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Abstract: In the face of severe water pollution, all provinces and cities in China have actively invested
in water environment management funds driven by the goals of national energy conservation and
emissions reduction. However, due to differences in natural environment, economic and technological
levels, industrial structure, and other aspects in provinces and cities, their water environment
management effects are also different across time and space. Under economic development and
environmental regulation policies, it can be seen that the change in industrial GDP is not completely
consistent with that of industrial wastewater discharge. How to improve desirable outputs and
reduce undesirable outputs under the limited investment in water pollution control are key issues
when investigating the efficiency of industrial water pollution control. This study uses the Dynamic
SBM (Slacks-Based Measure) model to assess wastewater resources for research samples covering
the 30 regions of China. There are two output variables, two input variables, and one carry-over
variable. The output variables are industrial wastewater treatment and industrial output, the two
input variables are industrial water consumption and facility operation cost, and the carry-over
variable is industrial waste. This study concludes with implications for theory research, as these
variables may lead to a better understanding and merging with the input variables, output variables,
and carry-over variable of recent studies. The empirical results show that from the efficiency rank
changes of the 30 regions for 2011–2015, regions with higher industrial output do not appear to have
improved versus other regions, such as for Shandong, Guangdong, Jiangsu, Qinghai, and Zhejiang.
The 30 regions’ efficiency scores show some volatility, with 13 regions’ efficiency score volatility
clustering close to 0, like Beijing, Chongqing, Shandong, Guangdong, and Sichuan. In contrast,
for Anhui, Inner Mongolia, Zhejiang, and Xinjiang, their efficiency scores fell more than other regions
in this period and thus should adjust their input/output variables to increase their efficiency scores.
This study further presents that many lower-/middle-/high-industrial output regions do not achieve
a balance between industrial output and industrial wastewater treatment. How to find a balance
between these two factors for any region is a vitally important issue for industrial wastewater
treatment policy makers. Under such a circumstance, an industrial output region may not actually be
highly efficient at doing this.

Keywords: dynamic DEA (Data Envelopment Analysis); SBM; water pollution; environment; efficiency

1. Introduction

Industry plays an important role in promoting China’s economic development. In 2015,
the industrial GDP of 23,518 trillion yuan was 34 times as much as the 690.47 billion yuan in
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1990, accounting for 35.4% of annual GDP. Between 1990 and 2015, the average industry contribution
rate to GDP was 48.88%, far greater than that of other industries. However, the relatively low level
of industrial technology in China has resulted in high consumption of resources, greater pollution
emissions, and very serious environmental pollution.

For a long time, water pollution control and its treatment have been one of the key tasks of China’s
environmental protection policy. From 2000 to 2015, China’s investment into wastewater treatment
increased by 60.41%. At the same time, total discharge of industrial wastewater showed a downward
trend at an average of 22.17 billion tons, accounting for 39% of the average total wastewater discharge
of 56.978 billion tons. Although water pollution control policies have played a role in preventing
further deterioration of water pollution, water pollution incidents have occurred frequently in recent
years. According to the information management system of public health emergencies from 2004 to
2015, 126 water pollution incidents were reported in 23 provinces, along with 16,571 cases and three
deaths. Among them, the main cause of pollution is industrial wastewater pollution and household
waste pollution. As industrial water pollution has a great impact on the environment and the health of
residents, comprehensive treatment of industrial wastewater has become one of the major problems to
be targeted for an urgent solution.

It is worth noting that, although investment in wastewater treatment in China from the years
2000–2015 has improved, the proportion of such investment in industrial pollution sources declined
from 41.78% in 2001 to 15.30% in 2015. With limited investment in industrial wastewater treatment,
the efficiency of such treatment must be improved to ameliorate the low water environment quality.
Therefore, how to evaluate the efficiency of industrial wastewater treatment and put forward reasonable
reform measures are key points.

In the face of severe water pollution situation, all provinces and cities in China have actively
invested in water environment management funds driven by national energy conservation and
emissions reduction policies. However, due to differences in the natural environment, economic and
technological levels, industrial structure, and other aspects in China’s 31 provinces and cities, their water
environment management effects are also different across time and space. The industrial wastewater
emissions of 31 provinces and nine (Beijing, Shanxi, Shanghai, Anhui, Jiangxi, Hainan, Chongqing,
Guizhou, and Tibet) exhibited a growth trend, while the other 22 all showed a downward trend.
For the industrial GDP of the 31 provinces and cities, four (Shanxi, Heilongjiang, Shanghai, and Gansu)
showed a declining trend, with the other 27 ones showed a growth trend. With the visible decrease of
industrial GDP, the discharge of industrial wastewater in Heilongjiang and Gansu decreased, while it
increased in Shanxi and Shanghai. Under an increase of industrial GDP, the discharge of industrial
wastewater in 20 provinces and cities showed a decreasing trend, With economic development and
environmental regulation policies, the change in industrial GDP is not completely consistent with that
of industrial wastewater discharge. How to improve desirable outputs and reduce undesirable outputs
under limited investment in water pollution control are key issues in the study of industrial water
pollution control efficiency.

Data envelopment analysis (DEA), first introduced by Charnes et al. (1978) [1], is a non-parametric
method for measuring the relative efficiency of peer decision making units (DMUs) with multiple inputs
and multiple outputs. DEA has been widely used for efficiency evaluation of schools, hospitals, banks,
airports, etc. (Charnes et al. [2]; Ouellette and Vierstraete [3]; Hu et al. [4]; Satoshi and Masako [5];
Assaf [6]). Tone [7] proposed a slacks-based measure of efficiency, which is non-radial and non-oriented,
and deals with input/output slacks directly. To analyze the dynamic intertemporal effect in production,
Fare and Grosskopf [8] firstly proposed a dynamic DEA model, which can only measure the radial
efficiency of input and output with proportional changes. Following that, the dynamic DEA and SBM
were combined by Tone and Tsutsui [9], who set up a dynamic SBM model without requiring the input
and output factors to change proportionally.

To sum up our research, we take 31 provinces, municipalities, and autonomous regions in China
as the sample, use a dynamic SBM model that covers GDP growth as the carry-over factor to support
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the inter-temporal effect, and dynamically evaluate the efficiency of industrial wastewater treatment,
including undesirable output in China between 2010 and 2015. We study the change in trend and
the cause of water pollution prevention and control efficiency. The results are more reliable and can
provide a scientific foundation for improving regional industrial wastewater treatment efficiency and
water environmental treatment.

The rest of this study runs as follows. Section 2 is a literature review. Section 3 is the research
method. Section 4 is the empirical results. Section 5 is the discussion. Section 6 is the conclusions.

2. Literature Review

Data envelopment analysis (DEA) has recently been widely used to evaluate environment
performance. Besides the aspect of citizen’s involving to environment issue, such as Budică et al. [10],
the current literature on wastewater treatment efficiency mainly focuses on three aspects as follows.

(1) Studies on wastewater treatment efficiency with countries or regions as subjects. On one
hand, scholars directly analyze wastewater treatment efficiency with input and output data.
Zhao et al. [11], for example, analyzed investment efficiency in China’s wastewater treatment based on
the expansion-type DEA method, showing that efficiency is low in each region, the especially northern
and northwest regions, which are the most serious. Chen [12] conducted static analysis on input and
output data of 30 provinces in 2013 and dynamic analysis of panel data from 2004 to 2013 to evaluate the
efficiency of industrial wastewater treatment from the three dimensions of ‘Social-Economy-Ecology’ in
China by using the BCC model and Malmquist productivity index model. Shi [13] evaluated treatment
efficiency of industrial water pollution of China in 2012 by using a three-stage DEA model, which
presented that treatment efficiency of industrial water pollution in the eastern region is higher than that
in the central and western regions. Hu et al. [14] used the Malmquist index to calculate the wastewater
treatment efficiency of Hubei Province in China from 2003 to 2010, indicating the optimized allocation
of inputs and outputs. Li and Zhao [15] adopted the DEA method and Malmquist index to separately
evaluate the static efficiency and dynamic efficiency of industrial wastewater treatment in China.
Chen and Fan [16] calculated the industrial wastewater treatment efficiency in China by DEA and the
trend of treatment efficiency by the Malmquist index and concluded that national efficiency should be
improved, and that technological improvement in eastern and northeastern China has an increasing
impact on wastewater treatment efficiency, which should be strengthened in the central and west
regions. Scholars also utilize wastewater discharge indicators as factors to evaluate the environmental
efficiency of national or specific areas as their research subject (Liu et al. [17]; Yu, [18]; Chen and Pei [19];
Yang and Lu [20]).

(2) Studies on wastewater treatment efficiency with enterprises and industries as subjects.
Rahbari et al. [21] used the Malmquist productivity index and windows analysis to assess the efficiency
of a Khuzestan steel company treatment plant and calculate the treatment plant efficiency in removing
pollutants. Liu et al. [22] evaluated the wastewater treatment efficiency of 10 mineral industries from
2003 to 2012 based on DEA models with undesirable outputs and found that the average wastewater
treatment efficiency of China’s mineral industry is increasing and that the efficiency gap of mining
industries and smelting industries tends to be stable during the time period. Fan et al. [23] calculated
the efficiency of water pollution treatment in 38 industrial sectors by the DEA-Malmquist model
by using the annual data of water pollution treatment from 2005 to 2013, showing that the water
pollution treatment efficiencies of different sectors are different. Hu et al. [24] evaluated 20 enterprises
in industrial parks in the Taihu basin by using DEA methods. Yang and Li [25] used the DEA-SBM
model to measure the TFE (Total Factor Efficiency) of wastewater control in 39 industrial sectors of
China from 2003 to 2014 and found that the TFE of wastewater control in the industrial sectors is quite
low and far from satisfactory.

(3) Studies on wastewater treatment efficiency with wastewater treatment plants as research
subjects. Lorenzo-Toja et al. [26] employed a DEA window analysis on a set of wastewater treatment
plants for a four-year interval between 2009 and 2012 with the aim of understanding the annual
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behavior of WWTPs in terms of environmental sustainability. Giovanna et al. [27] applied AHP/NDDF
(novel integrated analytic hierarchy process/non-radial directional distance functions) to investigate the
environmental efficiency of 96 Tuscan (Italian) wastewater treatment plants (WWTPs). Gemar et al. [28]
evaluated dynamic eco-efficiency of WWTPs using the dynamic weighted Russell directional distance
model (WRDDM) and obtained an eco-productivity change index for each major component (costs,
pollutants removal, and greenhouse gas emissions). Guerrini et al. [29] used a double bootstrap DEA
method to measure the energy costs of wastewater treatment plants and identified how they can be
reduced on 127 WWTPs in Tuscany, Italy for the year 2014. Molinos-Senante et al. [30] assessed and
compared the productivity growth of WWTPs operating under four alternative technologies with
a sample of 99 WWTPs by a meta-frontier Malmquist productivity index. Lorenzo-Toja et al. [31]
analyzed the operational efficiency of a group of 113 WWTPs in Spain, combining the two approaches
of LCA and DEA to obtain environmental benchmarks for inefficient plants. Ramón Fuentes et al. [32]
examined the efficiency of 158 wastewater treatment plants in the region of Valencia (Spain) using an
input-oriented order-m model of conditional efficiency. Lledó [33] evaluated the efficiency of a sample
of wastewater treatment plants by applying the weighted slacks-based measure model, which allows for
assigning weights to the inputs and outputs according to their importance. Hernandez-Sancho et al. [33]
applied a non-radial DEA methodology to calculate energy efficiency indices for a sample of WWTPS
located in Spain. Pachura and Ocipa-Kubicka [34] introduced pro-ecological activities implemented by
the Water Supply and Sewerage Joint Stock of the Czestochowa District.

The above literature shows that research on the efficiency of wastewater treatment has the
following characteristics. First, from the research subject, the literature comprehensively includes
national, regional, industrial factors, and WWTPs in China. Second, from the research method, not only
is the traditional DEA model used, but also a combination of traditional DEA models and improvement
models. Third, from the time dimension, there are both static and intertemporal studies.

The literature noted above enriches the current research field and provides us with a good
perspective and method. However, most studies are based on radial measures, consisting of CCR and
the BCC models, that have the problem of not being able to appropriately measure the efficiency of
weakly efficient DMUs (Charnes et al.) [35]. To solve this problem, Tone [7] proposes a slacks-based
measure (SBM) approach to measure efficiency.

The traditional dynamic DEA model, such as the Malmquist index, and static models used for
performance evaluation usually assume that the impacts from input and output variables are limited
to the current period and do not take into account the cross-term effect of carry-over activities in
production. Therefore, Fare and Grosskopf [8] initially set up a dynamic DEA model that can only
measure the radial efficiency of input and output with proportional changes. Following that, dynamic
DEA and SBM are combined in Tone and Tsutsui [9], who propose a dynamic SBM model without
requiring the input and output factors to change proportionally. It is necessary to point out that,
since the undesirable outputs are produced during the process of production with the expected output,
the dynamic SBM is able to deal with this issue.

This paper therefore uses the input and output data of industrial wastewater treatment in
31 provinces of China. We then adopt the dynamic SBM model to calculate the impact of the carry-over
activities across time periods, while considering undesirable output at the same time, to accurately
analyze the efficiency of industrial wastewater treatment in China.

3. Methods

DEA is a manner for measuring the relative efficiency of a set of decision making units (DMUs)
that apply multiple inputs to produce multiple outputs in a given time period. Various methods
measure efficiency deviations over time; e.g. window analysis by Klopp [36] and the Malmquist
index [37] by Färe and Grosskopf [8]. Even if these models can take into account the time change
effect, they usually ignore carry-over activities between two consecutive terms and only focus on
the separate time period(s), independently training local optimization in a single period. In the
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real business world, long-term planning and investment are subjects of great distress for business
growth. The dynamic DEA model of Färe and Grosskopf [8] is the first innovative contribution for
such purpose. They introduce the dynamic aspects of production into the conventional DEA model
when multi-outputs are involved and formulate several inter-temporal models, which have become
the origin for many later studies on dynamic DEA. Chen and Van dalen [38], Nemoto and Goto [39],
Sueyoshhi and Sekitani [40], and Chang et al. [41] develop dynamic DEA, and Tone and Tsutsui [10]
assimilate SBM into dynamic DEA.

The non-oriented model can process inputs and outputs individually. This means that the model
is proper for non-uniformly distributed inputs and outputs, and different weights can be dispensed to
the inputs and outputs depending on their degree of position. Tone and Tsutsui [9] divide carry-overs
into four types for an analysis foundation of dynamic DEA models: (1) desirable (good), (2) undesirable
(bad), (3) discretionary (free), and (4) non-discretionary (fixed). The DEA model variables can be
separated into three categories: input, output, and non-oriented. SBM can be used to identify the
optimum solution.

According to the characteristics of carry-overs, we classify real GDP into a desirable carry-over
that resembles profit carried forward of GDP to the next term. The main focus of this study is that
governments in all countries must consider reducing CO2 emissions when looking to create/sustain
economic growth. Therefore, GDP performance in one period will have an influence on the efficiency
in the next period. We use dynamic SBM models that can evaluate the overall efficiency of DMUs
for the whole term period as well as the term period efficiencies. For these cases, a single-period
optimization model does not fit for performance evaluation. To cope with a long-term point of view,
the dynamic DEA model incorporates carry-over activities and helps to measure a period’s specific
efficiency based on long-term optimization during the whole period. It also calculates the system and
period efficiencies under dynamic conditions. One important finding is that the method for calculating
system efficiency in the literature produces over-estimated scores when discounting the dynamic
nature. This makes it necessary to conduct dynamic analysis whenever data are available (Kao [42]).

Another main consideration for the study is to choose a dynamic model for calculation. This
study utilizes the model established based on the expectations of Tone and Tsutsui [9], which include
T periods and n DMUs, each of which has different inputs, outputs, and carry-overs in period t and
period t links to the next period, t + 1.

Let n DMUs (j = 1, . . . , n) carry over T term periods (t = 1, . . . , T).
There are m inputs (i = 1, k, m) of the DMUs.
F: non-discretionary (fixed) inputs (i = 1, k, p);
S: output (i = 1, k, s);
P: non-discretionary (fixed) outputs (i = 1, k, r);
z: link (carry-over) has four categories of good, bad, free, and fixed;
w: weight.

We present the following non-oriented model:

ρ∗0 = min

1
T
∑T

t=1 Wt
[
1− 1

m+nbad

(∑m
i=1

w−i s−it
xiot

+
∑nbad

r=1
sbad

it
zbad

rot

)]
1
T
∑T

t=1 Wt
[
1 + 1

s+ngood

(∑s
l=1

w+
i s+it
yiot

+
∑ngood

r=1
sgood

it
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)] (1)
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t
j =

n∑
j=1

zαrjtλ
t+1
j (∀i; t = 1, . . . , T− 1) (2)
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Equation (2) shows the connection equation between periods t and t + 1.

xiot =
n∑

j=1

xijtλ
t
j + s−it(i = 1, . . . , m; t = 1, . . . , T)

xfix
iot =

n∑
j=1

xfix
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t
j (i = 1, . . . , F; t = 1, . . . , T)
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n∑
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yljtλ
t
j − s+lt (l = 1, . . . , s; t = 1, . . . , T) (3)
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t
j (i = 1, . . . , nfix; t = 1, . . . , T)
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λt
j ≥ 0, s−it ≥ 0, s+it ≥ 0, sgood

it ≥ 0, sbad
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it : free(∀i, t) (4)

Here, we show the solution that is most efficient:

ρ0t =
1− 1

m+nbad

(∑m
i=1

w−i s−∗iot
xiot

+
∑nbad

r=1
sbad∗

rot
zbad

rot

)
1 + 1

s+ngood

(∑s
l=1

w+
i s+∗it
ylot

+
∑ngood

r=1
sgood∗

rot

zgood
rot

) (i = 1, . . . , T). (5)

4. Empirical Result

4.1. Data and Variables

The research sample covers the 30 regions of China and their wastewater resources according to
the China Energy Statistical Yearbook dataset and the National Bureau of Statistics of the People’s
Republic of China for the period 2011–2015. We use five variables. As shown in Table 1, the regions are:
Shanghai, Shandong, Shanxi, Guangdong, Guangxi, Yunnan, Inner Mongolia, Tianjin, Beijing, Sichuan,
Ningxia, Gansu, Jilin, Anhui, Jiangxi, Jiangsu, Liaoning, Hebei, Henan, Qinghai, Guizhou, Chongqing,
Shaanxi, Zhejiang, Hainan, Hubei, Hunan, Heilongjiang, Xinjiang, and Fujian. The five variables
are two output variables, two input variables, and one carry-over variable. The output variables are
industrial wastewater treatment and industrial output, the two input variables are industrial water
consumption and facility operation cost, and the carry-over variable is industrial waste. This study
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concludes with implications for theory research, as these variables may lead to a better understanding
and merging with the input variables, output variables, and carry-over variable of recent studies.

Table 1. Regions and input, output, and carry-over variables.

Regions Input Variables Output Variables Carry-Over
Variables

1.Shanghai, 2. Shandong, 3. Shanxi,
4. Guangdong, 5. Guangxi, 6. Yunnan,
7. Inner Mongolia, 8. Tianjin, 9. Beijing,
10. Sichuan, 11. Ningxia, 12. Gansu, 13. Jilin,
14. Anhui, 15. Jiangxi, 16. Jiangsu, 17. Liaoning,
18. Hebei, 19. Henan, 20. Qinghai, 21. Guizhou,
22. Chongqing, 23. Shaanxi, 24. Zhejiang,
25. Hainan, 26. Hubei, 27. Hunan,
28. Heilongjiang, 29. Xinjiang, 30. Fujian

1. Industrial water
consumption
2. Facility operation
cost

1. Industrial
wastewater treatment
2. Industrial output

Industrial waste

Data source: Authors’ collection.

In order to clarify the influence of regions, we conducted an analysis on all 30 regions. Table 2
presents the descriptive statistics of the input, output, and carry-over variables’ results as follows.
(1) Industrial water consumption: the average of all regions is 250,234 ten thousand m3. Jiangsu has
the most industrial water consumption in 2015 at 1,406,721 ten thousand m3, while Chongqing has the
lowest industrial water consumption at 130 ten thousand m3 in 2011. (2) Facility operation cost: the
average is 224,095 ten thousands during 2011 to 2015. Hebei has the greatest facility operation cost at
933,519 ten thousand in 2011, while Hunan has the lowest at 6474 ten thousand in 2015. (3) Industrial
wastewater treatment: in general, the higher the treatment, the better the result. In order to clarify the
relative influences of these variables, this study adopted the DSBM model to evaluate each region’s
industrial wastewater treatment. The 30 regions’ average is 175,008 ten thousand tons; Hubei has
the maximum treatment of 933,519 ten thousand tons in 2011, while Hunan has the lowest treatment
region of 6533 ten thousand tons in 2013. (4) Industrial output: the average increased from 2011 to
2015 at an annual average rise of 20,902 billion; Guangdong has the highest industrial output at 72,812
billion in 2015, while Qinghai has the lowest of 1670 billion in 2011. (5) Industrial waste: the average
of the 30 regions is 72,290 ten thousand tons from 2011–2015. Jiangsu has the most at 246,298 ten
thousand tons in 2011, while Hainan has the least at 6744 ten thousand tons in 201.

Table 2. Descriptive Statistics.

Variables St Dev Ave Max Min

Input (I) Industrial water consumption (ten thousand m3) 327,462 250,234 1,354,854 130
(I) Facility operation cost (ten thousands) 197,400 224,095 966,723 9309

Output
(O) Industrial wastewater treatment (ten thousand
tons) 166,312 175,008 933,519 6533

(O) Industrial output (billion) 15,610 20,902 72,812 1670

Carry-over (CB) Industrial waste (ten thousand tons) 58,142 72,290 246,298 6744

4.2. Empirical Results and Comparison of Efficiency Score for Each Region

We used DEA-Solver software to evaluate the efficiency of the 30 regions of China and analyze
each region’s different efficiency ranking, by using the DSBM DEA model of Kaoru Tone and Miki
Tsutsuib [9]. In order to identify the relationship between industrial wastewater treatment and
industrial output, we took each one based on its own specifications to see how to improve it towards
the efficient frontier. Table 3 shows the differences between the rank and higher/lower efficiency
scores of each region. From the results, there are eight regions with efficiency scores equal to 1 by
the DSBM DEA model (Guangdong, Beijing, Sichuan, Qinghai, Hainan, Hunan, Fujian, and Jiangsu),
and their industrial outputs are not all higher than other regions. In contrary, Shaanxi, Gansu,
Shanxi, Heilongjiang, Tianjin, and Ningxia have efficiency scores lower than 0.5. The efficiency scores
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are lower, because some regions no longer are able to support industrial wastewater treatment or
industrial output.

Table 3. Overall efficiency score results of each region.

Region Overall Score Rank Region Overall Score Rank

Guangdong 1 1 Hebei 0.81 16
Beijing 1 1 Jilin 0.76 17
Sichuan 1 1 Hubei 0.76 18
Qinghai 1 1 Zhejiang 0.70 19
Hainan 1 1 Inner Mongolia 0.61 20
Hunan 1 1 Shanghai 0.56 21
Fujian 1 1 Anhui 0.56 22

Jiangsu 1 1 Liaoning 0.55 23
Henan 0.95 9 Xinjiang 0.50 24
Jiangxi 0.94 10 Shaanxi 0.47 25

Shandong 0.93 11 Gansu 0.46 26
Yunnan 0.91 12 Shanxi 0.45 27
Guizhou 0.85 13 Heilongjiang 0.34 28

Chongqing 0.85 14 Tianjin 0.31 29
Guangxi 0.83 15 Ningxia 0.26 30

4.3. The Improvement or Regression of Each Region’s Efficiency Score

Table 4 shows the 30 regions and their yearly change in efficient score from 2011 to 2015.
The results suggest that over the whole period, 10 regions return to a previous, including Shanxi,
Guangxi, Inner Mongolia, Anhui, Liaoning, Hebei, Guizhou, Hubei, Heilongjiang, and Xinjiang.
Those regions in general seem to not be high in industrial output. A period when a temporary efficiency
score declines, during which industrial output and industrial wastewater treatment activities drop,
is generally identified by a fall in the efficiency score over successive years.

We now list those regions with a decline in efficiency score during this period, sorted by the
number of times the scores fell (once, twice, three times, or four times). (i) Once: seven regions see a
one-time drop in efficiency score (Shanghai, Guangxi, Yunnan, Jilin, Jiangxi, Liaoning, and Hebei).
(ii) Twice: six regions have efficiency scores drop twice in this period (Shanxi, Tianjin, Ningxia, Gansu,
Hubei, and Heilongjiang). (iii) Three times: three regions have efficiency scores drop three times in
this period (Anhui, Zhejiang, and Xinjiang). (iv) Four times: only Inner Mongolia’s efficiency score
drops four times in this period, giving it an efficiency ranking of 20. Over the whole period 2011–2015,
some regions show continued improvement, such as Shanghai improving to 0.7 in its efficiency score.
In the same period, Ningxia improves to 0.8 in its efficiency score and Gansu improves 0.61 in its
efficiency score. Three regions exhibit improvement in efficiency scores above 0.5 in this study.
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Table 4. Improvement or regression of each region’s efficiency score for 2011–2015.

Region Overall Score Rank 2012–2011 2013–2012 2014–2013 2015–2014 2015–2011

Shanghai 0.56 21 0.32 −0.01 0.06 0.34 0.70
Shandong 0.93 11 0.33 0.00 0.00 0.00 0.33

Shanxi 0.45 27 0.05 −0.17 0.02 −0.13 −0.23
Guangdong 1.00 1 0.00 0.00 0.00 0.00 0.00

Guangxi 0.83 15 0.00 0.00 0.00 −0.62 −0.62
Yunnan 0.91 12 0.00 0.00 −0.35 0.34 0.00

Inner Mongolia 0.61 20 −0.24 −0.15 −0.16 −0.11 −0.65
Tianjin 0.31 29 0.11 −0.13 0.09 −0.02 0.05
Beijing 1.00 1 0.00 0.00 0.00 0.00 0.00
Sichuan 1.00 1 0.00 0.00 0.00 0.00 0.00
Ningxia 0.26 30 0.04 −0.02 −0.02 0.81 0.80
Gansu 0.46 26 0.11 −0.11 −0.09 0.70 0.61

Jilin 0.76 17 −0.03 0.08 0.33 0.00 0.37
Anhui 0.56 22 −0.03 −0.04 0.07 −0.16 −0.16
Jiangxi 0.94 10 −0.24 0.24 0.00 0.00 0.00
Jiangsu 1.00 8 0.00 0.00 0.00 0.00 0.00

Liaoning 0.55 23 0.03 0.01 0.05 −0.32 −0.23
Hebei 0.81 16 0.00 0.00 0.00 −0.75 −0.75
Henan 0.95 9 0.26 0.00 0.00 0.00 0.26

Qinghai 1.00 1 0.00 0.00 0.00 0.00 0.00
Guizhou 0.85 13 0.00 0.00 0.00 −0.61 −0.61

Chongqing 0.85 14 0.00 0.00 −0.48 0.48 0.00
Shaanxi 0.47 25 0.09 −0.05 0.04 0.03 0.11
Zhejiang 0.70 19 −0.09 −0.03 −0.02 0.40 0.26
Hainan 1.00 1 0.00 0.00 0.00 0.00 0.00
Hubei 0.76 18 0.35 0.00 −0.34 −0.11 −0.10
Hunan 1.00 1 0.00 0.00 0.00 0.00 0.00

Heilongjiang 0.34 28 −0.12 0.00 0.04 −0.17 −0.25
Xinjiang 0.50 24 −0.20 −0.02 0.06 −0.22 −0.38
Fujian 1.00 1 0.00 0.00 0.00 0.00 0.00

Data source: Authors’ collection.

5. Discussion

Most studies use traditional DEA and SBM, which employ cross-section datasets to measure the
efficiency scores of DMUs. We believe it is more interesting to observe a region’s changing trend in
its score or rank during the data’s collection period. Hence, we used the DSBM model to calculate
the efficiency scores or ranks, while at the same time we computed the average efficiency scores and
average ranks. Clearly, environmental topics in recent years have become more popular in the world,
as many scholars discuss the lack of wastewater treatment efficiency and the negative effects from
sewage sludge water contents. Some regions in China have put forth a lot of resources into increasing
industrial wastewater treatment, yet some have lower efficiency scores than other regions. In other
words, some regions’ efficiency scores have fallen in order to control industrial water consumption
investment, facility operation costs, or industrial waste.

From 2011 to 2015 in China, from the absolute value of the decline in industrial wastewater
discharge, Fujian, Jiangsu, and Guangxi regions were reduced by 86.45 million tons, 39.871 million tons,
and 379.81 million tons industrial wastewater treatment. In addition, from the increase in industrial
wastewater discharge, Guizhou, Jiangxi, and Shanghai rank among the top three in the country at
8854 million tons, 5216 million tons, and 23.13 million tons, respectively. Those regions are not the
top/bottom regions in terms of efficiency score in this study. Clearly, the lower efficiency score regions
are able to achieve a high efficiency score, and each region has the ability to target the best efficiency
score, no matter when trying to increase industrial output or reducing industrial wastewater treatment.
This likely reflects that a region should reduce its industrial water consumption input. Our findings
enhance the results from earlier studies. Below, we report the 30 regions of China and their efficiency
scores and the analysis conclusions.

From the efficiency rank changes of the 30 regions during 2011 to 2015, it does not appear that
higher industrial output regions have improved more than other regions, such as for Shandong,
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Guangdong, Jiangsu, Qinghai, and Zhejiang. The efficiency scores from the 30 regions exhibit some
volatility, with 13 regions’ efficiency score volatility clustering close to 0, like Beijing, Chongqing,
Shandong, Guangdong, and Sichuan. By contrast, Anhui, Inner Mongolia, Zhejiang, and Xinjiang see
efficiency scores drop more than other regions during this period, and thus they should adjust their
input/output variables to increase their efficiency scores in the following year.

6. Conclusions

Improving desirable outputs and reducing undesirable outputs under the limited investment in
water pollution control are key issues when investigating the efficiency of industrial water pollution
control. This study used the Dynamic SBM model to assess wastewater resources for research samples
covering the 30 regions of China. The model included two output variables with industrial wastewater
treatment and industrial output, two input variables with industrial water consumption and facility
operation cost, and one carry-over variable with industrial waste. The empirical results show that from
the efficiency rank changes of the 30 regions for 2011–2015, regions with higher industrial output do not
appear to have improved versus other regions. The 30 regions’ efficiency scores show some volatility,
with 13 regions’ efficiency score volatility clustering close to 0. In contrast, for Anhui, Inner Mongolia,
Zhejiang, and Xinjiang, their efficiency scores fell more than other regions in this period and thus
should adjust their input/output variables to increase their efficiency scores.

This study further showed that many lower-/middle-/high industrial output regions do not achieve
a balance between industrial output and industrial wastewater treatment. How to find a balance
between the two for any region is a vitally important issue for industrial wastewater treatment policy
makers. Under such a circumstance, a region’s industrial output may not actually be highly efficient.
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