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Abstract: As an important part of industrialized society, manufacturing consumes a large amount
of raw materials and energy, which motivates decision-makers to tackle this problem in different
manners. Process planning is an important optimization method to realize the object, and energy
consumption, carbon emission, or sustainability evaluation is the basis for the optimization stage.
Although the evaluation research has drawn a great deal of attention, most of it neglects the influence
of state control of machine tools on the energy consumption of machining processes. To address the
above issue, a sustainability evaluation method of process planning for single computer numerical
control (CNC) machine tool considering energy-efficient control strategies has been developed. First,
four energy-efficient control strategies of CNC machine tools are constructed to reduce their energy
consumption. Second, a bi-level energy-efficient decision-making mechanism using random forests is
established to select appropriate control strategies for different occasions. Then, three indicators are
adopted to evaluate the sustainability of process planning under the consideration of energy-efficient
control strategies, i.e., energy consumption, relative delay time, and machining costs. Finally, a
pedestal part machined by a 3-axis vertical milling machine tool is used to verify the proposed
methods. The results show that the reduction in energy consumption considering energy-efficient
control strategies reaches 25%.

Keywords: sustainability evaluation; process planning; single CNC machine tool; energy-efficient
control strategy; random forests

1. Introduction

Manufacturing is an important part of industrialized society and uses trillions of dollars’ worth
of commodities and services as inputs [1], but it is also obvious that manufacturing shows a huge
impact on the environment. In Europe, manufacturing processes in factories, in which motors,
compressors, and machine systems need to be powered, and adequate heating, ventilation, and air
conditioning equipment need to be maintained, contribute to over 24% of total European energy
consumption [2]. The energy problem being experienced by the manufacturing industry has aroused
social concerns [3]. On the other hand, the survey on electric energy consumption has shown that up to
54% of electric energy is used in production processes, which are mainly on production machines. So
energy conservation of machine tools can significantly reduce the carbon emission of manufacturing.
To realize the energy consumption reduction of machine tools, many methods have been proposed
by researchers, such as machining parameter optimization [4], state control of machines [5], process
planning [6], and production scheduling [7].
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Process planning is a good method, and a lot of researches have been conducted to improve
the manufacturing sustainability. The milling experiments show that the energy consumption of
interchangeable machining processes can differ significantly, by at least 6% of the total energy
consumption of a machine in low loads and is likely to grow to 40% at higher loads [8]. On the other
hand, another method for saving energy is the implementation of control strategies that reduce energy
consumption during the idle periods of machine tools. It was also reported that the energy saving
potential is 10 to 25% through the reduction of the time used waiting or in the start-up mode [9].
However, most of the current process planning neglects control strategies, especially in the setup
planning and usually assumes the cutting power is constant in machining processes. In addition, the
current control strategies are simple and impractical. Most of them focus on the problem of “how to
reduce energy consumption”, while few have studied the problem of determining “when to implement
one certain control strategy” automatically. In the actual production, the decision-making process of
control strategies is randomly caused by operators’ subjectivity and experience.

To address the above issues, a sustainability evaluation method of process planning considering
energy-efficient control strategies has been developed. The approach focuses on single computer
numerical control (CNC) machine tool, and addresses dynamics in machining processes from the
following two aspects: (1) For the process planning, the control strategies will be considered at the
setup periods, and an energy-efficient decision-making mechanism is introduced by using random
forests; (2) sustainability is evaluated through considering the control strategies. The innovations of the
approach are summarized as (1) a bi-level energy-efficient decision-making mechanism is established
by using random forests and modified teaching–learning-based optimization (TLBO) algorithm to
select a proper control strategy for specific requirements; (2) the sustainability of process planning
considering different energy-efficient control strategies is evaluated.

The rest of the study is organized as follows. In Section 2, the literature on energy-efficient process
planning and energy-efficient control strategies of machine tools are reviewed. Then, four energy-efficient
control strategies of single CNC machine tool are proposed to reduce the energy consumption of machining
processes in Section 3. In Section 4, a bi-level energy-efficient decision-making mechanism is established
by using Random Forests to select the appropriate control strategies in different occasions. Based on the
energy-efficient control strategies, sustainability evaluation of process planning is presented in Section 5.
A case study and some discussions are described in Section 6. Finally, the conclusions and future work
are shown in Section 7.

2. Literature Review

2.1. Process Planning for Energy Conservation

Process planning is a manufacturing system function that translates design data into the
best method to manufacture a part. To reduce the energy consumption of machining processes,
different researchers studied energy-efficient process planning from different aspects. The work of
Dahmus and Gutowski has a major influence on process planning, and they presented a system-level
environmental analysis of machining processes [10]. The energy analysis showed that the energy
requirement of actual material removal can be smaller compared with the total energy of machine tool
operation. Based on time and energy consumption in an industrial process planning problem, a novel
energy analysis method integrating fuzzy simulation, neural network, and the genetic algorithm was
proposed to solve it [11]. Since performing machining processes with better energy efficiency will
significantly reduce the total industrial consumption of energy, many researchers introduced energy
consumption in process planning. Newman et al. presented a theoretical framework to validate the
introduction of energy consumption in the objectives of process planning for CNC machining [8].
Zhang and Ge proposed a machine tool oriented energy assessment approach to simplify the calculation
of energy consumption of process planning [12]. And Shojaeipour developed an automated evaluation
tool based on environmental standards to quantify the environmental impacts of a set of feasible
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manufacturing process plans [13]. A holistic production planning approach in a reconfigurable
manufacturing system with energy consumption and environmental effects was developed [14].

Except for the above researches, some researchers realized energy conservation through integrating
process planning and some other production methods, such as machine tool selection and scheduling.
An energy-saving optimization method that considers machine tool selection and operation sequence
for flexible job shops was proposed [15], and a Nested Partitions algorithm is utilized to solve the
model. An energy-aware mathematical model for job shops that integrates process planning and
scheduling was proposed by Dai et al. [16]. In addition, Wang et al. developed an innovative and
systematic approach for milling process planning and scheduling optimization [17]. Although many
methods about process planning have been established to achieve energy conservation, most of the
existing process planning methods neglect the influence of state control of machine tools on the energy
consumption of machining processes.

2.2. Energy-Efficient Control Methods of Machine Tools

Energy consumption of manufacturing processes is mainly from machine tools, so it is an effective
approach of energy conservation to realize the energy-efficient control of them. Through characterizing
the energy consumption of a mill, lathe, and injection molding machine by analyzing the background
runtime operations of machining (i.e. spindle, jog, coolant pump, computers, and fans, etc.), it is
observed that over 30% of the energy input into the system during machining is consumed by these
background processes. Therefore, one of the measures for saving energy is the implementation of
control strategies that reduce energy consumption during the idle periods of a machine. Newman
et al. suggested a theoretical framework for energy-efficient process planning, which includes
redesigning CNC machines and controllers from the aspect of control software [8]. The specific
research about control strategies of machine tools comes from Mouzon et al. [18]. They developed
several dispatching rules for the minimization of the energy consumption of manufacturing equipment.
Then, some researchers studied the problem from more complex aspects, such as closed-loop flow
shop plant [19], and stochastic arrival of jobs [5]. Recently, Yoon et al. gave a comprehensive review
of the state-of-the-art technologies for machine tools, mainly for the machining process, and they
concluded that control improvement of machine tools would effectively contribute to the overall energy
efficiency [20].

Considering the relevance of the production processes in a workshop, some researchers have
integrated control strategies of machine tools with the production scheduling from the aspect of single
machine tool or the whole flow-shop scheduling. For example, Yildirim and Mouzon proposed a
mathematical model to minimize energy consumption and reduce the total completion time of a
single machine with deterministic job arrival and service time, and the turning OFF/ON operation will
be conducted when the machine tool remains idle for a long period before the next job arrives [21].
Then, considering variable energy prices during one day, Shrouf et al. proposed a mathematical model
of making decisions at the machine level to determine the launch times for job processing, idle time,
when the machine must be shut down, “turning on” time, and “turning off” time [22]. Their model
can enable the operations manager to implement the least expensive production scheduling during a
production shift. In the aspect of flow-shop scheduling, an integrated model for processing parameter
optimization and flow-shop scheduling was developed, and three carbon-footprint reduction strategies
were employed to optimize the scheduling results, i.e., postponing strategy, setup strategy, and
processing parameter preliminary optimization strategy [23].

In conclusion, many researchers have proposed different methods to realize the energy-efficient
control of machine tools. However, most of the existing approaches focused on “how to reduce the
energy consumption”, and the problems of “when to control” and “which strategy to adopt” received
little attention. In addition, the setup processes of process planning may lead to the idle state of
a machine tool, so it is also a noteworthy problem of how to integrate the control strategies with
process planning.
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3. Energy-Efficient Control Strategies of Single CNC Machine Tool

3.1. The State Switching Methods of a CNC Machine Tool

According to the energy consumption curve of a CNC machine tool in Figure 1, it mainly contains
six states: downtime, standby, warm up, idle, air cutting, and cutting. At first, the machine tool is in
downtime state, and its power is 0. After its power on, it will be in the standby state. In this state, i.e.,
the off-working state, some modules of the machine tool are not ready, and only emergency services
are active. The machine tool cannot process a job in this kind of “sleeping” mode [5]. The power in the
standby state is denoted with Psb, which is generally lower than that of other states. Then, in an idle
state, i.e., the on-working state, the machine tool is ready to process a job once it has been clamped.
The power in idle state, denoted with Pid, is due to the activation of all its modules, which have to be
ready for processing a job. From the off-working state to the on-working state, the machine tool needs
to pass through the warm-up state, i.e., a transitory state in which a procedure is executed to make all
the modules suitable for processing. The duration and energy consumption of the warm-up procedure
are ∆τwu and ECwu. ECwu is generally greater than that of other states. For a certain CNC machine
tool, the duration and energy consumption of the warm-up procedure are constant. In the cutting
state, the machine tool is processing a job, and the requested power changes with different processes.
Before cutting a job, the machine tool usually goes through the air cutting process.
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Figure 1. The energy consumption curve of a computer numerical control machine tool.

The energy consumption of a CNC machine tool in different states is different. To reduce the total
energy consumption, the machine can be switched off or even shut down during the waiting interval.
The state switching procedure of a machine tool is illustrated in Figure 2. The transition between two
states can be triggered by some events, such as the setup process, and the arrival of the next batch.
When it completes a process and is waiting for the next process or the next job, it is not necessary to
keep all the modules active. The machine tool can be moved, with proper control, into the standby
state or even shutdown characterized by lower power. Nevertheless, the transition between different
states needs a period because the machine tool needs a certain reaction process.

As mentioned above, a machine tool needs to wait during the setup process of a job, and the
state of a CNC machine tool can be changed to reduce the total energy consumption. Since different
setup planning of a job will generate different waiting time in various scenarios, there are two state
switching methods:

1. Switching method: When the waiting interval for a machine tool is short, it can be switched
from the idle state to the standby state. The power will be reduced from Pid to Psb. We assume
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that the basic duration for completing the switching off and switching on is ∆τo f f−on. Since the
warm-up procedure needs energy consumption Ewu, it is assumed that the shortest time for
saving Ewu is ∆θo f f−on. So the critical time point is t∗o f f−on = max

{
∆τo f f−on, ∆θo f f−on

}
. Assume

that the waiting interval is twait. If twait > t∗o f f−on, the machining time of the machining process
will not be influenced by the switching method.

2. Switching–shutdown method: If the waiting interval is long, the machine tool can be switched
from the idle state to standby state, and then shut down to reduce the energy consumption.
The power will be reduced from Pid to 0. Here the machine tool will be shut down only
when the waiting interval is long enough, so it will not cause side effects for the machine tool.
Assume that the shortest duration for completing the shutdown and power on is ∆τshut−on.
Since the warm-up procedure needs energy consumption Ewu, it is assumed that the shortest
time for saving Ewu is ∆θshut−on. So the critical time point is t∗shut−on = max{∆τshut−on, ∆θshut−on}.
If twait > t∗shut−on, the machining time of the machining process will be not influenced by the
switching–shutdown method.
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Figure 2. The state switching procedure of a CNC machine tool.

3.2. The Energy-Efficient Control Strategies for Single CNC Machine Tool

As described in Section 2.1, most of the existing process planning methods neglect the influence of
state control of machine tools on the energy consumption of machining processes. The selection of state
switching methods is related to the setup time, and random forests are adopted to carry out the decision
making in Section 4. Although the increase in machine flexibility and setup in relationship with idle
consumptions is the clear trend [10], the setup process is still inescapable for large and complex parts.
Moreover, different setup planning of a job will generate different waiting intervals. So four different
control strategies are proposed to deal with various scenarios, as summarized in Table 1.

Table 1. Different control strategies of a computer numerical control machining tool.

Strategy Description Influence

No controller The machine tool will stay in the idle state. No influence

STSW Once the machine needs to wait, the switching method will be adopted. 1) Extend machining time;
2) Reduce energy consumption;

STSH Once the machine needs to wait, the switching–shutdown method will be adopted. 1) Extend machining time;
2) Reduce energy consumption;

STSS1

 If t∗o f f−on < twait
≤ t∗shut−on, adopt switching method

If twait > t∗shut−on, adopt switching− shutdown method
1) Reduce energy consumption;

STSS2

 If δ1 × t∗o f f−on < twait
≤ δ2 × t∗shut−on, adopt switching method

If twait > δ2 × t∗shut−on, adopt switching− shutdown method
(0 < δ1, δ2 < 1)

1) Extend machining time;
2) Reduce energy consumption;

Different control strategies have different effects on machining time and energy consumption. It is
obvious that the “no controller” strategy will not affect the total machining time and energy consumption.
The Strategy of switching (STSW) and Strategy of shutdown (STSH) will reduce energy consumption,
but they may affect the machining time. STSW and STSH are two extreme strategies. The strategy of
switching/shutdown 1 (STSS1) is a compromise solution, which has no effect on the total machining time
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and will reduce the total energy consumption. In STSS1, t∗o f f−on and t∗shut−on are critical time points, but
sometimes we want to lower these two critical time points and extend the waiting interval to achieve a
larger reduction of energy consumption, so two parameters δ1 and δ2 (0 < δ1, δ2 < 1) are introduced into
the time constraint, i.e., the Strategy of switching/shutdown 2 (STSS2). But STSS2 may have a larger effect
on the machining time. In a different situation or for different requirements, different strategies will be
adopted to control the machining time and energy consumption. The decision making mechanism of
different control strategies will be discussed in Section 4.

4. Bi-Level Energy-Efficient Decision-Making Mechanism Using Random Forests

Since four control strategies are proposed in Section 3.2, some other problems need to be
studied, such as, whether to control or not, when to control and which control strategy to adopt.
Therefore, a bi-level energy-efficient decision-making mechanism is proposed by using random forests
to address the above problems. And the framework of the decision-making mechanism is illustrated
in Figure 3. The energy-efficient decision-making mechanism mainly contains two parts: control
strategy selection and the control parameter (δ1 and δ2) optimization. The upper-level is about
decision-making of control strategies using random forests. Random forests, introduced by Breiman [24],
have been applied successfully in various biological problems [25], image classification, [26], etc.
The random forests algorithm is an ensemble method which uses recursive partitioning to generate
many trees and then aggregates the results. Compared with the decision tree classifier, random
forests have better classification accuracy, and are more tolerant to noise and less dependent on
the training datasets [25]. The lower-level is about parameter optimization based on a modified
teaching–learning-based optimization (TLBO) algorithm to obtain the optimal control parameter δ1 and
δ2 if the STSS2 strategy is chosen.
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The main components of the energy-efficient decision-making mechanism are described in detail
as follows.

4.1. Control Strategy Selection Using Random Forests

For the control strategy selection problem, there are many factors which will affect the selection
results, such as the weight of each indicator, setup time, and parameters of a machine tool. In summary,
the factors can be classified into three types: human factors, process factors, and machine factors. For the
first type, it mainly includes the weight of each indicator, i.e., ω1,ω2,ω3, as shown in Equation (26).
The process factors come from the number of setup NS and the setup time. For the convenience of



Sustainability 2019, 11, 3060 7 of 19

describing the setup time uniformly, the maximum, the minimum, and the average of the setup time
are regarded as the feature factors of the setup time, which are represented by STmax, STmin, and STave.
The machine factors are the inherent parameters of a machine tool, i.e., the critical time points t∗o f f−on

and t∗shut−on, the standby power Psb, idle power Pid, and the energy consumption of the warm-up
procedure ECwu. These factors will be considered for the control strategy selection, and be treated as
the feature parameters x to train Random Forests, as shown in the following:

x = 〈ω1,ω2,ω3, NS, STmax, STmin, STave, t∗o f f−on, t∗shut−on, Psb, Pid, ECwu
〉 , (1)

STmax = max
1≤i≤m

STi, (2)

STmin = min
1≤i≤m

STi, (3)

STave =

∑m
i=1 STi

m
, (4)

t∗o f f−on = max
{
∆τo f f−on, ∆θo f f−on

}
, (5)

t∗shut−on = max{∆τshut−on, ∆θshut−on}, (6)

where STi means the ith setup time which can be obtained through the history data.
The random forests algorithm is an ensemble method, and each tree is independently constructed

using a bootstrap sample of the training data. For each tree, two-thirds of the training samples are used
for tree construction, and the remaining one-third of the samples are used to test the tree. This left out
data, named “Out of Bag (OOB)”, is used to calibrate the performance of each tree. The construction
of the random forests contains three steps, i.e., data sampling, construction of decision trees, and
formation of the forest.

4.1.1. Data Sampling to Generate Training Dataset

In random forests, the bagging method is used for data sampling in tandem with random feature
selection [24]. There are two reasons for using the bagging method. The first is that the use of bagging
seems to enhance accuracy when random features are used. The second is that bagging can be used to
give ongoing performance estimates of the combined ensemble of trees, as well as estimates for the
strength and correlation. Each new training set is drawn, with replacement, from the original training
set. Then a tree is grown on the new training set using random feature selection, and the trees grown
are not pruned. In each bootstrap training set, about (1− 1/N)N of the instances are left out, where N
is the number of the total original training sets.

4.1.2. Construction of Decision Trees

The random forests with random features are formed by selecting at random, at each node,
a small group of input variables to split on. Grow the tree using the classification and regression tree
(CART) methodology to maximum size and do not prune. Denote this procedure by Forest-RI [24].
Here, the number of randomly selected feature factors, K, is a parameter of the algorithm that is constant
and a priori fixed. The Forest-RI decision tree induction procedure can be summarized as below:

1. Let N be the size of the original training sets. N instances are randomly drawn with replacement,
to form the bootstrap sample, which is then used to build a tree.

2. Let M be the dimensionality of the original feature factor space, and M = 12 in the energy-efficient
decision-making problem. Set a number K ∈ [1, M] for each node of the tree, so that a subset of K
features is randomly drawn without replacement, among which the best split is then selected.

3. Randomly select K features. The tree is thus built to reach its maximum size. No pruning
is performed.
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For the random forests, the CART methodology is used to grow the decision-making tree.
The CART monograph focuses most of its discussion on the Gini rule [27], which is similar to the
better known entropy or information-gain criterion. The energy-efficient decision-making problem
mentioned above is a classification problem, and the “Gini measure of impurity” of a classification
sample A can be derived from Equation (7). The Gini measure of impurity of this split can be obtained
through Equation (8). The split with the lowest Gini measure of impurity will be adopted, and the
parent node P will be divided into left and right children nodes.

Gini(A) = 1−
C∑

i=1

p2
i , (7)

Ginisplit(P) =
|A1|

|PS|
·Gini(A1) +

|A2|

|PS|
·Gini(A2), (8)

where pi is the probability of the samples belonging to the strategy Si in A. C means the number of
strategies in sample A and C ∈ [1, 5]. PS represents the parent sample.

4.1.3. Formation of the Forests

Through integrating all the above classifiers, the random forests can be formed to conduct the
energy-efficient decision-making process. The final decision-making result can be obtained via the
majority voting procedure:

H(x) = argmax
y

N∑
i=1

I(hi(x) = y), (9)

where H(x) represents the assemble classification model, and I(◦) is the indicative function. hi means
the ith prediction tree, and y donates the output strategy, i.e., STSW, STSH, STSS1, and STSS2.

4.1.4. Performance Indicators of Random Forests

To evaluate the classification effectiveness of random forests, the out-of-bag error estimate is
used, and three performance indicators are developed, i.e., accuracy, misclassification error, geometric
mean. The out-of-bag estimate is based on combining only about one-third as many classifiers as in
the ongoing main combination. It has been proved that the out-of-bag estimates are near-optimal in
terms of the classification accuracy of the corresponding ensembles [28]. The performance indicators
of the Random Forests are shown as follows:

Accuracy (ACC): the total percentage of correct classification strategies:

ACC =

∑4
i=1 TRi∑4

i=1(TRi + FAi)
(10)

where TRi and FAi represent the correct and false classification number of the ith control strategies,
respectively. ACC is used to reflect the overall classification accuracy, and the higher the accuracy is,
the better the algorithm is.

Misclassification Error (ME): the maximal percentage of the misclassification error of the four strategies:

ME = max
1≤i≤4

FAi
TRi + FAi

(11)

ME can embody the classification accuracy of each control strategy.
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Geometric mean (G-mean): the geometric mean of the accuracies of the four control strategies:

G−mean =
4

√√√ 4∏
i=1

TRi
TRi + FAi

. (12)

G−mean can reflect the classification capacity of imbalance dataset of the four strategies.

4.2. Control Parameter Optimization of STSS2 Based on a Modified TLBO Algorithm

If the STSS2 strategy is chosen, there are also two parameters (δ1 and δ2) which need to be
optimized. To obtain the optimal control parameters, a modified TLBO algorithm which combines
the TLBO algorithm with mutation operation is proposed. The objective is the relative sustainability
index, and the input parameters are δ1 and δ2. The TLBO algorithm, proposed by RaoSavsani and
Vakharia [29], was inspired from the philosophy of teaching and learning. TLBO has emerged as one
of the simple and efficient techniques for solving single-objective benchmark problems and real life
application problems in which it has been empirically shown to perform well on many optimization
problems. The TLBO algorithm is based on the effect of the influence of a teacher on the output
of leaners in a class which is evaluated in terms of results or grades. Like other nature-inspired
algorithms, the TLBO algorithm is also a population based method which uses a population of solutions
to proceed to the global solution. The mutation operator is applied with an assigned probability Pm.
The pseudo-code for TLBO algorithm for the control parameter optimization is shown in Figure 4.
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5. Sustainability Evaluation of Process Planning Considering Energy-Efficient Control Strategies

Process planning is an important manufacturing system function, which determines the optimal
process plan (i.e., operations and their sequence, within the precedence relationship constraints)
and manufacturing resources (machine tool configuration and cutting tool). For process planning
of a single machine tool, the machining processes of parts are carried out on a CNC machine tool.
Since the proposed control strategies will affect the energy consumption and machining time, the
sustainability of process planning considering energy-efficient control strategies needs to be evaluated.
The energy consumption, relative delay time, and machining cost of process planning will be taken
into consideration. Then the sustainability evaluation is carried out according to these three indicators.
Since the computation process of energy consumption has been described in our previous work [30],
the same will not be repeated here.

5.1. Relative Delay Rate and Machining Cost Evaluation of Process Planning

When a control strategy is adopted, the total machining time may be postponed if the job needs to
wait for the machine tool to be ready from downtime state or standby state. Then the relative delay
time (RDT) is used to evaluate the influence of control strategies on the machining time:

RDT =
the total delay time

the total processing time
=

∑m
i=1

(
ta
i − ts

i

)
∑m

i=1
∑ni

j=1

(
tec
i, j − t jp

i, j

) , (13)

where m, ni represent the number of setups and the number of processes of the ith setup. ta
i , ts

i mean

the start time considering control strategies and no controler of the ith setup, respectively. tec
i, j and t jp

i, j
denote the End process time and Start machining time of the jth process of the ith setup.

According to the RDT calculation method, the influence of each control strategy will be different.
For STSS1, the delay time is zero. For STSW and STSH, the delay time can be obtained through
Equations (14) and (15), respectively. For the STSS2 strategy, if δ1 × t∗o f f−on < twait

≤ δ2 × t∗shut−on,

the delay time can be calculated by using Equation (14). And if twait > δ2 ∗ t∗shut−on, Equation (15) can be
used to obtain the delay time.

DT =
m∑

i=1

max
{
0, t∗o f f−on − twait

i

}
, (14)

DT =
m∑

i=1

max
{
0, t∗shut−on − twait

i

}
. (15)

Except for energy consumption, there are many factors which will influence the machining cost,
such as machine use cost, tool use cost, and setup cost [31]. The cost evaluation per part of process planning
is listed in Table 2. This cost model includes setup cost, tool use cost (function of cutting parameters),
and amortization of machinery which are associated with the volume of production and productivity.

Table 2. Machining cost evaluation per part of process planning.

Type Description Cost Evaluation Notation

Machine use
cost

Cost of machine tool
use

MUC = TI
.
n×L×TL

[32] (16) TI: total investment
TL: total lifetime
L: load factor
.
n: production rate hourly

Tool use cost Tool use cost of
processes

TUC =
m∑

i=1

ni∑
j=1

(
tec
i, j − t jp

i, j

)
×Ctool

i, j /Ttool
i, j [31] (17)

Ttool
i, j =

Ci, j

πxDx
i, jn

x+y
i, j fz

y
i, jz

y
i, jap

z
i, j

(18)

Ctool
i, j : the initial cost of a cutting tool

Ttool
i, j : the tool lifetime, which can be

obtained by Equation (18) for milling.

Setup cost Fixture cost of setup
processes

STC =
m∑

i=1

TFCi.
n×FLi

(19) TFCi: total fixture cost
FLi: fixture lifetime

Total cost The total cost per part TC = MUC + TUC + STC (20) /
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5.2. Sustainability Evaluation of Process Planning

For process planning considering the energy-efficient control strategies, its energy consumption,
relative delay time, and total machining cost are different. To obtain a comprehensive evaluation, the
sustainability of process planning is presented. Since the above indicators have different magnitudes,
normalization of them is primary. A suitable normalization schema that normalizes the objective
functions by the differences of them in the Nadir and Utopia points is employed [33]. The Utopia point
zU

i provides the lower bound of the ith indicator and can be obtained individually.

zU
i = fi

(
xi
)
= min1≤i≤I

{
( fi(x))

}
. (21)

The upper bound is obtained from the Nadir point zN
i .

zN
i = fi

(
xk

)
= max1≤i≤I

{
( fi(x))

}
, (22)

where I is the total number of indicators.
Then, the three indicators can be normalized individually as follows:

NEC =
zN

EC − EC

zN
EC − zU

EC

, (23)

NDT =
zN

DT −RDT

zN
DT − zU

RDT

, (24)

NMC =
zN

MC − TC

zN
MC − zU

MC

. (25)

The relative sustainability index (RSI) of process planning can be obtained through integrating
the three indicators, which is a weighted sum of NEC, NDT, and NMC, and wk is a weight defined
by operators

RSI = w1·NEC + w2·NDT + w3·NMC, (26)

w1 + w2 + w3 = 1. (27)

6. A Case Study

To verify the proposed method, a CNC 3-axis vertical milling machine tool is chosen as an
illustrative example. The information of the machine tool is listed in Table 3, which includes t∗o f f−on,

t∗shut−on, Psb, Pid, ECwu, TI, TL, and
.
n. The information of the available cutting tools is also listed in

Table 3, and there are nine types of cutting tools. In addition, a pedestal part is used to conduct the
process planning and control strategy selection. The features of the part are illustrated in Figure 5,
which contains eleven features. The details of each feature are shown in Table 4.
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Table 3. The information of the CNC machine tool and the available cutting tools.

Machine
Tool

t∗off−on t*
shut−on Psb/W Pid/W ECwu/kJ TI TL/min

.
n /(unit/h)

12 20 859.4 2580.7 618.5 10000000 3804000 0.07

Available
cutting
tools

No Types Ctool

T1 Drill 1 200
T2 Drill 2 400
T3 Drill 3 600
T4 Tapping tool 500
T5 Mill 1 500
T6 Mill 2 600
T7 Mill 3 700
T8 Ream 300
T9 Boring tool 800Sustainability 2019, 11, x FOR PEER REVIEW 13 of 20 

 

 

Figure 5. Features of the pedestal part. 

Table 4. Operations and candidate machining resources of the part. 

Feature Description 
Operation 

(Oper_id) 
TAD CT candidates 

Volume 

(cm3) 

𝐹1 A planar surface Milling (𝑂𝑝1) +z 𝑇5, 𝑇6, 𝑇7 280 

𝐹2 A pocket Milling (𝑂𝑝2) +z 𝑇6, 𝑇7 50.4 

𝐹3 
Two pockets arranged 

as a replicated feature 
Milling (𝑂𝑝3) +x 𝑇5, 𝑇6, 𝑇7 1.5 

𝐹4 
Four holes arranged in 

a replicated feature 

Drilling (𝑂𝑝4) +z, −z 𝑇2 9.47 

Tapping (𝑂𝑝5) +z, −z 𝑇4 0.4 

𝐹5 A step Milling (𝑂𝑝6) +x, −z 𝑇5, 𝑇6 5.7 

𝐹6 A planer surface Milling (𝑂𝑝7) −A 𝑇5, 𝑇6, 𝑇7 15.7 

𝐹7 A compound hole 

Drilling (𝑂𝑝8) −A 𝑇2, 𝑇3 106.18 

Reaming (𝑂𝑝9) −A 𝑇8 20.1 

Boring (𝑂𝑝10) −A 𝑇9 15.4 

𝐹8 A boss Milling (𝑂𝑝11) −x 𝑇6, 𝑇7 3.3 

𝐹9 A hole 
Drilling (𝑂𝑝12) −x 𝑇2 1.76 

Tapping (𝑂𝑝13) −x 𝑇4 0.6 

𝐹10 A hole Drilling (𝑂𝑝14) −A 𝑇1 0.78 

𝐹11 A step Milling (𝑂𝑝15) −z 𝑇5, 𝑇6 25 

In different scenarios, different planning will be adopted. Based on the above features and their 

constraints, three different operation plannings can be obtained: 

Planning 1: 𝑂𝑝1->𝑂𝑝2->𝑂𝑝3->𝑂𝑝15->𝑂𝑝6->𝑂𝑝4->𝑂𝑝5->𝑂𝑝7->𝑂𝑝8->𝑂𝑝9->𝑂𝑝10->𝑂𝑝14->𝑂𝑝11->𝑂𝑝12->𝑂𝑝13; 

Planning 2: 𝑂𝑝1->𝑂𝑝2->𝑂𝑝15->𝑂𝑝11->𝑂𝑝12->𝑂𝑝13->𝑂𝑝6->𝑂𝑝7->𝑂𝑝8->𝑂𝑝9->𝑂𝑝10->𝑂𝑝14->𝑂𝑝4->𝑂𝑝5->𝑂𝑝3; 

Planning 3: 𝑂𝑝1->𝑂𝑝15->𝑂𝑝6->𝑂𝑝7->𝑂𝑝8->𝑂𝑝9->𝑂𝑝10->𝑂𝑝14->𝑂𝑝11->𝑂𝑝12->𝑂𝑝13->𝑂𝑝4->𝑂𝑝5->𝑂𝑝2->𝑂𝑝3. 

For each planning, the information is listed in Table 5, which includes the weights of each 

indicator, the setup number, and the features of the setup time. The weight of each indicator is 

determined according to the energy consumption requirement, processing urgency, and machining 

cost requirement. Under different processing conditions, the weight of each indicator is different. For 

each planning, the energy-efficient decision-making mechanism is conducted to choose a proper 

strategy. In addition, the energy consumption, relative delay time, and cost of each process planning 

and its sustainability is also analyzed and compared in the following sections to verify the proposed 

method. 

  

A

F1
y z

x F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

Figure 5. Features of the pedestal part.

Table 4. Operations and candidate machining resources of the part.

Feature Description Operation
(Oper_id) TAD CT Candidates Volume (cm3)

F1 A planar surface Milling (Op1) +z T5, T6, T7 280
F2 A pocket Milling (Op2) +z T6, T7 50.4

F3
Two pockets arranged as

a replicated feature Milling (Op3) +x T5, T6, T7 1.5

F4
Four holes arranged in a

replicated feature
Drilling (Op4) +z, −z T2 9.47
Tapping (Op5) +z, −z T4 0.4

F5 A step Milling (Op6) +x, −z T5, T6 5.7
F6 A planer surface Milling (Op7) −A T5, T6, T7 15.7

F7 A compound hole
Drilling (Op8) −A T2, T3 106.18
Reaming (Op9) −A T8 20.1
Boring (Op10) −A T9 15.4

F8 A boss Milling (Op11) −x T6, T7 3.3

F9 A hole
Drilling (Op12) −x T2 1.76
Tapping (Op13) −x T4 0.6

F10 A hole Drilling (Op14) −A T1 0.78
F11 A step Milling (Op15) −z T5, T6 25

In different scenarios, different planning will be adopted. Based on the above features and their
constraints, three different operation plannings can be obtained:

Planning 1: Op1->Op2->Op3->Op15->Op6->Op4->Op5->Op7->Op8->Op9->Op10->Op14->Op11->Op12->Op13;
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Planning 2: Op1->Op2->Op15->Op11->Op12->Op13->Op6->Op7->Op8->Op9->Op10->Op14->Op4->Op5->Op3;
Planning 3: Op1->Op15->Op6->Op7->Op8->Op9->Op10->Op14->Op11->Op12->Op13->Op4->Op5->Op2->Op3.
For each planning, the information is listed in Table 5, which includes the weights of each indicator, the setup

number, and the features of the setup time. The weight of each indicator is determined according to the energy
consumption requirement, processing urgency, and machining cost requirement. Under different processing
conditions, the weight of each indicator is different. For each planning, the energy-efficient decision-making
mechanism is conducted to choose a proper strategy. In addition, the energy consumption, relative delay time,
and cost of each process planning and its sustainability is also analyzed and compared in the following sections to
verify the proposed method.

Table 5. The information about each planning.

Planning ω1 ω2 ω3 NS STmax STmin STave

Planning 1 0.74 0.18 0.08 4 24.89696 7.407807 15.70101
Planning 2 0.32 0.51 0.17 6 21.02893 5.420382 12.57087
Planning 3 0.24 0.36 0.4 5 17.19239 4.235338 10.03546

6.1. Control Strategy Decision-Making Using Random Forests

To conduct the control strategy selection, 200 sample data are collected from an actual workshop, which are
partly listed in Table 6. The proposed energy-efficient control strategies are represented by numbers, and 1–4
represent STSS1, STSS2, STSW, and STSH, respectively.

Table 6. Sample data for the control strategy selection.

No ω1 ω2 ω3 NS STmax STmin STave t*
off−on t*

shut−on Psb Pid ECwu Strategy

1 0.928 0.055 0.017 6 19.0 4.6 9.9 12 20 859.4 2580.7 618.5 4
2 0.758 0.161 0.081 9 21.9 5.6 14.0 9 23 790.6 2347.8 444.1 3
3 0.471 0.325 0.204 2 23.3 7.9 16.6 13 19 902.4 2408.9 679.0 2
4 0.185 0.412 0.403 2 28.6 5.1 16.5 11 18 890.8 2879.2 570.2 2
5 0.244 0.677 0.079 8 25.6 5.3 16.7 9 21 723.7 2318.3 396.6 1
6 0.043 0.749 0.207 5 19.0 7.6 14.5 13 20 1007.2 2407.1 771.6 1
7 0.295 0.291 0.413 9 28.7 7.3 17.5 10 18 934.7 2181.3 665.2 2
8 0.162 0.331 0.507 9 28.6 8.3 18.0 12 22 977.7 2729.8 714.9 2
9 0.415 0.136 0.448 5 19.8 7.5 15.7 12 20 859.4 2580.7 618.5 2
10 0.632 0.097 0.271 10 18.8 7.2 12.6 9 23 790.6 2347.8 444.1 3
11 0.742 0.140 0.118 1 25.9 8.9 18.9 13 19 902.4 2408.9 679.0 3
12 0.978 0.013 0.009 7 26.6 5.3 17.8 11 18 890.8 2879.2 570.2 4
13 0.695 0.264 0.040 3 21.7 4.0 14.7 9 21 723.7 2318.3 396.6 3
14 0.749 0.011 0.240 8 26.1 8.0 15.5 13 20 1007.2 2407.1 771.6 3
15 0.620 0.096 0.284 6 21.2 4.4 12.0 10 18 934.7 2181.3 665.2 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
186 0.818 0.001 0.181 7 19.8 6.6 11.6 9 23 790.6 2347.8 444.1 4
187 0.644 0.145 0.210 7 28.2 9.2 20.0 13 19 902.4 2408.9 679.0 3
188 0.747 0.028 0.225 6 28.0 9.4 16.6 11 18 890.8 2879.2 570.2 3
189 0.995 0.002 0.003 3 16.1 5.4 12.0 9 21 723.7 2318.3 396.6 4
190 0.063 0.722 0.214 5 28.0 8.2 16.6 13 20 1007.2 2407.1 771.6 1
191 0.007 0.314 0.679 7 19.4 8.8 12.8 10 18 934.7 2181.3 665.2 2
192 0.593 0.230 0.177 7 19.3 6.7 13.7 12 22 977.7 2729.8 714.9 3
193 0.417 0.498 0.085 7 18.8 7.6 12.6 12 20 859.4 2580.7 618.5 2
194 0.979 0.005 0.015 4 28.1 6.2 15.1 9 23 790.6 2347.8 444.1 4
195 0.431 0.253 0.316 7 29.3 4.7 18.7 13 19 902.4 2408.9 679.0 2
196 0.719 0.076 0.205 8 22.1 8.4 16.9 11 18 890.8 2879.2 570.2 3
197 0.356 0.535 0.109 6 25.2 6.3 14.6 9 21 723.7 2318.3 396.6 1
198 0.725 0.141 0.134 5 20.6 7.1 15.5 13 20 1007.2 2407.1 771.6 3
199 0.889 0.039 0.072 8 15.4 7.8 9.1 10 18 934.7 2181.3 665.2 4
200 0.277 0.036 0.687 4 29.3 7.1 18.1 12 22 977.7 2729.8 714.9 2

Since the accuracy of random forests is related to some control parameters, such as the number of trees and
the number of selected features, these parameters are tuned by using the above sampling data. The range of the
number of trees is set 50 to 250, and the number of selected features is 1 to 12. The OOB error rate is used to
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evaluate the accuracy of different parameter combinations, which is shown in Figure 6. From the results, it can be
clearly seen that the best number of trees is 150, and the best number of selected features is three. The classification
accuracy of the sampling data will be worse when the number of features increases. Moreover, the change in
accuracy is very small when the number of trees exceeds 150. However, the running time will increase with the
rise in the number of trees.Sustainability 2019, 11, x FOR PEER REVIEW 15 of 20 
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error rate of different parameters; (b) Running time of different parameters.

To verify the efficiency of random forests for the proposed problem, artificial neural network (ANN) and
support vector machine (SVM) are compared with random forests from four aspects, i.e., ACC, ME, G-mean,
and running time. The running experiments are conducted 10 times, and the results (ACC, ME, and G-mean)
are the averages of the ten experiments. But the running time is the total time of running 10 experiments.
The comparison of these three algorithms for the same sampling data is shown in Figure 7. It can be seen that
the ACC of random forests is the best, which reaches 0.975, while that of ANN and SVM are 0.9475 and 0.95,
respectively. The result of the G-mean is almost the same with the ACC, and that of random forests is 0.9672.
For ME, the results of random forests and SVM are the same, which means that their classification accuracies
change little for different strategies. In terms of running time, the best algorithm is SVM, which can reach 0.0305.
Random forests rank second to SVM, and its running time is 0.334 for 10 experiments. ANN is not suitable for the
proposed problem, because its running time is 11.2s. In conclusion, the operational efficiency of SVM is the best
for the proposed problems, while the best accuracy is from random forests. And the running time of random
forests is also acceptable, which proves that the random forests algorithm is an efficient method for the proposed
decision-making problem.
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and support vector machine (SVM).
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For the three process planning methods mentioned above, the proposed bi-level energy-efficient
decision-making mechanism is used to obtain the strategy and control parameters. The proper strategies
for the three planning are STSW, STSS1, and STSS2, respectively. For Planning 3, the modified TLBO algorithm is
used to obtain the optimal strategy parameters: δ1 = 0.64 and δ2 = 0.76.

6.2. Sustainability Evaluation of Process Planning and Comparison

Through the proposed method, the energy consumption, relative delay time, and machining cost of different
process planning have been obtained, as shown in Table 7. In addition, the existing research methods, which
usually assumed that the power of machine tools is constant, are used to make a comparison, i.e., “No strategy”.
It can be seen that the energy consumption of process planning considering control strategies decreases obviously.
The decline proportion of energy consumption reaches 25%, which proves that the control strategies are efficient
for energy conservation. In terms of the delay time, some strategies will postpone the machining time, such as
STSW and STSS2. But the delay time is not obvious compared with the total processing time. For the machining
cost, the changes in different plannings are not obvious. And the total cost has a reverse relationship with RDT
because RDT is directly related to the machining time. In a word, energy-efficient control strategies are efficient for
energy conservation. Although STSW and STSS2 may lead to the machining postponement, their effects are small.
For urgent machining tasks, STSS1 can be used to reduce energy consumption and will not change the makespan.

Table 7. Sustainability evaluation of different process planning.

Category Planning Strategy EC RDT/% TC RSI

Using
strategy

Planning 1 STSW 16453.1 0.56 2835.1 0.4133
Planning 2 STSS1 18206.5 0 2798.4 0.5527
Planning 3 STSS2 15880.8 0.831 2841.9 0.6466

No strategy
Planning 1 / 22701.7 0 2824.1 /
Planning 2 / 24655.3 0 2798.4 /
Planning 3 / 20746.9 0 2821.6 /

Moreover, the influence of different strategies is disparate, especially for energy consumption. The largest
reduction of energy consumption is from Planning 2, which reaches 6448.8 kJ (26.2%). In addition, the control
strategy will change our decision-making of process planning. If control strategies are not adopted, Planning 3 is
the best choice under the consideration of energy consumption and machining cost, and Planning 1 ranks second.
However, when using the control strategies, Planning 2 is second from the comparison of RSI.

In addition, the original energy consumption and saving energy consumption of different setup processes
can be obtained, as shown in Figure 8. For Planning 1, the energy consumption of Setup 2 is the largest, and energy
conservation is also the largest considering the STSW strategy. The energy saving proportions of Setup 1, Setup 2,
and Setup 3 are similar, which are 36%, 50%, and 43%, respectively. The results also show that a larger setup time
will generate more energy saving for the STSW strategy, because it causes a longer waiting time of the machine
tool. For Planning 2, the largest energy consumption is mainly from Setup 2, and its energy conservation is also
the largest, which reaches 81%. Since the setup time of Setup 1, 5, 6 are too short, no strategy will be applied.
For Planning 3, the largest energy consumption comes from Setup 2, and its energy-saving proportion can reach
77%. Energy conservation of Setup 5 ranks second to that of Setup 2, which is 37%. In terms of the total energy
saving proportions, Planning 1 is the best, which can verify that the STSW is better than STSS1 and STSS2 in the
aspect of energy saving.
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Figure 8. Original energy consumption and energy conservation for the three plannings. (a) Energy
consumption of Planning 1; (b) Energy consumption of Planning 2; (c) Energy consumption of Planning 3.

6.3. Discussions

In this study, three indicators are adopted to evaluate the sustainability of process planning considering
energy-efficient control strategies of single CNC machine tool. The case study shows that the reduction in energy
consumption reaches 25%, compared with traditional process planning, which proves that the control strategies
are efficient for the reduction of energy consumption. Moreover, a bi-level energy-efficient decision-making
mechanism is proposed by using random forests to address the selection of control strategies. The accuracy of
the classification results reaches 97.5% and is better than some common algorithms, such as ANN and SVM.
The running time of ten experiments is 0.334 s, which shows that random forests can also be suitable for the
classification problems in the mechanical engineering field.

Furthermore, the proposed sustainability evaluation method can be used in the computer-aided process
planning (CAPP), and the control strategies can be integrated into numerical control (NC) codes of CNC
machine tools. Then the energy consumption of machine tools can be reduced automatically, which has a certain
application value for energy consumption reduction of manufacturing processes. Furthermore, the proposed
energy-efficient control methods can be used in some other production processes, such as production scheduling
and logistics management.

In addition, there are also some drawbacks in our approach. On the one hand, it is not practical for operators
to provide the weights of indicators directly as the input of the energy-efficient decision-making mechanism. In the
actual production, many factors will influence decision-making, such as policies and regulations, delivery date,
production budget, and production quality. It is vital to establish the relationship between the weights and
production factors. On the other hand, there are many factors which are used as the inputs of random forests,
and the importance degrees of different factors need to be analyzed to reveal the relationship between the factors
and the decision-making results in the future research.
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7. Concluding Remarks

In this study, a sustainability evaluation method of process planning considering energy-efficient control
strategies has been developed. First, according to the energy consumption curve of machining processes,
four energy-efficient control strategies of a single CNC machine tool are proposed. Then, a bi-level energy-efficient
decision-making mechanism by using the integration of random forests and the TLBO algorithm is established
to select the appropriate control strategy on different occasions. Third, sustainability evaluation of process
planning is established. Finally, a pedestal part machined by a CNC 3-axis vertical milling machine tool is used
to verify the proposed methods. The results show that the decline proportion of energy consumption reaches
25%, which proves that the control strategies are efficient for energy consumption reduction. Through using
the random forests, the accuracy of the classification results reaches 97.5%, which is better than some common
algorithms, such as ANN and SVM. The running time of ten experiments is 0.334 s, which shows that random
forests can also be suitable for the classification problems in the manufacturing engineering field.

The proposed approach in this study combines the energy-efficient control strategies with process planning
of single CNC machine tools, which can improve the energy saving effectiveness of the whole machining processes.
The proposed sustainability evaluation method can be embedded into CAPP, and the control strategies can be
integrated into the NC codes of a CNC machine tool. Then the energy consumption of machine tools can be
reduced automatically, which has a certain application value for energy consumption reduction of manufacturing
processes. In addition, the proposed energy-efficient control methods can be used in other production processes,
such as production scheduling and logistics management.

Future work includes the application research of the control strategies in CAPP and NC code generation
process to realize the energy-efficient control of CNC machine tools, which has a good application prospect.
Moreover, many factors influence the control strategy selection and application, such as inertia, warmup, sequential
setups, or safety issues, but the importance degree of each factor is different. The importance analysis should be
conducted to remove unimportant factors.
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