and ergodicity of chaotic maps, Logistic mapping [27]
can be used to prevent populations from falling into local optimum. This paper uses the current pgd
as an initial condition to generate a chaotic logistic sequence. Then select the point that produces
the smallest target value in the Logistic sequence to randomly replace one solution in the current
population. The chaotic mapping method can make the population generate some points away from
the local optimal solution so that the inertial particles escape the local optimal solution and quickly
search for the global optimal solution.

The improved PSO algorithm is named IPSO, it inherits the advantages of the original PSO
algorithm, pays more attention to the discussion of the particle initialization process, adopts certain
strategies to overcome the problems of local optimization and premature convergence, and improves
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the search ability of particles in space. The pseudo-code of the improved algorithm is shown in
Algorithm 1.

Algorithm 1 IPSO algorithm

Input: Population size, Maximum iteration, Objective function, Dimensionality of decision variables
1: Initialize swarm by the theory of good point
2: Evaluate each particle with objective function
3: Select the best position of particles as pgd from the swarm
4: Set the position of each particle as pid
5: T = 1;
6: while T ≤MaxIt do
7: Adaptive adjust the inertia weight ω and learning factors c1 and c2 [28]
8: for each particle do
9: Update particle information on the basis of the velocity and position updating formula
10: Evaluate each particle with objective function
11: Update the individual optimal position pid
12: end for
13: Update the population optimal position pgd
14: Generate a set of logistic sequences based on current pgd, and random substitution of a solution in the
current population by selecting the point with the smallest objective value in the generated Logistic sequence
15: T++

16: end while
Output: Optimal value

3. Data Preprocessing

3.1. Data Description

Beijing [29], located in the North China Plain (39.56◦N, 116.20◦E), is the capital of the People’s
Republic of China and a modern international city. The total area of Beijing is 16,410.54 square
kilometers. The eastern region of Beijing is adjacent to Tianjin, and the rest is adjacent to Hebei.
The climate is typical of the semi-humid continental monsoon climate in the north temperate zone.
Due to the large amount of coal burning and steel-making in the Beijing-Tianjin-Hebei metropolitan
region for power generation, Beijing has suffered serious air pollution problems, which are not
conducive to the sustainable city.

In order to better study the air pollution situation in the Beijing area, Beijing air data, from 2016,
was used as sample data. The main reason for choosing Beijing as a research location is that a
large part of Beijing and China are experiencing long-term air pollution, which is greatly affected
by air pollutants and has a long history of pollution, and the research analysis of pollutants are
very representative [30,31]. The main pollutants are fine particles, especially PM2.5. Epidemiological
evidence suggests that exposure to PM2.5 can lead to lung disease, severe respiratory and cardiovascular
disease, and even death [2]. There are many reasons that may lead to lung diseases and even lung
cancer, such as air pollution, cigarette smoking, and radon emissions [32]. Our study only deals with
the effects of PM2.5 on the lung. Through effective forecasting of PM2.5 concentration, citizens can
reduce outdoor activities during high pollution periods, thereby reducing the risk of diseases. If the
proposed model has better prediction performance for PM2.5 data in Beijing, the proposed model will
have strong practical value. The hybrid model proposed in this paper has conducted in-depth research
on the prediction of PM2.5 data in Beijing.

The data used in this paper is the hourly air quality data and meteorological data observed from
January 1, 2016, to December 31, 2016, in Beijing. The data include hourly averages of PM2.5, PM10,
SO2, NO2, O3, and CO, as well as hourly averages of temperature (T), pressure (P), humidity (H), wind
speed (WS), and wind direction (WD). There are 11-dimensional variables in total, and the sample
length included 8759 sets of data.



Sustainability 2019, 11, 3096 7 of 19

This article divides the sample data into two parts: the training set and the test set. The first
6570 sets of data (about 75% of the total data) are used as training data, and the remaining 25% are
used as test data. Before predicting the data, the original data is mapped to the high-dimensional
space by PSR, and then the input variable is selected by the IPSO algorithm. Finally, the restructured
variables are input into the ESN model for prediction.

3.2. Causality Analysis

In 2012, Sugihara et al. proposed a convergent cross mapping (CCM) method in Science [19],
which attracted extensive attention from Chinese and foreign specialists. Based on the nonlinear state
space reconstruction, the nonlinear causality between the two systems is analyzed. The basic idea is
that if there is a causal relationship between the systems, it is reasonable to believe that the system X
contains the evolution information of the system Y. By analyzing the correlation between the system X
and the system Y to reconstruct the manifold, the causal relationship between the systems can be found.

Hypothesis X(t) and Y(t) are two time series generated by projecting the system M into a
one-dimensional space. For the time series X(t) and Y(t), the embedded dimension of the reconstructed
manifold is em, the delay time is tau, and the reconstructed state space is as follows:

X(t) = [X(t), X(t− tau), · · · , X[t− (em− 1)tau]], (9)

Y(t) = [Y(t), Y(t− tau), · · · , Y[t− (em− 1)tau]]. (10)

According to the state space reconstruction theory, the reconstructed manifolds X, Y, and
system M are differentially isomorphic. Search system X for em nearest neighbor of the sample{
X(i, k)

}
=

{
X(i, 1), X(i, 2), · · · , X(i, m)

}
, then map it to manifold Y, the corresponding sample point is{

Y(i, k)
}
, and the estimated value of Y(i) can be calculated as:

Ŷ(i) =
em∑

k=1

wkY(i, k), (11)

where:

uk = exp

−
∥∥∥X(i) −X(i, k)

∥∥∥∥∥∥X(i) −X(i, 1)
∥∥∥
, (12)

wk = uk/
m∑

k=1

uk (13)

where ‖·‖ represents the Euclidean distance between the samples. Definite Ŷ(t) is the cross-mapping
Y(t) from manifold X to Y, and the correlation coefficient is calculated as follows:

r =

L∑
i=1

(
Y(i) −Y(i)

)(
Ŷ(i) − Ŷ(i)

)
√

L∑
i=1

(
Y(i) −Y(i)

)2 L∑
i=1

(
Ŷ(i) − Ŷ(i)

)2
. (14)

As the sample volume L increases, Ŷ(t) gradually converges to Y(t), and the correlation coefficient
finally converges to [0, 1], indicating the causal relationship between system Y and system X.

A causal analysis was performed on the 11-dimensional variables of the data selected in this paper,
which include the hourly average concentration of PM2.5, PM10, SO2, NO2, O3, and CO, and the hourly
average values of pressure (P), temperature (T), humidity (H), wind speed (WS), and wind direction
(WD), and PM2.5 was used as the target variable. The correlation between the other 10-dimensional
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variables and PM2.5 was analyzed by the convergence cross-mapping method. The relevant values
obtained are shown in Table 1.

Table 1. Correlation results between other variables (PM10: inhalable particulate matter, T: temperature,
P: pressure, H: humidity, WS: wind speed, WD: wind direction) and particles in the atmosphere with a
diameter of less than or equal to 2.5 microns (PM2.5).

Variables PM10 NO2 CO O3 SO2 T P H WS WD

CCM_value 0.780 0.385 0.778 0.392 0.452 0.068 0.011 0.196 0.146 0.203
Sorting 1 5 2 4 3 9 10 7 8 6

Variables are sorted by relevance, and the dimension of the input data is gradually increased.
The prediction results based on related variables are shown in Figure 2. The prediction errors are
shown in Table 2.

Figure 2. Prediction results based on related variables.

Table 2. Prediction error of different dimensional variables.

Dimension 1 2 3 4 5 6 7 8 9 10

Root mean square error (RMSE) 76.24 77.70 75.64 80.26 76.80 74.96 76.12 78.16 85.70 82.17

According to the predicted results in Figure 2 and Table 2, after CCM causality analysis, when the
predicted variable is 6 dimensions, the predicted error reaches the minimum value, that is, 74.96. That is
to say, the optimal subset of variables are PM2.5, PM10, SO2, NO2, O3, and CO. Further calculations are
then performed on the selected best subset.

3.3. Phase Space Reconstruction

Chaos refers to a deterministic evolution process that exhibits an irregular process, similar
to a random process [33]. Although it is a system described by a deterministic theory, long-term
evolutionary behavior is characterized by uncertainty, unrepeatability, and unpredictability. This is
a deterministic system in a seemingly random sequence. Most time series in the real world have
chaotic characteristics, such as hydrological sequences, meteorological sequences, and air pollutant
sequences [34]. Since chaotic sequences are a comprehensive reaction of many physical factors,
it contains traces of all variables involved in motion. Because the chaotic sequence must be extended
to higher dimensional phase space, the system information contained in the time series can be fully
revealed, namely PSR of chaotic sequences [35].

PSR theory is of great significance in chaotic time series analysis, which was proposed by
American physicists Packard and Farmer in the 1980s [20]. Since then, Takens, a Dutch mathematician,
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has proved that its main purpose is to output through the system [36]. The time series is used to
construct a set of coordinate components that characterize the dynamics of the original system, thereby
approximating the chaotic attractors of the system. And the evolution process of each component
implies all the information about the system. According to the proof of Takens, as long as the delay
time τ and the embedding dimension m are reasonably selected, the final orbit of evolution can be
recovered in the embedded dimension space, that is, the chaotic attractor is calculated. That is to
say, on the trajectory in the reconstructed high-dimensional space, the reconstructed phase space
maintains the same performance as the prime mover system, and the phase space of the delay time
reconstruction maintains the geometric structure of the original system and the system has equivalent
dynamic characteristics.

For a chaotic time series [x1[t], x2[t], · · · , xi[t], · · · , xd[t]], t = 1, 2, · · · , n, where d is the sequence
dimension, n is the sequence length. If you can properly choose the delay time τ = (τ1, τ2, · · · , τd) and
embedding dimension m = (m1, m2, · · · , md), the phase space can be reconstructed as followed [37]:

X(t) =
[

x1(t), · · · , x1(t− (m1 − 1)τ1),
· · · , xd(t), · · · , xd(t− (md − 1)τd)

] . (15)

Through the PSR process, the reconstructed data X ∈ Rn×dim can be obtained, where the length n of

the reconstructed chaotic sequence is the same as the length of the original sequence and dim =
d∑

i=1
miτi

represents the dimension of the reconstructed sequence. In the process of PSR, the delay time τ and
embedding dimension m have a great influence on the quality of the reconstructed phase space, so
it is necessary to select the delay time τ and embedding dimension m appropriately. At present, the
more commonly used methods for determining the delay time and embedding dimension are window
embedding method, average displacement method, mutual information method, false neighbor
method, and Grassberger–Proccacia (G-P) algorithm [38].

4. IPSO-PSR-ESN Hybrid Method

This section will introduce the PM2.5 concentration prediction model based on the hybrid model
of IPSO, PSR, and ESN in detail. The basic structure of the model is shown in Figure 3. Aiming
at the problems existing in the prediction of PM2.5 chaotic sequence, this paper proposes a hybrid
model named IPSO-PSR-ESN. Firstly, the CCM method is used to select the original time series, and
the original data is sorted according to the correlation with the PM2.5 data, and the variable subset
(PM2.5, PM10, CO, SO2, NO2, and O3) is obtained when the forecasting error is minimized. Secondly,
the PSR theory is used to reconstruct the selected optimal subset, and the time series is extended
to the higher-dimensional phase space so that the information contained in the dynamic system is
fully revealed. Finally, the reconstructed data is predicted using the ESN model. The embedded
dimension and delay time in the PSR process and multiple parameters of the ESN model are optimized
simultaneously using the improved IPSO algorithm.

In theory, when all variables are projected from the same system, each component will fully
expand the attractor. Therefore, in the above basic extension, it will definitely lead to redundancy.
Traditional methods for determining the delay time τ and embedding dimension m consider PSR from
the perspective of information theory or entropy, which is separate from subsequent modeling, which
can be very time consuming for time series prediction and calculated PSR parameters. Not necessarily
suitable for time series prediction. In addition, if the chaotic time series contains noise, the reconstruction
parameters may also change. In practical applications, the optimal PSR parameters are closely related
to the application scenarios of the time series. Therefore, how to reconstruct multi-variable time series
in a targeted manner is of great significance for dynamic system modeling. The heuristic algorithm can
be used to optimize the delay time τ and embedding dimension m, and the data reconstruction process
is combined with the modeling process. Finding the optimal value of the delay time τ and embedding
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dimension m in the predictive modeling process may provide a new way of thinking about revealing
dynamic systems.

Figure 3. Flow chart of the IPSO-PSR-ESN model.
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The reserve pool is the core part of the ESN, and its parameters and structure have a great
impact on the performance of the ESN [39]. According to the characteristics of different prediction
objects, designing a suitable reserve pool structure is the primary problem in ESN modeling. The main
hyper-parameters in the reserve pool include the size of the reserve pool, the spectral radius of the
internal connection matrix, the sparsity, the leakage rate, and the input transform coefficients, etc. [40].
When the ESN predicts data of different characteristics, the hyper-parameter settings are often different.
At present, these hyper-parameters do not have fixed values or calculation methods, and need to be
specifically analyzed for specific problems. The commonly used selection method is based on empirical
selection or trial and error method. These methods have great contingency and will affect the modeling
effect. These methods have great contingency and will affect the modeling effect. The heuristic
algorithm can also be used to automatically optimize the five reserve pool hyper-parameters of the
ESN, and improve the prediction effect of the ESN model by obtaining the global optimal value.

Therefore, the IPSO algorithm is used to optimize the delay time τ and embedding dimension
m in the PSR process and the hyper-parameters in the reserve pool (the size of the reserve pool,
the spectral radius of the internal connection matrix, the sparsity, the leakage rate, and the input
transform coefficients). The six selected optimal subsets are predicted, and the 17-dimensional variables
are optimized. The objective function is set to the error function of the ESN training process.

Then the IPSO-PSR-ESN hybrid model is established. The flow chart of the hybrid model is shown
in Figure 3. The steps of our algorithm are as follows:

Step 1: Select variables by inputting the original data, using the CCM method for causal analysis,
and selecting the best subset.

Step 2: Input the selected subset to the hybrid model. Use the IPSO to optimize 17-dimensional
decision variables include the parameters of PSR and the hyper-parameters in the ESN model.

Step 3: Initialize the IPSO population. Set the parameters such as population size, maximum
iteration number, and initialize the velocity of each particle to 0, as well as the position of each particle
by using the good point set theory to make the particles more evenly distributed in the decision space.

Step 4: Substitute the particle position into the objective function and calculate the target vector.
Step 5: The initial position of each particle (pid) is the initial particle position, and the optimal

value from pid is the initial global optimality of the particle (pgd).
Step 6: While the maximum number of iterations is not reached:
(1) Calculate the inertia weight w and the learning factor c1 and c2 in the velocity update formula

as [28]:
w = wMax− (wMax−wMin) × (it/MaxIt), (16)

c1 = (c12 − c11) × (it/MaxIt) + c11, (17)

c2 = (c22 − c21) × (it/MaxIt) + c21, (18)

where it is the current number of iterations, MaxIt is the maximum number of iterations, and wMax as
well as wMin are the maximum and minimum values of the inertia weight w, respectively. w decreases
as the number of iterations increases. In the early stage of the algorithm, the larger the w is, the more
difficult it is to fall into the local optimum while in the later stage, the smaller the w is, the faster the
algorithm converges and the more stable the convergence is. c11 = c22 = 2.5 and c12 = c21 = 0.5.
The ideal result can be obtained according to c1 decreasing c2 increments.

(2) Update the velocity and position of each particle using the speed and position update formula
while limiting its value to a certain range.

(3) Adopt a mutation strategy to satisfy the mutation conditions of the particles to avoid
local optimum.

(4) Substitute the particle position into the objective function and calculate the target vector.
(5) Evaluate particles of the new generation, update the pid of each particle and the pgd of

the population.
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(6) Create a logistics chaotic sequence based pgd, and then randomly replacing the position of one
particle in the population using the point with the smallest target value in the chaotic sequence.

End while
Step 7: After the iteration is completed, the final pgd is the required parameters of PSR and the

hyper-parameters of the ESN model.
Step 8: The process of PSR. Map selected subsets of variables to high dimensional variable space

based on optimized delay time τ and embedded dimension m.
Step 9: Divide the reconstructed sequence into a training data set and a test data set.
Step 10: Substitute the optimized hyper-parameter into the ESN and train the ESN model through

the training set.
Step 11: Substitute the test set into the trained model to obtain the index of test accuracy.

5. Experimental Results

All the experiments in this paper were completed in the experimental simulation environment of
a Windows 7 operating system, equipped with 3.70 GHz, Intel(R) core i3-4170m CPU, and 12 GB RAM
memory. All simulation experiments were carried out with Matlab R2018B (The MathWorks, Inc.,
Natick, MA, USA). In each simulation experiment, the program parameters were identical, and each
simulation experiment group was repeated 10 times.

5.1. Evaluation Indicator

In recent years, many error evaluation indicators have been widely used in related literature,
but there is no recognized general standard method. Therefore, this paper uses multiple common
error criteria to evaluate the effectiveness of the proposed hybrid model. In this paper, four common
prediction criteria (RMSE, MAE, SMAPE, and CR) are used to evaluate the prediction accuracy:

(1) Root mean square error (RMSE), which represents the degree of dispersion between the
predicted series and the actual series.

RMSE =

√√√√√√ p∑
t=1

[ŷ(t) − y(t)]2

(p− 1)
(19)

(2) Mean absolute error (MAE), which is a quantity used to measure how close forecasts or
predictions are to the eventual outcomes in statistics.

MAE =
1
p

p∑
t=1

∣∣∣ŷ|t| − y|t|
∣∣∣ (20)

(3) Symmetric mean absolute percentage error (SMAPE), which measures the size of the error in
percentage terms, and reflects the relative difference between the predicted series and the actual series.

SMAPE =
1
p

p∑
t=1

∣∣∣y(t) − ŷ(t)
∣∣∣

1
2

∣∣∣y(t) + ŷ(t)
∣∣∣ × 100% (21)

(4) Correlation coefficient (CR), which is a statistical criterion to reflect the degree of close
correlation between variables.

CR =
cov

(
Y, Y

)
√

D(Y)
√

D
(
Y
) (22)

where ŷ(t), y(t), and y(t) are the predicted value, observation, and the average of observation of
the time series, respectively, p represents the number of samples, cov(·) represents the covariance,
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D(·) represents the variance, and Ŷ as well as Y represent the predicted sequence and the observed
sequence, respectively.

In the above evaluation indicators, the smaller the evaluation index values of RMSE, MAE, and
SMAPE, the better the prediction effect of the model. CR = 1 indicates linear correlation, CR = 0
indicates no correlation. When CR ∈ (0, 1), it indicates that there is a correlation between the two
sequences, and the larger the CR, the stronger the linear correlation.

5.2. Models Comparison

To enlighten possible causal relationships, the relations between air pollutants and meteorological
variables are assessed here by the CCM method. Thus, we have obtained the relevant value data
and optimal variable subset among air pollutants which are showed in Tables 1 and 2 and Figure 2.
The models that were proposed in this study were used to test the optimal variable subset to evaluate
their performance in forecasting the PM2.5 concentration. According to the CCM causal analysis,
when the predictor is six-dimensional, the prediction error reaches the minimum value, and the
optimal subset of variables can be determined. Then the PSR process is performed on the selected
optimal subset. In order to improve the overall forecast accuracy, this paper firstly combines the
PSR process with the forecasting model as a whole to avoid the problems of parameter selection in
isolation. And then according to the different conditions such as the forecasting step size, the phase
space reconstruct parameters of the best subset is dynamically selected by the IPSO algorithm. It is
obvious that the data series is mapping into high-dimensional spaces. The calculated delay time τ and
embedding dimension m of the Beijing data in the one-step prediction and the ten-step prediction are
shown in Table 3. It can be seen from the table that the delay time τ = [3, 2, 2, 2, 1, 1] and the embedding
dimension m = [2, 1, 2, 2, 10, 3] of the optimal subset obtained by optimization in the one-step prediction
as well as the delay time τ = [5, 6, 5, 6, 3, 7] and the embedding dimension m = [8, 8, 7, 8, 10, 7] the
optimal subset obtained by optimization in the ten-step prediction.

Table 3. Phase space reconstruction parameters of Beijing dataset.

Variables PM2.5 PM10 SO2 NO2 O3 CO

(t + 1) Embedding 3 2 2 2 1 1
Time delay 2 1 2 2 10 3

(t + 10) Embedding 5 6 5 6 3 7
Time delay 8 8 7 8 10 7

After reconstruction of the data optimal time series subset by the optimized PSR process, the system
information contained in the time series is adequately revealed, then it uses the optimized forecasting
model to forecast the PM2.5 concentration sequence. In IPSO algorithm, the parameter settings
including iterations (MAXTI), population size (POP), and dimension of decision space (DIM) are
listed as follows: MAXIT = 100, POP = 40, and DIM = 17. In this paper, the IPSO algorithm uses
the above parameter settings in each simulation experiments to ensure the validity and fairness of
all experiments.

In order to verify the effectiveness of the proposed algorithm, the original model (ESN) [23],
single-hidden layer feedforward network (SLFN) [41], extreme learning machine (ELM) [42],
back propagation neural network (BPNN) [43], the least squares support vector machine (LSSVM) [44],
and the long and short time memory (LSTM) [45] are selected as the benchmark models. The first 75%
of the data is selected as the training set, and the last 25% of the data is the simulated test set.

In order to evaluate the effectiveness of the proposed method comprehensively and objectively,
single-step and multi-step (10-step) forecasting experiments of PM2.5 concentration were carried out
respectively. The one-step forecasting results of Beijing PM2.5 data are shown in Table 4, and the
ten-step forecasting results are shown in Table 5. For example in Table 4, the RMSE, MAE, SMAPE, and
CR of PM2.5 concentration of the proposed IPSO-PSR-ESN model for one-step ahead forecasting are
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9.4961, 5.7938, 0.1029, and 0.9945, respectively. It is concluded that the two tables verify the superior
performance of the proposed model compared with other state-of-the-art models.

Table 4. Prediction errors of Beijing PM2.5 time series based on different methods (one-step ahead).

Method RMSE MAE SMAPE CR

ESN 13.4753 9.8373 0.1396 0.9893
SLFN 16.2844 10.1191 0.1276 0.9839
ELM 18.6669 10.0054 0.1285 0.9812
BP 15.9821 11.2058 0.1481 0.9798

LSSVM 13.0054 10.2599 0.1358 0.9825
LSTM 33.5302 23.8995 0.34083 0.93754

IPSO-PSR-ESN 9.4961 5.7938 0.1029 0.9946

Table 5. Prediction errors of Beijing PM2.5 time series based on different methods (10-step ahead).

Method RMSE MAE SMAPE CR

ESN 74.9663 50.8694 0.6187 0.6496
SLFN 84.3316 54.9802 0.6190 0.5050
ELM 85.3812 55.4798 0.6587 0.5125
BP 82.5792 52.9125 0.6227 0.5589

LSSVM 88.5819 57.7009 0.6491 0.4518
LSTM 69.6015 50.5132 0.6130 0.72956

IPSO-PSR-ESN 62.0824 42.2215 0.51233 0.74062

As can be seen from the Tables 4 and 5, the forecast accuracies including RMSE, MAE, SMAPE,
and CR are illustrated in tables where the smallest or largest value in each row is marked in boldface.
From the results displayed in the Figure 7 and Tables 4 and 5, it is obvious that the developed
IPSO-PSR-ESN model owns superior forecasting ability compared to other comparative models in
this paper. In addition, the values of RMSE, MAE, and SMAPE of the proposed model are all smallest
among all the comparison models, and the value of CR of the proposed model is largest among all
the models, which further confirms that the proposed model has the best forecasting performance.
The smallest error evaluation index (RMSE, MAE, SMAPE) of the proposed hybrid model shows that
the forecasting data and the actual data are pretty close and the effect of model fitting is the best. From
Tables 4 and 5, the correlation coefficient of PM2.5 concentration reaches 0.9946 and 0.74062 for one-step
forecasting and ten-step forecasting, respectively, which is the maximum value in the comparative
models. Therefore, it can be concluded that the proposed model is suitable for the PM2.5 concentration
forecasting. The proposed hybrid model has achieved good forecasting results in the one step and the
ten-step prediction. The single-step forecasting and error curve of the Beijing PM2.5 series generated by
the IPSO-PSR-ESN model are shown in Figure 4. The five hyper-parameters of the ESN are shown in
Figure 5. At the same time, Figure 6 shows the prediction and error curve for the ten-step prediction.

A graph showing the prediction error of different models as a function of the number of predicted
steps is given in Figure 7. It can be seen from the error curve and various precision indicators that
the LSSVM model can obtain good prediction results when the number of prediction steps is small,
but when the number of prediction steps increases, the prediction effect of the LSSVM model will
drastically deteriorate. The predictive effect of the step prediction is the worst of the selected models.
LSTM is a deep learning model that has been used in time series prediction in recent years. The LSTM
model shows good performance when the number of prediction steps is large, but the prediction
effect of the model is not ideal when the number of prediction steps is small. The prediction effect
of other comparison models is between the two models. By comparing the prediction effects of
the IPSO-PSR-ESN model and other different models, the prediction accuracy of the hybrid model
proposed in this paper has achieved the best prediction results in the 1~10-step prediction, which
proves that the optimization part of the IPSO algorithm can effectively improve the prediction accuracy,
which avoids the randomness of the parameter settings in the model, and combines the PSR process
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with the ESN model to dynamically select the PSR parameters and the ESN model hyper-parameters
according to the specific prediction requirements. In addition, the proposed IPSO-PSR-ESN model
makes the optimal forecast accuracies in the different forecasting step size. All the experiment results
can demonstrate the superiority of the proposed hybrid forecasting model. For these seven forecasting
models, the best forecasting results are from the IPSO-PSR-ESN model by comparing the performance
validations. Through integrating the PSR process and ESN model, and optimizing the parameters of
reconstruction process and the hyper-parameters in the ESN model by IPSO algorithm, the model can
obtain accurate forecast results. Thus, it is considerable to use the IPSO-PSR-ESN model to forecast
atmospheric pollutants in environmental governance and prevention, and provide some basis for the
government regulation.

Figure 4. One-step ahead forecasting of Beijing PM2.5 in 2016.

Figure 5. ESN parameters curve with iteration (one-step ahead).
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Figure 6. Ten-step ahead forecasting of Beijing PM2.5 in 2016.

Figure 7. Curve charts of forecasting errors of different methods with variation of steps.

6. Conclusions

PM2.5 is the main source of air pollution, and forecasting the PM2.5 concentration is important
for sustainable development and public health. In order to improve the forecast accuracy, this paper
developed a novel hybrid model, i.e., IPSO-PSR-ESN model, for PM2.5 concentration forecasting.
This paper collected the real-world time series of Beijing in 2016, and filtered the original dataset
through CCM to obtain the optimal variable subset. Then, the IPSO algorithm was used to optimize
the PSR process and ESN parameters. Finally, based on the trained hybrid model, PM2.5 concentration
prediction was achieved. Based on the experimental results and comparative analysis, the following
four conclusions can be obtained: (1) the proposed hybrid model outperforms other comparison
models in the PM2.5 concentration forecasting; (2) the proposed error correction model can significantly
improve the prediction ability of initial forecasting model (ESN); (3) the proposed IPSO algorithm has
a positive effect on the forecasting performance of ESN model. Therefore, it can be concluded that
(4) the proposed hybrid model can precisely forecast the PM2.5 concentration.
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Accurate PM2.5 forecasting enables government to take actions that reduce the severity of episodes
of high levels of PM2.5, like promoting the transformation and upgrading of high-pollution enterprises,
and encouraging citizens to take public transports instead of driving. Moreover, predictions also
enable individuals to take protective actions that limit their own exposure to high levels of PM2.5,
such as reducing outdoor activities and staying indoors as much as possible. Although the hybrid
model performs well in PM2.5 forecasting, it fails to consider the potential factors affecting air quality
in extreme conditions, such as radon emissions and other pollutants, in which the situation is very
complicated and needs to be solved in future studies. The accuracy and prediction horizon of PM2.5

concentration series makes its forecasting become a very difficult task. We hope to apply some of the
latest methods in the field of artificial intelligence, such as deep learning, multi-task learning, and so
on, analyze more factors that affect PM2.5 concentration, for instance the radon radiations. In addition,
we expect to extend the forecast time step in future research to achieve medium- and long-term
forecasts. Through the interdisciplinary integration, it provides the basis for the government’s air
pollution control and the sustainable development of society.
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