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Abstract: Nowadays, the manufacturing industry faces the challenge of reducing energy consumption
and the associated environmental impacts. Production scheduling is an effective approach for
energy-savings management. During the entire workshop production process, both the processing
and transportation operations consume large amounts of energy. To reduce energy consumption,
an energy-efficient job-shop scheduling problem (EJSP) with transportation constraints was proposed
in this paper. First, a mixed-integer programming model was established to minimize both the
comprehensive energy consumption and makespan in the EJSP. Then, an enhanced estimation of
distribution algorithm (EEDA) was developed to solve the problem. In the proposed algorithm,
an estimation of distribution algorithm was employed to perform the global search and an improved
simulated annealing algorithm was designed to perform the local search. Finally, numerical
experiments were implemented to analyze the performance of the EEDA. The results showed that the
EEDA is a promising approach and that it can solve EJSP effectively and efficiently.

Keywords: job-shop scheduling; energy consumption; estimation of distribution algorithm;
transportation time

1. Introduction

As is well known, reducing energy consumption and its associated environmental impacts is
one of the most important challenges for manufacturing industries. In China, the energy efficiency
of traditional manufacturing enterprises is low and the related pollution emissions are very high.
According to relevant surveys, the average proportion of industrial GDP is obtained by consuming
67.9% of the national electricity energy and emits 83.1% of the national carbon dioxide [1]. Hence,
one of the most effective ways to develop energy-savings mechanisms and methods is to optimize the
energy efficiency of the production process for manufacturing enterprises [2,3].

Researchers have come to realize that workshop scheduling could play an important role in
reducing energy consumption during manufacturing processes. In recent years, there has been an
increasing number of studies on production scheduling integrated with energy efficiency in the
literature [4–6]. Energy-related production scheduling can mainly be divided into three aspects:
energy-aware single-machine scheduling, energy-aware flow-shop scheduling, and energy-aware
job-shop scheduling.

Regarding energy optimization of single-machine scheduling, Che et al. [7] proposed an
energy-efficient single-machine scheduling model regarding total energy consumption and maximum
tardiness. In order to reduce the total penalty costs and total energy consumption costs, Lee et al. [8]
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developed an efficient dynamic control algorithm to enable an energy-efficient single-machine
scheduling problem. Rubaiee and Yildirim [9] addressed an energy-aware multi-objective ant colony
algorithm for solving a single-machine pre-emptive scheduling problem with consideration of the
total completion time and energy cost. In the aspect of energy optimization of flow-shop scheduling,
Zhang et al. [10] proposed an improved strength Pareto evolutionary algorithm to study energy-efficient
flexible flow-shop scheduling under time of use electricity tariffs. Li et al. [11] addressed the hybrid
flow-shop scheduling problem with consideration of setup energy consumption and developed an
efficient multi-objective optimization algorithm to solve it. Lu et al. [12] developed a multi-objective
backtracking search algorithm for solving the energy-efficient scheduling problem with controllable
transportation times. Fu et al. [13] proposed a stochastic energy-conscious distributed permutation
flow-shop scheduling model with the aim of minimizing the makespan and total energy consumption.
Schulz et al. [14] presented a new multiphase iterated local search algorithm to investigate the
energy-aware hybrid flow-shop scheduling model with three objectives: makespan, total energy costs,
and peak load.

In comparison, research on energy optimization of job-shop scheduling has attracted increasing
attention. Liu et al. [15,16] investigated a bi-objective energy-aware job-shop scheduling problem that
minimized both the total weighted tardiness and the total electricity consumption. May et al. [17]
designed a green genetic algorithm to solve the job-shop scheduling problem with consideration of
energy consumption and makespan. Zhang and Chiong [18] analyzed an energy-efficient job-shop
scheduling problem with the total weighted tardiness as well as the comprehensive energy consumption
in order to minimize the energy consumption and makespan, and Salido et al. [19] studied an extended
energy-conscious job-shop scheduling problem with different processing speeds of machines. Moreover,
Masmoudi et al. [20] established two integer linear programming models for the job-shop scheduling
problem with consideration of energetic aspects. Afterward, Mokhtari and Hasani [21] studied
an energy-efficient scheduling of both production and maintenance operations with the objective
of total completion time, total availability of the system, and energy consumption in a flexible
job-shop environment. Meng et al. [22] formulated new mixed-integer linear programming models
to address the energy-aware flexible job-shop scheduling problem. In addition, Dai et al. [23]
modeled a multi-objective energy-efficient flexible job-shop schedule with the aim of optimizing energy
consumption and makespan.

In the abovementioned studies, the studies focused on optimizing the processing operations
between tasks and machines. However, the transportation of tasks between machines is a non-negligible
operation in a real-world production environment. In real production scheduling, after one task in
the schedule finishes its processing operation on a machine, transportation equipment such as an
Automated Guided Vehicle (AGV) transports the task to the next machine for processing. Due to
the consideration of transportation constraints, the complexity of the workshop scheduling problem
increases severely. Researchers have also investigated the impact of transportation resources on the
workshop scheduling problem. Lacomme et al. [24] designed a framework for the joint scheduling
problem regarding the simultaneous scheduling of machines and AGVs with the objective of minimizing
the makespan. Nageswararao et al. [25] introduced integrated scheduling of machines and AGVs with
minimization of mean tardiness and proposed a binary particle swarm vehicle heuristic algorithm to
solve it. Saidi-Mehrabad et al. [26] established a new mathematical model regarding integrated job shop
scheduling and conflict-free routing of AGVs, and developed a two-stage ant colony algorithm to study
the problem. Guo et al. [27] analyzed the integrated production and transportation scheduling problem
and developed a bi-level evolutionary optimization approach for solving the problem. Karimi et al. [28]
formulated two mixed-integer linear programming models for the flexible job-shop problem with
consideration of transportation times. In addition, to minimize both the comprehensive energy
consumption and makespan, Liu et al. [29] proposed a mixed-integer programming model of the
integrated flexible job-shop scheduling and crane transportation. Although scholars have studied
the impact of transportation constraints on workshop scheduling, these studies have almost always
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centered on the optimization of the production objectives like makespan. To the best of our knowledge,
only three relatively related research articles considered energy-efficient scheduling optimization of
integrated processing and transportation equipment [12,23,29].

There are strong interactions between processing and transportation operations in production
scheduling [29]. When AGVs are required to transfer the jobs after finishing operations of the jobs,
their transportation times may result in different waiting times for machines. Moreover, the different
operation sequences of all tasks on each machine considers the different transportation routes of AGVs.
In addition, in the production process, both machines and AGVs generate a certain amount of energy
consumption. From the viewpoint of energy savings, the optimization of the integrated scheduling of
machines and AGVs could be considered an efficient strategy for manufacturing enterprises to reduce
energy consumption [23].

To summarize, different kinds of workshop scheduling problems have been discussed in the
literature with regard to energy efficiency. During the entire workshop production process, both the
processing and transportation operations consume large amounts of energy. On the other hand,
transportation operations are an indispensable part of production scheduling, and an integrated
optimization scheduling of machines and AGVs is needed for actual production. Therefore, on the basis
of the studies mentioned above, an energy-efficient job-shop scheduling problem with transportation
constraints is investigated for the following reasons. First, it fills a gap in the literature, since job-shop
scheduling problems with transportation constraints (such as transportation time) have not been well
investigated with regard to energy efficiency. Second, to evaluate different performance criteria in
practical situations, the further improvement of optimization algorithms is conducted to make them
more effective and efficient to search for better solutions. In this work, an enhanced estimation of
distribution algorithm (EEDA) was developed for solving the energy-efficient job-shop scheduling
problem (EJSP).

The remaining sections of this paper are organized as follows. Section 2 introduces the
energy-efficient scheduling problem with transportation time and devises a meta-heuristic algorithm
to solve the scheduling problem. Section 3 formulates a mixed-integer programming (MIP) model for
the EJSP. Section 4 designs the comprehensive experiments to analyze the performance of the proposed
model and algorithm. Section 5 reports the discussion, and Section 6 summaries the conclusions and
future works.

2. Problem Description and Method

2.1. Problem Description

An energy-efficient job-shop scheduling problem with transportation constraints can be described
as follows. There are a set of n tasks T = {T1, T2, . . . , Tn} and a set of m machines M = {M1, M2, . . . , Mm}.
Each task Ti consists of a sequence of Ni operations (Oi1, Oi2, . . . , OiNi). All the operations must
be executed by m machines in a fixed order. Once one operation Oi j of a task Ti completes its
processing operation on a machine Mw, an empty AGV transfers the task to the next machine Mw for
processing. In the entire production process, both machines and AGVs consume energy for supporting
production activities. The challenge is to determine the operation sequence on each machine to satisfy
schedule efficiency that is measured in terms of makespan and energy efficiency that is calculated
by the comprehensive energy required for a schedule. It is calculated by the comprehensive energy
required for a schedule. For instance, as shown in Figure 1, there are three tasks and three machines.
Each task has three operations, and the processing routings for them are M3–M1–M2, M2–M3–M1,
and M3–M2–M1, respectively. At the same time, the corresponding transportation times are collected.
During the production process, each machine will consume energy to process each operation of the
tasks, and AGVs will also consume energy to move the tasks. The objective of the EJSP is to find
an effective and efficient schedule that minimizes the makespan and energy consumption. The EJSP
satisfies the following assumptions.
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(1) Each task is available at time zero.
(2) Each machine is available at time zero.
(3) The precedence relationships between operations for each task cannot be changed.
(4) Each machine can only process an operation of one task at a time.
(5) Once an operation begins, the operation cannot be interrupted until it is completed.
(6) There are enough AGVs responsible to move each task.
(7) Handling times of all tasks between machines and AGVs are ignored.

2.2. Enhanced Estimation of Distribution Algorithm (EEDA)

Due to the strongly NP-hard nature of the job-shop scheduling problem (JSP), many optimization
approaches such as meta-heuristic algorithms have been developed to obtain optimal and suboptimal
solutions. It should be noted that although meta-heuristic approaches have been shown to be effective
in solving the JSP with the consideration of energy efficiency [17,18,30], the solution quality will
become less satisfactory, especially when transportation constraints are added to the scheduling
model. The estimation of distribution algorithm (EDA), as an evolutionary algorithm, has received
increasing interest in solving many complex optimization problems such as production scheduling
problems [31–33].

In this section, an enhanced hybrid algorithm based on a combination of estimation of the
distribution algorithm (EDA) and simulated annealing algorithm (SAA) is developed for solving the
problem. In the literature, a variety of meta-heuristic algorithms have been used to solve JSP, including
the genetic algorithm (GA), simulated annealing algorithm (SAA), estimation of distribution algorithm
(EDA), particle swam optimization (PSO), etc. Among these algorithms, the EDA has the ability of
global exploration and can quickly approach the optimization solution, but a fatal shortcoming is
that its local exploitation ability is limited. Fortunately, SAA has a strong exploitation ability and can
jump out of the local optimization to search for the best solution. Therefore, this paper proposes to
incorporate the advantages of the SAA into the EDA. The EDA based on global information search is
developed to rapidly obtain optimal or near-optimal solutions in the solution space, and then the SAA
based on local information search is employed to seek better ones in terms of the solutions.

2.2.1. Representation

In this section, an encoding scheme based an operation representation is employed to study the
EJSP with n tasks and m machines. For the EJSP, its encoding sequence consists of a series of tasks’
numbers and its encoding length (l) equals n × m. In the encoding sequence, different appearances of
the same task number denote different operations of the task, and the jth appearance represents the jth

operation of the task.
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Example 1: Consider that the tasks are to be processed on three machines and each task has three
operations, as shown in Figure 1. An encoding sequence (1 3 2 2 3 1 1 3 2) is yielded randomly. Here,
1, 2, and 3 represent the task number of T1, T2, and T3, respectively. Moreover, take task T1 for an
example, there are three different appearances (i.e., the 1st, 6th, and 7th position) in the sequence,
which means T1 has three operations. The 1st position of the encoding sequence represents the first
operation (O11) of T1; the 6th position of the encoding sequence represents the second operation (O12)
of T1; the 7th position of the encoding sequence represents the third operation (O13) of T1. Thus,
the corresponding operation sequence of the encoding sequence is (O11, O31, O21, O22, O32, O12, O13,
O33, O23).

Since the continuous space based on the EDA cannot be directly used to describe the discrete
solution space of the EJSP, the sequence mapping method was developed in this paper. Firstly, generate
random numbers ranging from 0 to 1 according to the encoding length; secondly, sort the numbers
from small to large and record their corresponding position index; finally, divide each number by the
total number of machines, and then round up to an integer.

Example 2: According to the encoding length in Figure 1, nine random numbers are generated as
(0.104, 0.517, 0.618, 0.336, 0.988, 0.203, 0.380, 0.902, 0.151); then, the position indexes of the random
numbers that are sorted from small to large are sequenced as (1, 9, 6, 4, 7, 2, 3, 8, 5); next, each number
in the integer sequence is divided by three to acquire a value and the value is rounded up to an integer.
Thus, the mapping result is (1, 3, 2, 2, 3, 1, 1, 3, 2).

2.2.2. Estimation of Distribution Algorithm

The estimation of distribution algorithm (EDA) is a global searching technique that is based on the
probabilistic model [34]. Algorithm 1 shows the general steps of the EDA. In the EDA, the probabilistic
model and updating mechanism are two crucial parts aspects.

Algorithm 1. Estimation of distribution algorithm (EDA)

Begin
Randomly generate the initial population X(0)
Set t = 0
While (the termination condition is not met) do

Select a set of candidate individuals (solutions) D(t) to construct the current population X(t) according to the
fitness values

Construct the probability distribution model of the selected set D(t)
Generate a set of new offspring individuals N(t) according to the probabilistic model
Create a new population X(t + 1) by replacing some individuals of X(t) by N(t) according to the updating

mechanism
T = t + 1

End while
Report best results
End

(1) Probabilistic model

The probabilistic model aims to reveal a general distribution by capturing the features of parent
individuals. Moreover, the EDA generates new offspring individuals by sampling from the probabilistic
model. Hence, constructing an effective probabilistic model is critical to studying the performance
of the EDA. In this paper, according to the processing priorities of tasks, the probabilistic model was
developed as an operation probabilistic matrix Q(t) with n rows and l columns.
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Q(t) =


p11(t) p12(t) · · · p1l(t)
p21(t) p22(t) · · · p2l(t)

...
...

. . .
...

pn1(t) pn2(t) · · · pnl(t)

 (1)

where piq(t) (1 ≤ i ≤ n, 1 ≤ l ≤ n×m
)

stands for an element of the operation probabilistic matrix Q(k),
which represents the probability that task Ti appears in the qth position of the operation sequence vector
at generation t. Here, there exists piq(t) ∈ [0, 1] and

∑n
i=1 piq(t) = 1, (∀q) at generation t. At the initial

stage of the proposed algorithm, the value of each element in Q(t) is initialized as piq(0) = 1/n, (∀i, q).

(2) Updating mechanism

In order to enhance the exploitation ability of the EDA, the probabilistic model should be adjusted
well at each generation. Hence, an updating mechanism based on the incremental learning method
was developed in this paper. First, according to the roulette wheel selection strategy, a promising
sub-population that consists of Num_SP candidate solutions was determined. Then, the operation
probabilistic matrix Q(t) was updated based on the information of the promising sub-population and
the historical information. The updating function of the probabilistic model is formally defined as:

piq(t + 1) = (1− α)·piq(t) +
α

Num_SP

Num_SP∑
s=1

δs
iq,∀i, q (2)

where α represents the learning rate of the operation probabilistic matrix Q(t), and α ∈ (0, 1); δs
iq represents

the following indicator function of the sth candidate individual in the promising sub-population.

δs
iq
=

{
1, if task Ti appears in the qth position

0, else
(3)

2.2.3. Simulated Annealing Algorithm

The simulated annealing algorithm (SAA) is a stochastic searching technique and its local search
ability is promising. Algorithm 2 shows the general steps of the SAA. In the SAA, the neighborhood
structure and annealing rate function have an important impact on performance.

(3) Neighborhood structure

To create a set of feasible solutions, neighborhood structures are needed. In general,
the disjunctive graph is used to describe the neighborhood structure. In the neighborhood structures,
the neighborhoods are generated in terms of neighborhood strategies. One of the most effective
neighborhood strategies is based on the block structure of the critical path method, which is adapted
in the SAA. A critical path, which is the longest path in the disjunctive graph, consists of a series of
operations. It corresponds to a feasible solution. A maximal sequence of several operations that either
is processed on the same machine or belongs to the same task is defined as a critical block. In this paper,
the swap neighborhood structure based on the critical block is presented to generate the neighborhood.
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(4) Annealing rate function

Annealing rate directly affects the speed and accuracy of the SAA. The general annealing rate
function is given by Equation (4).

T(t) = β× T(t− 1) (4)

where β ∈ (0, 1) represents an annealing rate coefficient; T(t) and T(t − 1) represent current temperature
and previous temperature, respectively; t represents the iteration number.

Algorithm 2. Simulated annealing algorithm (SAA)

Begin
Generate the initial schedule Si
Initialize the start temperature Ts, the end temperature Te

Set T = Ts

While (T > Te) do
Generate the temporary schedule Sj according to the neighborhood structure
Evaluate the improvement of performance criterion function ∆ = f (Sj) − f (Si)
If (∆ ≤ 0) then

Si = Sj
Else if (random(0,1) < e−∆/T) then

Si = Sj
End if
Update new annealing rate function
End while
Report best results
End

According to the characteristic of the annealing temperature function, it can be obtained that
its decreased amplitude becomes faster at a high temperature level, while its decreased amplitude
becomes slower at a low temperature level. It is likely to result in an insufficient search in the solution
space. In order to enhance the exploitation ability of the SAA, an improved annealing rate function
inspired by the Hill function is developed as

T(t) = β×
T0

n

T0n + tn (5)

where T0 represents a temperature threshold and it has a relationship with an initial temperature of
the SAA; n represents a Hill coefficient, and n ≥ 1; β ∈ (0, 1) represents an annealing rate coefficient;
t represents the iteration number.

2.2.4. The Procedure of the EEDA

By embedding SAA into EDA, an enhanced estimation of distribution algorithm (EEDA) was
developed to solve the EJSP. To balance the global exploration and local exploitation of the EEDA,
a decision-making factor λ was designed with Equation (6). The procedure of the EEDA is described
as shown in Algorithm 3.

λ(t) = exp(−t/Maxgen) (6)

where t represents the iteration number; Maxgen represents the maximal number of iteration.
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Algorithm 3. Enhanced Estimation of distribution algorithm (EEDA)

Begin
Randomly generate the initial population X(0)
Initialize the learning rate α, the Hill coefficient n, the start temperature Ts, the end temperature Te

Set t = 0, T = Ts

While (the termination condition is not met) do
Evaluate the fitness value of each individual in X(0)

Select a set of candidate individuals (solutions) D(t) to construct the current population X(t)
Construct the probability distribution model of the selected set D(t)
If (rand ≤ λ) then

Generate a set of new offspring individuals N(t) according to the probabilistic model
Create a new population X(t + 1) by replacing some individuals of X(t) by N(t) according to the updating

mechanism
Else

While (T >Te) do
Generate the temporary individuals N(t) according to the neighborhood structure
Evaluate the improvement of the fitness value
Update annealing rate function
End while
End if

T = t + 1
End while
Report best results
End

3. Model of Energy-Efficient Job-Shop Scheduling Problem (EJSP) with Transportation
Constraints

3.1. Notations

Notations are defined as follows.

i, i− Index of tasks
j, j− Index of operations
k, w Index of machines
q Index of position
n Number of tasks
m Number of machines
T Set of tasks, T = {T1, T2, . . . , Tn}
M Set of machines, M = {M1, M2, . . . , Mm}
Oij jth operation of task Ti
Ni Number of operations for task Ti
Qk Number of operations processed on machine Mk
Ci Completion time of task Ti
Cmax Completion time of the last task
Bkq Starting time of the operation allocated to the qth position on machine Mk
Sijk Starting time of operation Oij on machine Mk
Cijk Completion time of operation Oij on machine Mk
Ci−j−k Completion time of the preceding operation of operation Oij on machine Mk
Tijk Processing time of operation Oij on machine Mk

Ti jk
i( j−1)w

Transportation time needed to move from machine Mw to machine Mk for two
successive operations Oi(j−1) and Oij of task Ti

Pijk Processing power of operation Oij on machine Mk
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Pk Unload power of machine Mk
P0 Transportation power of automatic guided vehicle
E Comprehensive energy consumption for a schedule
Ec Energy consumption module for cutting process
Ei Energy consumption module for idle running process
Et Energy consumption module for transportation process
Ea Energy consumption module for auxiliary process
e Average energy requirement per unit time for auxiliary equipment
L A big positive number

Yijkq
Sequencing binary variable that is set to 1 if operation Oij is to be processed in qth

position on machine Mk, and 0 otherwise

3.2. Energy Consumption Model

According to energy-consuming behaviors of each task processed on machines [15,16],
three important energy consumption modules were considered: energy consumption module for
a cutting process (Ec), energy consumption module for an idle running process (Ei), and energy
consumption module for an auxiliary process (Ea). In addition, AGVs are used to move each
task that needs to be transported to the next machine after the completion of a task on a machine,
which also consumes energy, i.e., energy consumption module for a transportation process (Et). Thus,
the comprehensive energy consumption throughout the production process mainly consists of four
modules, which are described as follows.

3.2.1. Energy Consumption Module for a Cutting Process (Ec)

Ec represents the energy required to execute all the operations. In general, Ec can be calculated
approximately by using a secondary polynomial fitting curve [35]. Hence, the formulation of Ec is
defined below.

Ec =
m∑

k=1

Pk·(
n∑

i=1

Ni∑
j=1

Ti jk) +
n∑

i=1

Ni∑
j=1

m∑
k=1

(1 + α1)·Pi jk·Ti jk +
n∑

i=1

Ni∑
j=1

m∑
k=1

α2·Pi jk
2
·Ti jk (7)

where α1 and α2 are the coefficients of the secondary polynomial fitting curve.

3.2.2. Energy Consumption Module for an Idle Running Process (Ei)

Ei represents the energy required to wait for processing the next operation when a machine is in
an idle running period. Ei can be calculated by multiplying the unload power consumption by the
total idle time as:

Ei =
m∑

k=1

Pk·(max
i, j

Ci jk −

n∑
i=1

Ni∑
j=1

(Ci jk − Si jk)) (8)

3.2.3. Energy Consumption Module for an Auxiliary Process (Ea)

Ea represents the energy required to support production equipment in the workshop, such as
lighting, heating, and air-conditioning. Ea can be written as:

Ea = e·max
1≤i≤n

(Ci) (9)

3.2.4. Energy Consumption Module for a Transportation Process (Et)

Et is the energy consumption of an AGV for moving a task whenever it requires transportation
from one machine to another. Et is defined as:
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Et =
n∑

i=1

Ni∑
j=2

m∑
k=1

m∑
w=1

P0·T
i jk
i( j−1)w

(10)

3.2.5. Comprehensive Energy Consumption (E)

E is composed of Ec, Ei, Ea, and Et. Hence, the comprehensive energy consumption is the sum of
them, which is expressed as:

E = Ec + Ei + Ea + Et (11)

3.3. Formulation of the EJSP Optimization Model

The scheduling optimization objectives are to satisfy two efficiency criteria: schedule efficiency
that is measured in terms of makespan and energy efficiency that is calculated by the comprehensive
energy consumption for a schedule. The two objective functions can be written as:

min f1 = Cmax (12)

min f2 = E (13)

subject to:
Ci jk −Ci( j−1)w ≥ Ti jk;
∀i = 1, 2, . . . , n, j = 2, 3, . . . , Ni, k, w = 1, 2, . . . , m

(14)

Si jk ≥ max(Ci( j−1)w ++Ti jk
i( j−1)w

, Ci− j−k)

∀i, i− = 1, 2, . . . , n, j = 2, 3, . . . , Ni, j− = 1, 2, . . . , Ni− , k, w = 1, 2, . . . , m
(15)

Bkq ≤ Ti jk + L·(1−Yi jkq);
∀i = 1, 2, . . . , n, j = 1, 2, . . . , Ni, k = 1, 2, . . . , m, q = 1, 2, . . . , Qk;

(16)

Bkq ≥ Ti jk − L·(1−Yi jkq);
∀i = 1, 2, . . . , n, j = 1, 2, . . . , Ni, k = 1, 2, . . . , m, q = 1, 2, . . . , Qk;

(17)

n∑
i=1

Ni∑
j=1

Yi jkq = 1;

∀k = 1, 2, . . . , m, q = 1, 2, . . . , Qk

(18)

The first objective (12) is to minimize the makespan and the second objective (13) is to minimize
the comprehensive energy consumption. Constraint (14) ensures that the precedence constraints
between the operations of each task are not changed. Constraint (15) establishes the relationship
between the transportation constraint and the machine capacity constraint. Assume that two adjacent
operations (Oi−j− , Oij) are to be executed on machine Mk in Figure 2. The completion time of the
preceding operation Oi−j− of operation Oij on machine Mk is Ci−j−k, the completion time of the (j − 1)th

operation Oi(j−1) of task Ti on machine Mw is Ci(j−1)w, and the transportation time of AGV between

machine Mw and machine Mk is Ti jk
i( j−1)w

. If Ci− j−k ≤ Ci( j−1)w + Ti jk
i( j−1)w

, then, the start time of operation
Oij should be after the transportation time of operation Oi(j−1). Otherwise, the start time of operation
Oij should be after the completion time of operation Oi−j− . Constraints (16) and (17) establish linking
constraints between start times Bkq and Sijk. It means that if operation Oij is processed in the qth position
on machine Mk, then Bkq = Sijk. Constraint (18) points out that an operation is only assigned to one
position of one machine.

As the relationship between energy consumption and makespan is conflicting, no single optimal
solution exists in the multi-objective optimization problem (MOP) [36]. There have been diverse
techniques for solving MOP. One of the most popular approaches to studying MOP is the normalized
weighted additive utility function (NWAUF). Owning to its simplicity and natural ability to explore
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efficient solutions, the NWAUF has been successfully applied in the field of production scheduling.
The NWAUF for alternative k with n objectives is defined as U(k):

U(k) = w1 f ′1(k) + w2 f ′2(k) + . . .+ wn f ′n(k) (19)

where wi(i = 1, 2, . . . , n) is a weight coefficient, and
n∑

i=1
wi = 1, wi ∈ [0, 1]; fi′(k) is the normalized value

of the ith objective function fi(k) for i = 1, 2, . . . , n. Note that each normalized objective fi′(k) can be
expressed by Equation (20).

fi′(k) =
fi,max − fi(k)
fi,max − fi,min

(20)

where fi,min and fi,max represent for the minimum and maximum values of the objective function
fi, respectively.

Using the utility function, MOP can be solved as a single objective optimization. Therefore,
according to the objective functions (12) and (13), NWAUF is formulated as F(k):

F(k) = w·
f1,max − f1(k)
f1,max − f1,min

+ (1−w)·
f2,max − f2(k)
f2,max − f2,min

(21)

where w is the weighted importance of the objective function makespan and w ∈ [0, 1]. f1,min and f1,max

are the minimum and maximum values of the objective function f1, respectively. f2,min and f2,max are
the minimum and maximum values of the objective function f2, respectively.

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 23 

constraints between start times Bkq and Sijk. It means that if operation Oij is processed in the qth 
position on machine Mk, then Bkq = Sijk. Constraint (18) points out that an operation is only assigned to 
one position of one machine. 

 
Figure 2. Constraints of two successive operations for a task. 

As the relationship between energy consumption and makespan is conflicting, no single 
optimal solution exists in the multi-objective optimization problem (MOP) [36]. There have been 
diverse techniques for solving MOP. One of the most popular approaches to studying MOP is the 
normalized weighted additive utility function (NWAUF). Owning to its simplicity and natural 
ability to explore efficient solutions, the NWAUF has been successfully applied in the field of 
production scheduling. The NWAUF for alternative k with n objectives is defined as U(k): 

1 1 2 2( ) ( ) ( )+ + ( )n nU k w f k w f k w f k′ ′ ′= +   (19) 

where ( 1,2,..., )iw i n=  is a weight coefficient, and 
1

1
n

i
i
w

=

= , [0,1]iw ∈ ; ( )if k′  is the 

normalized value of the ith objective function ( )if k  for 1, 2, ,i n=  . Note that each normalized 

objective ( )if k′  can be expressed by Equation (20). 

,max

,max ,min

( )
( )= i i

i
i i

f f k
f k

f f
−′
−

 (20) 

where ,minif  and ,maxif  represent for the minimum and maximum values of the objective 

function if , respectively. 
Using the utility function, MOP can be solved as a single objective optimization. Therefore, 

according to the objective functions (12) and (13), NWAUF is formulated as F(k): 

1,max 1 2,max 2

1,max 1,min 2,max 2,min

( ) ( )
( ) (1 )

f f k f f k
F k w w

f f f f
− −

= ⋅ + − ⋅
− −

 (21) 

where w  is the weighted importance of the objective function makespan and [0,1]w∈ . 1,minf  and 

1,maxf  are the minimum and maximum values of the objective function 1f , respectively. 2,minf  and 

2,maxf  are the minimum and maximum values of the objective function 2f , respectively. 

4. Experimental Results 

In this section, the proposed EEDA is employed to solve the EJSP. First, the analysis of the 
algorithm parameter settings was conducted to investigate their influence on the performance of the 
EEDA. Second, two classes of benchmark instances from the OR-Library were given to evaluate the 

Figure 2. Constraints of two successive operations for a task.

4. Experimental Results

In this section, the proposed EEDA is employed to solve the EJSP. First, the analysis of the
algorithm parameter settings was conducted to investigate their influence on the performance of
the EEDA. Second, two classes of benchmark instances from the OR-Library were given to evaluate
the performance of the proposed algorithm. Finally, the proposed algorithm was used to evaluate
the effectiveness of the proposed model. The computational experiments were carried out utilizing
MATLAB R2009a. The experimental tests were implemented on a personal computer with an Intel
Pentium (R) with 4 GB memory and a 2.60 GHz processor, and the operating system was Windows 10.

4.1. Sensitivity Analysis of the Algorithm Parameters

The parameter settings could have significant influence on the performance of the EEDA.
In the EEDA, four critical algorithm parameters should be considered: the population size (NIND),
the maximum number of iterations (Maxgen), the learning rate (α), and the Hill coefficient (n). In order
to analyze the influence of these algorithm parameters on the performance of the EEDA, the Taguchi
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design method was adopted to study the parametric sensitivity. An example of a 10 × 10 JSP is given
in Table 1. There are 10 types of tasks to be processed on 10 machines, and each task contains 10
operations. An operation is assigned to a given machine and has the corresponding processing time.
For example, in Table 1, the element (4,6) in first row and fifth column means that the 5th operation
of task T1 is processed on machine M4 and the processing time is 6 min. Here, for the convenience
of analysis and comparison, the scheduling objective is to minimize the makespan which is used by
many authors in the literature. Various values for the four parameters are listed Table 2. In addition,
the average makespan value (AMV) and average running time (ART) were adopted as evaluation
standards to analyze the parameters.

Table 1. Test instance with 10 tasks 10 machines.

Tasks

Operations (Machine Number, Processing Time/min)

1 2 3 4 5 6 7 8 9 10

T1 (3,29) (10,43) (2,85) (1,71) (4,6) (8,47) (6,37) (5,86) (7,76) (9,13)
T2 (2,78) (7,28) (3,51) (6,81) (5,22) (10,2) (1,16) (4,46) (9,69) (8,85)
T3 (10,9) (3,90) (7,74) (4,95) (6,14) (1,84) (8,13) (2,31) (5,85) (9,61)
T4 (2,36) (1,69) (10,39) (3,8) (7,26) (4,85) (9,61) (5,19) (6,76) (8,52)
T5 (3,49) (7,75) (2,33) (5,99) (8,69) (9,6) (6,35) (1,32) (4,26) (10,90)
T6 (9,11) (7,46) (2,10) (8,43) (4,11) (6,52) (10,21) (1,74) (5,11) (3,47)
T7 (1,62) (2,46) (10,89) (7,19) (3,13) (4,65) (9,32) (5,88) (6,40) (8,7)
T8 (7,56) (2,72) (3,12) (6,25) (10,49) (5,25) (1,30) (4,36) (9,79) (8,45)
T9 (10,44) (3,30) (4,90) (7,52) (1,21) (8,48) (6,89) (2,19) (5,74) (9,64)
T10 (1,21) (9,11) (7,45) (4,22) (6,72) (10,72) (8,32) (2,48) (5,11) (3,76)

Table 2. Various values of the algorithm parameters.

Variables
Value

1 2 3 4

NIND 10 15 20 25
Maxgen 500 1000 1500 2000

α 0.05 0.1 0.25 0.5
n 1 2 3 4

The experimental results on the combination situations of the four parameters are listed Table 3.
Figure 3 describes the changing trend in the average makespan, such that each parameter for different
setting values is considered.

Table 3. Combination situations of the algorithm parameters.

Number NIND Maxgen α n AMV ART(s)

1 1 1 1 1 946.4 84.76
2 1 2 2 2 903.8 169.55
3 1 3 3 3 902.6 255.75
4 1 4 4 4 902.2 339.42
5 2 1 2 3 925.4 130.50
6 2 2 1 4 918.2 262.10
7 2 3 4 1 895.8 434.90
8 2 4 3 2 887.8 515.95
9 3 1 3 4 924 178.05

10 3 2 4 3 905.8 344.34
11 3 3 1 2 900.8 503.77
12 3 4 2 1 874.4 734.28
13 4 1 4 2 905 238.63
14 4 2 3 1 902.4 474.98
15 4 3 2 4 906.2 642.57
16 4 4 1 3 893.2 840.01
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From Table 3 and Figure 3, it can be seen that four parameters had an impact on the performance
of the EEDA. Concretely speaking, the average makespan value decreased as any of these parameter
values (including NIND, Maxgen, α) increased, as shown in Figure 3a–c. But a large parameter setting
value could result in more computational time. In addition, when the Hill coefficient was set to 2,
in Figure 3d, the better solution can be obtained by the EEDA. Therefore, according to the above
analysis, the parameter values in the EEDA are set in Table 2 (in bold and italics).
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4.2. Performance Evaluation

To validate the effectiveness of the proposed algorithm, the widely used benchmark instances
from the OR-library were carried out [37]. Two classes of benchmarks instances are considered:
one was the instance FT06, FT10, FT20 (n × m = 6 × 6, 10 × 10, 20 × 5) designed by Fisher and
Thompson [38], the other was the instance LA01-LA40 (n × m = 10 × 5, 15 × 5, 20 × 5, 10 × 10,
15 × 10, 20 × 10, 30 × 10, 15 × 15) designed by Lawrence [39]. The proposed algorithm was compared
with several existing algorithms, including estimation of distribution algorithm (EDA) presented
by He et al. [40], hybrid differential evolution and estimation of distribution algorithm (DE-EDA)
presented by Zhao et al. [41], simulated annealing (SA) presented by Laarhoven et al. [42], hybrid
genetic and simulated annealing (GA–SA) presented by Wang and Zheng [43], genetic algorithm (GA:
P-GA, SBGA-40, SBGA-60 ) presented by Dorndorf and Pesch [44], and hybrid genetic algorithm (HGA:
HGA-Param, HGA-Non-delay, HGA-Active) presented by Goncalves et al. [45]. For each instance,
we ran the algorithms 10 times independently. The experimental results are shown in Table 4. It lists
the problem name, the problem size, the best-known solution (Sbest), the solution obtained by the
proposed algorithm (EEDA), and the solution obtained by other algorithms reported in the literature.
According to Table 4, it can be observed that the proposed algorithm obtained the best-known solution
in 30 out of 43 instances. In other words, the EEDA found the best-known solution in 70% of problem
instances. In addition, compared with EDA and SA, the EEDA was superior to them in solution quality.
Hence, the combination of the EDA and SA is promising in solving the problems.
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Table 4. Experimental results obtained by different algorithms.

Instance Size Sbest EEDA
EDA
[40]

EDA-
DE [41]

SA
[42]

GA-SA
[43]

GA [44] HGA [45]

P-GA SBGA-
40

SBGA-
60

HGA-
Param HGA-Non-delay HGA-

Active

FT06 6 × 6 55 55 55 55 55 55 - - - 55 55 55
FT10 10 × 10 930 930 937 937 930 930 960 - - 930 951 945
FT20 20 × 5 1165 1165 1184 1178 1165 1165 1249 - - 1165 1178 1173
LA01 10 × 5 666 666 666 666 666 666 666 666 - 666 666 666
LA02 10 × 5 655 655 - 655 655 - 681 666 - 655 665 655
LA03 10 × 5 597 597 - 597 606 - 620 604 - 597 604 603
LA04 10 × 5 590 590 - 590 590 - 620 590 - 590 590 598
LA05 10 × 5 593 593 - 593 593 - 593 593 - 593 593 593
LA06 15 × 5 926 926 926 926 926 926 926 926 - 926 926 926
LA07 15 × 5 890 890 - 890 890 - 890 890 - 890 890 890
LA08 15 × 5 863 863 - 863 863 - 863 863 - 863 863 863
LA09 15 × 5 951 951 - 951 951 - 951 951 - 951 951 951
LA10 15 × 5 958 985 - 958 958 - 958 958 - 958 958 958
LA11 20 × 5 1222 1222 1222 1222 1222 1222 1222 1222 - 1222 1222 1222
LA12 20 × 5 1039 1039 - 1039 1039 - 1039 1039 - 1039 1039 1039
LA13 20 × 5 1150 1150 - 1150 1150 - 1150 1150 - 1150 1150 1150
LA14 20 × 5 1292 1292 - 1292 1292 - 1292 1292 - 1292 1292 1292
LA15 20 × 5 1207 1207 - 1207 1207 - 1237 1207 - 1207 1207 1207
LA16 10 × 10 945 945 945 956 956 945 1008 961 961 945 973 947
LA17 10 × 10 784 784 - 784 784 - 809 787 784 784 792 784
LA18 10 × 10 848 859 - 855 861 - 916 848 848 848 855 848
LA19 10 × 10 842 842 - 852 848 - 880 863 848 842 851 852
LA20 10 × 10 902 902 - 907 902 - 928 911 910 907 926 912
LA21 15 × 10 1046 1060 1071 1058 1063 1058 1139 1074 1074 1046 1079 1074
LA22 15 × 10 927 938 - 952 938 - 998 935 936 935 950 962
LA23 15 × 10 1032 1032 - 1038 1032 - 1072 1032 1032 1032 1032 1032
LA24 15 × 10 935 948 - 973 952 - 1014 960 957 953 970 955
LA25 15 × 10 977 989 - 1000 992 - 1014 1008 1007 986 1013 1014
LA26 20 × 10 1218 1218 1257 1229 1218 1218 1278 1219 1218 1218 1218 1237
LA27 20 × 10 1235 1270 - 1287 1269 - 1378 1272 1269 1256 1282 1280
LA28 20 × 10 1216 1218 - 1275 1224 - 1327 1240 1241 1232 1250 1250
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Table 4. Cont.

Instance Size Sbest EEDA
EDA
[40]

EDA-
DE [41]

SA
[42]

GA-SA
[43]

GA [44] HGA [45]

P-GA SBGA-
40

SBGA-
60

HGA-
Param HGA-Non-delay HGA-

Active

LA29 20 × 10 1152 1200 - 1220 1203 - 1336 1204 1210 1196 1206 1226
LA30 20 × 10 1355 1355 - 1371 1355 - 1411 1355 1355 1355 1355 1355
LA31 30 × 10 1784 1784 1789 1784 1784 1784 - - - 1784 1784 1784
LA32 30 × 10 1850 1850 - 1850 1850 - - - - 1850 1850 1850
LA33 30 × 10 1719 1719 - 1719 1719 - - - - 1719 1719 1719
LA34 30 × 10 1721 1721 - 1721 1721 - - - - 1721 1721 1721
LA35 30 × 10 1888 1888 - 1888 1888 - - - - 1888 1888 1888
LA36 15 × 15 1268 1290 1292 1315 1293 1292 1373 1317 1317 1279 1303 1313
LA37 15 × 15 1397 1445 - 1465 1433 - 1498 1484 1446 1408 1437 1444
LA38 15 × 15 1196 1210 - 1244 1215 - 1296 1251 1241 1219 1252 1228
LA39 15 × 15 1233 1255 - 1291 1248 - 1351 1282 1277 1246 1250 1265
LA40 15 × 15 1222 1236 - 1277 1234 - 1321 1274 1252 1241 1252 1246

“-” means inapplicable.
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At the same time, average relative percentage deviation (ARPD) is designed to evaluate the
performance of the EEDA in the experimental test as below:

ARPD = (
NIS∑
z=1

f (z) − Sbest

Sbest
× 100)/NIS (22)

where f (z) represents the best result obtained by the algorithms, Sbest represents the best result known
for each instance, NIS represents the number of instances solved by the algorithms.

In addition, improvement rate (IR) of ARPD obtained by the EEDA with regard to other algorithms
is defined as follows:

IR =
ARPD of some algorithm−ARPD of EEDA

ARPD of some algorithm
(23)

The comparisons of the experimental results among different algorithms are given in Table 5.
It lists the different algorithms, the number of instances solved (NIS), the average relative percentage
deviation (ARPD) of all compared algorithms, and the corresponding improvement rate (IR). From
Table 5, we can find that the ARRD of the EEDA was 0.60 in all 43 instances. Compared to the other
algorithms, the EEDA had an improvement in solution quality.

In summary, it was realized that the proposed algorithm is a promising approach for the job shop
scheduling problem by comparing it with other algorithms. Thus, the EEDA is employed to solve the
EJSP in the next section.

Table 5. Experimental results of the EEDA compared with the other algorithms.

Algorithms NIS
ARPD

IR
Others EEDA

EDA [40] 11 0.92 0.28 0.70
EDA-DE [41] 43 0.80 0.60 0.25

SA [42] 43 0.63 0.60 0.05
GA-SA [43] 11 0.28 0.28 0
P-GA [44] 37 4.62 0.69 0.85

SBGA-40 [44] 35 1.43 0.73 0.49
SBGA-60 [44] 20 1.97 1.14 0.42

HGA-Param [45] 43 0.40 0.60 -0.50
HGA-Non-delay [45] 43 1.23 0.60 0.51

HGA-Active [45] 43 1.12 0.60 0.46

4.3. Case Study

In order to evaluate the energy-savings potential of the proposed model, an experiment originating
from a machining shop floor is illustrated: the experiment consists of ten tasks and ten machines.
These tasks had similar processing operations, including rough/finish turning, rough/finish milling,
drilling/tapping, rough/finish grinding, cleaning, and inspection. Their processing times are shown in
Table 6. Moreover, there were five AGVs for transporting the tasks among machines, and the power
demand of each AGV was set to 3.45 kW. In addition, the auxiliary average power required to support
the production environment was set to 1 kW. The transportation times between different machines are
listed in Table 7. The related power demand for all machines is given in Table 8.
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Table 6. Processing times of tasks on machines (unit: s).

Tasks

Operations (Machine Number, Processing Time)

1 2 3 4 5 6 7 8 9 10

T1 (1,1740) (2,4680) (3,600) (4,2160) (5,3000) (6,660) (7,3720) (8,3360) (9,2640) (10,1260)
T2 (1,2580) (3,5400) (5,4500) (10,660) (4,4140) (2,1680) (7,2760) (6,2760) (8,4320) (9,1800)
T3 (2,5460) (1,5100) (4,2340) (3,4440) (9,5400) (6,600) (8,720) (7,5340) (10,2700) (5,2580)
T4 (2,4860) (3,5700) (1,4260) (5,5940) (7,540) (9,3120) (8,5100) (4,5880) (10,1320) (6,2580)
T5 (3,840) (1,360) (2,1320) (6,3660) (4,1560) (5,4140) (9,1260) (8,2940) (10,4320) (7,3180)
T6 (3,5040) (2,120) (6,3120) (4,5700) (9,2880) (10,4320) (1,2820) (7,3900) (5,360) (8,1500)
T7 (2,2760) (1,2220) (4,3660) (3,780) (7,1920) (6,1260) (10,1920) (9,5340) (8,1800) (5,3300)
T8 (3,1860) (1,5160) (2,2760) (6,4440) (5,1920) (7,5280) (9,1140) (10,2880) (8,2160) (4,4740)
T9 (1,4560) (2,4140) (4,4560) (6,3060) (3,5100) (10,660) (7,2400) (8,5340) (5,1560) (9,4440)
T10 (2,5100) (2,780) (3,3660) (7,420) (9,3840) (10,4560) (6,2820) (4,3120) (5,5400) (8,2700)

Table 7. Transportation times between different machines (unit: s).

Machine Number M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0 152 170 193 100 112 173 165 142 133
M2 152 0 131 138 152 169 120 170 162 143
M3 170 131 0 160 151 140 132 171 122 140
M4 193 138 160 0 140 140 165 170 140 198
M5 100 152 151 140 0 103 102 170 180 192
M6 112 169 140 140 103 0 142 140 148 150
M7 173 120 132 165 102 142 0 150 162 160
M8 165 170 171 170 170 140 150 0 141 120
M9 142 162 122 140 180 148 162 141 0 153
M10 133 143 140 198 192 150 160 120 153 0

Table 8. Unload power of each machine.

Machine Number M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Processing power (kW) 18 15 6 12 10 5.5 7.5 3 5.5 10
Unload power (kW) 2.4 3.36 2.0 1.77 2.2 2.55 2.02 1.77 1.16 1.8

4.3.1. Energy-Efficient Scheduling Analysis

To highlight the transportation impact over the scheduling objective, we analyzed energy
consumptions with regard to different transportation speeds of AGVs. Three transportation speeds,
i.e., low speed, medium speed, and high speed, were considered when the weighted importance w
was set as 0, 0.5, and 1, respectively. The experimental results based on the proposed EEDA are shown
in Figures 4–6.

Sustainability 2019, 11, x FOR PEER REVIEW 18 of 23 

T3 (2,5460) (1,5100) (4,2340) (3,4440) (9,5400) (6,600) (8,720) (7,5340) (10,2700) (5,2580) 
T4 (2,4860) (3,5700) (1,4260) (5,5940) (7,540) (9,3120) (8,5100) (4,5880) (10,1320) (6,2580) 
T5 (3,840) (1,360) (2,1320) (6,3660) (4,1560) (5,4140) (9,1260) (8,2940) (10,4320) (7,3180) 
T6 (3,5040) (2,120) (6,3120) (4,5700) (9,2880) (10,4320) (1,2820) (7,3900) (5,360) (8,1500) 
T7 (2,2760) (1,2220) (4,3660) (3,780) (7,1920) (6,1260) (10,1920) (9,5340) (8,1800) (5,3300) 
T8 (3,1860) (1,5160) (2,2760) (6,4440) (5,1920) (7,5280) (9,1140) (10,2880) (8,2160) (4,4740) 
T9 (1,4560) (2,4140) (4,4560)  (6,3060) (3,5100) (10,660) (7,2400) (8,5340) (5,1560) (9,4440) 
T10 (2,5100) (2,780) (3,3660) (7,420) (9,3840) (10,4560) (6,2820) (4,3120) (5,5400) (8,2700) 

Table 7. Transportation times between different machines (unit: s). 

Machine Number M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
M1 0 152 170 193 100 112 173 165 142 133 
M2 152 0 131 138 152 169 120 170 162 143 
M3 170 131 0 160 151 140 132 171 122 140 
M4 193 138 160 0 140 140 165 170 140 198 
M5 100 152 151 140 0 103 102 170 180 192 
M6 112 169 140 140 103 0 142 140 148 150 
M7 173 120 132 165 102 142 0 150 162 160 
M8 165 170 171 170 170 140 150 0 141 120 
M9 142 162 122 140 180 148 162 141 0 153 
M10 133 143 140 198 192 150 160 120 153 0 

Table 8. Unload power of each machine. 

Machine Number M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Processing power (kW) 18 15 6 12 10 5.5 7.5 3 5.5 10 

Unload power (kW) 2.4 3.36 2.0 1.77 2.2 2.55 2.02 1.77 1.16 1.8 

4.3.1. Energy-Efficient Scheduling Analysis 

To highlight the transportation impact over the scheduling objective, we analyzed energy 
consumptions with regard to different transportation speeds of AGVs. Three transportation speeds, 
i.e., low speed, medium speed, and high speed, were considered when the weighted importance w 
was set as 0, 0.5, and 1, respectively. The experimental results based on the proposed EEDA are 
shown in Figures 4–6. 
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From the results shown in Figures 4–6, we can observe that the ratio of the transportation energy
consumption to the comprehensive energy consumption became lower as the transportation speed
increased for the given weighted importance. Moreover, the comprehensive energy consumption
reduced as the transportation speed increased. It is also clear that the comprehensive energy
consumption decreased as the weighted importance w increased at the given transportation speed.
Furthermore, the transportation speed had a significant effect on Ei and Ea. For example, for the given
weighted importance (w = 0.5), when the transportation speed increased from low speed to the high
speed, the ratio of the idle energy consumption decreased to 36.9% and the ratio of the auxiliary energy
consumption decreased to 14.29%. Also, we calculated that the comprehensive energy consumption
ratio decreased to 14.61%. Therefore, it was concluded that the energy-efficient scheduling strategy
could be considered by increasing the transportation speed for the decision makers.

4.3.2. Computational Results on EEDA versus EDA

In order to demonstrate the optimization capability of the EEDA on the potential of the energy
savings, the general EDA was also shown as a heuristic strategy. The parameters setting of the EDA was
the same as that of the EEDA regarding the population size (NIND), the maximum number of iterations
(Maxgen), and the learning rate (α). Due to the fact that the consideration of energy consumption
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and makespan is different in different manufacturing environments, different weighted importance of
energy consumption and makespan should be taken into account in the EJSP. In this section, this is
done by changing the value of the weighted importance w with a step size of 0.1. Hence, the objective
function is conducted with the weighted importance w from 0 to 1 so that the optimal solutions are
from energy-savings oriented to time-savings oriented. The experimental results are shown in Table 9.

As seen in Table 9, the comprehensive energy consumption decreased by 25.57 kWh and an optimal
energy-efficient schedule result could be obtained by the EEDA. Moreover, the comprehensive energy
consumption values obtained by the EEDA had better optimization than EDA, where the average
comprehensive energy consumption by EEDA was 0.02% lower than EDA. Moreover, the makespan
values from the EDA were larger than those obtained by the EEDA, where the related average gap
was 1.62%. Therefore, the optimization effects of the EEDA with regard to the energy consumption
and makespan were better than those of the EDA. Meanwhile, the comparison results were given
with regard to the makespan and energy consumption with the EEDA and EDA, as demonstrated in
Figure 7. It can be observed that the quality of solutions obtained by the EEDA outperformed the
quality of solutions obtained by the EDA.

Table 9. Optimization results with different weighted importance on EEDA versus EDA.

w
EEDA EDA Solution Gap

f1 f2 F f1 f2 F Gap-
f 1 (%)

Gap-
f 2 (%)

Gap-
F (%)

0 980.32 987.65 0.0588 992.14 983.42 0.1071 0.32% 0.45% 82.14%
0.1 987.45 984.05 0.0623 986.39 989.28 0.0947 1.00% 0.24% 52.01%
0.2 998.03 980.34 0.0523 987.23 1027.17 0.0874 2.92% 0.38% 67.11%
0.3 1045.17 978.93 0.0607 979.5 1056.36 0.0954 1.07% 0.06% 57.17%
0.4 1061.78 976.52 0.0579 977.16 1085.4 0.0948 2.22% 0.07% 63.73%
0.5 1083.9 974.89 0.0613 975.05 1112.73 0.0983 2.66% 0.02% 60.36%
0.6 1099.06 971.75 0.0688 973.58 1130.22 0.0832 2.84% 0.19% 20.93%
0.7 1110.37 968.02 0.0605 971.6 1145.52 0.1046 3.17% 0.37% 72.89%
0.8 1156.21 964.71 0.0514 969.4 1165.42 0.0983 0.80% 0.49% 91.25%
0.9 1185.53 964.01 0.0677 965.73 1188.23 0.0916 0.23% 0.18% 35.30%
1 1212.32 962.08 0.064 962.25 1220.28 0.1109 0.66% 0.02% 73.28%
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5. Discussion

In summary, the reasonable settings of the parameters in the EEDA had an important impact on
the algorithms’ performance. For example, when the population size increased, better individuals
could be selected to obtain an optimal solution. However, oversized population sizes will result in
more computational time. It is a disadvantage for the EEDA to obtain the best result in a limited time.
Hence, it is necessary to design the experiment to determine parameter values, which is shown in
Table 2. Furthermore, to verify the effectiveness of the EEDA, experiments with the EEDA versus
other algorithms were performed for benchmark problems. According to the results, the EEDA
had improvements in solution quality compared to the other algorithms. The reason for this is that
the EEDA had a better ability to achieve a balance with the proposed algorithm in both global and
local searches.

In addition, the proposed EEDA is a promising method for solving energy-efficient job-shop
scheduling problems with transportation constraints. On the one hand, by assessing the algorithm
performance, it can be seen that EEDA had a better searching ability compared to other algorithms
like the EDA. The reason for this is explained by the EDA being a global search method based on the
probability model, but its local search ability is limited. The EEDA is the combination of the EDA and
SA, and absorbs their advantages. At the same time, with regard to the local search ability of the SA, it is
subject to the constraint of simulated annealing function. A novel annealing schedule method, which is
inspired from the hormone modulation mechanism, is designed to achieve the balance of EEDA in
both global and local search. On the other hand, through analyzing the optimization capability of the
EEDA on the potential of the energy savings in the case study, the EEDA outperforms the EDA in
obtaining the optimal solution regarding energy consumption and makespan on a fair basis. It also
indicates that the EEDA had the comprehensive search ability.

6. Conclusions

In this study, an energy-efficient job-shop scheduling problem with consideration of AGV
transportation was studied. First, a mixed-integer programming model was established to minimize
both the comprehensive energy consumption and makespan. Due to the complexity of the problem,
the EEDA was designed to explore its optimal solution. Comprehensive experiments were conducted
to investigate the proposed model and algorithm. The experimental results indicated that the proposed
algorithm was effective in solving the EJSP and it was capable of obtaining better solutions than
the EDA. Furthermore, the results highlighted that the transportation energy consumption had a
non-negligible impact on the comprehensive energy consumption.

With respect to future work, it will be interesting to study the following issues: (1) the EEDA
shows the improvement of algorithm performance compared with other meta-heuristic algorithms,
but further research on the model accuracy and computation time should be taken into account; (2) there
are many unexpected events such as random machine breakdown, rush task, and task cancellation
occurring in practical factories. They may have an influence on the energy consumption, which should
be considered in the EJSP. Hence, research on a dynamic integrated scheduling problem for machines
and AGVs with consideration of energy consumption should also be studied in the future.
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