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Abstract: Crop residues can retain soil moisture and increase soil organic matter. Crop residue
cover is also a hot issue in agricultural remote sensing. Crop residue cover can be estimated linearly
with cellulose absorption index (CAI), while moisture of crop residues and soil would reduce the
accuracy of crop residue cover estimation. Crop residue and soil were used as materials to carry out
the laboratory experiment to reveal the impact of moisture on crop residue cover estimation and
eliminate said impact. This paper discovered a sensitive band, R2005, which can invert water content
of materials to eliminate moisture effect and improve estimation accuracy of crop residue cover. In
terms of inverting water content, compared with two ratio water indices proposed in 2016 (R1.6/R1.5,
R1.6/R2.0), using R2005 can increase R2 from 0.828 to 0.935 and decline root-mean-square error (RMSE)
from 0.12 to 0.07. At the point of results validation, R2 is 0.958 and RMSE is 0.06, indicating R2005 has
a high accuracy. Another advantage of R2005 is that it is more suitable to promote to actual production
because of simple and efficient band calculation.
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1. Introduction

Crop residues refer to the crop stubble in the cultivated land after harvest. Keeping crop residues
in the farmland is one of the best agricultural management measures [1]. Besides reducing the economic
cost of removing crop residues, this method also has important ecological implications. A large number
of studies have shown that soil organic carbon content in farmland is the basis and guarantee for a high
yield of crops [2–5]. Crop residues remaining in cultivated land play an important role in promoting
soil carbon sequestration and improving soil fertility. It has been reported that the soil carbon pool will
increase by 8%~35.7% in organic carbon content after maintaining crop residues in the crop land [6,7].
In addition, crop residue can also play a “protective film” role. Crop residues covering the surface
can effectively reduce the evapotranspiration of surface water and prevent soil erosion [8,9]. There
are other studies, which have shown that the more crop residues left on soil surface, the stronger the
ability to regulate soil PH values and inhibit crop diseases [10,11]. In general, crop residue cover on
farmland is critical to agricultural development.
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Accurate estimation of crop residue cover in farmland has always been an agricultural focus.
Remote sensing techniques have been widely used to estimate crop residue cover, and many crop
residue indices have been constructed. Zheng et al. [12] used multi-temporal Landsat TM and ETM+

imageries to develop minimum normalized difference tillage index (NDTI) to map crop residue
cover commendably. Sullivan et al. [13] found that crop residue cover could be well reflected by
differentials in blue and near-infrared bands, and they proposed crop residue cover Index 1 (CRC1).
Qi et al. [14] proposed the normalized differential senescent vegetation index (NDSVI) that is based on
the normalized differential of TM3 and TM5. Gelder et al. [15] introduced the normalized difference
residue index (NDRI) based on TM3 and TM7, the effect of which is better than NDTI with the presence
of vegetation. At the same time, they [15] proposed a statistical correction method of green vegetation,
based on normalized differential vegetation index (NDVI), to improve the accuracy of crop residue
cover estimation. Based on the cellulose absorption valley at 2100 nm, Daughtry et al. [16] proposed
cellulose absorption index (CAI), and laboratory data confirmed that CAI could separate soil and
crop residues well. Then, lignin cellulose absorption index (LCA) and shortwave infrared normalized
difference residue index (SINDRI) based on NASA Terra Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) data were introduced [17,18].

The above crop residue indices can improve the estimation accuracy of crop residue cover while
remaining very sensitive to soil background. In order to eliminate the influence of soil background,
Biard et al. [19] used TM4 and TM5 bands, added soil line, and proposed soil adjusted corn residue index
(SACRI) to reflect the information of crop residue information under low coverage. Bannari et al. [20]
used two infrared channels to modify SACRI and proposed modified soil adjusted corn residue index
(MSACRI). This index does a better job of weakening the soil background effect. Biard and Baret [21]
introduced a linear mixture model, crop residue index multiband (CRIM), which is based on the soil
and crop residue line. The model can combine any bands and apply to high or low resolution images
for uniform land surfaces.

Moisture factors of crop residues and soil will affect the accuracy of crop residue cover estimation.
Since water affects the spectral characteristics of crop residue and soil, and thus the estimation of crop
residue cover, it is necessary to eliminate the effects of moisture. In the area of this scientific progress,
some studies have used spectral water indices and related crop residue indices. Quemada et al. [22]
proposed to use spectral water indices to simulate crop residue and soil moisture and explored the
influence of moisture on crop residue cover estimation. The results showed that, among the three
narrow-band ratio water indices (R1.6/R1.5, R1.6/R2.0, R2.2/R2.0) and two wide-band ratio water indices
(SWIR3/SWIR6, OLI6/OLI7), R1.6/R1.5 and R1.6/R2.0 have better simulation effect on water. The specific
information of above water indices is shown in Table 1. Quemada et al. [23] used Worldview-3 images
to simulate crop residue cover in the field. Partial irrigation of farmland is needed to complete the
comparative experiment. First, the ground objects were classified according to the digital photos
taken in the field to obtain the coverage of crop residue. NDTI and SINDRI of dry farmland were
calculated by bands calculation of satellite images. The relationships between crop residue cover and
NDTI, SINDRI were obtained by linear regression analysis of crop residue cover and indices under
dry conditions. For the farmland area with irrigation, the moisture correction model including the
water index was used to correct the spectral values of the images. After calculating the corrected NDTI
and SINDRI, the researchers substituted the corrected NDTI and SINDRI into the model, which is not
affected by moisture, to eliminate the effect caused by moisture.
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Table 1. Selected bands of different water indices.

Water Indices The Selected Bands

R1.6/R1.5
R1.5 is 10-nm band centered at 1500 nm,
R1.6 is 10-nm band centered at 1600 nm

R1.6/R2.0
R1.6 is 10-nm band centered at 1600 nm,
R2.0 is 10-nm band centered at 2030 nm

R2.2/R2.0
R2.2 is 10-nm band centered at 2200 nm,
R2.0 is 10-nm band centered at 2030 nm

SWIR3/SWIR6 SWIR3: 1640–1680 nm,
SWIR6: 2185–2225 nm for WorldView-3

OLI6/OLI7 OLI6: 1570–1650 nm,
OLI7: 2110–2290 nm for Landsat8

At present, the existing water indices cannot accurately indicate the water content of crop residue
and soil, resulting in a large error in study results. Therefore, a sensitive band was found in this paper,
which can simulate the true moisture condition with higher accuracy. Our goal was to invert water
content of crop residue and soil precisely to further estimate crop residue cover precisely.

2. Materials and Methods

2.1. Laboratory Experiment

2.1.1. Crop Residue

To study and eliminate impact of moisture on crop residue cover estimation, winter wheat residues
and soil collected in Liaocheng City of Shandong province, China, were used as materials to carry
out the laboratory experiment. Liaocheng City, which belongs to Huang-Huai-Hai Plain, is the main
winter wheat producing area in China.

First, five trays of crop residues were dried until they had a constant mass, which is the dry weight
of the crop residues. Then, each crop residue sample was soaked in water overnight. After soaking,
the crop residues had reached saturation and could not absorb any more water. The excess water in
samples was drained and samples were weighed out to calculate water content. This paper selected
relative water content (RWC) as the index to measure the water content [24]. RWC was calculated by
Formula (1),

RWC =
m f resh −mdry

mmax −mdry
(1)

where m f resh is the sample mass at the time of weighing, mdry is the dry weight of sample, and mmax is
the saturation weight of sample.

Crop residues reflectance spectra were acquired by ASD spectroradiometer over range of 350–2500
nm. The sampling interval was 1 nm. When the spectral data were obtained, each crop residue sample
was placed in a black plastic tray with a depth of 2 cm and a diameter of 10 cm. To avoid external
influence, the experiment was conducted in a dark room, and the light sources were quartz-halogen
lamps that could provide 1000 W parallel light. The light beam was over the samples at a 45◦ zenith
angle and at the height of 50 cm from samples surface. The zenith angle was set 0◦, and vertical
distance from samples surface was 30 cm, A fiber-optic probe with a view angle of 5◦ was arranged to
acquire samples’ reflectance spectra. The beam angle and view angle were set to minimize shadows
and highlight the spectral characteristics of samples. Four spectra of five scans each were required by
rotating the sample tray 90◦ after each measurement to reduce specular reflection that might exist in a
laboratory experiment. Before each spectra acquisition, a Spectralon reference panel was needed to be
placed in the field of view, illuminated, and measured in the same manner as the samples.
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To slow the rate of moisture loss, crop residue samples were placed at room temperature to be
dried. The samples were weighed out and the reflectance spectra were acquired at 2 h intervals until
the mass of samples was close to dry weight. Before the end of experiment, when the samples were
dried to lose all water again, final weighing and reflectance collection were carried out.

2.1.2. Soil

In order to ensure the uniformity of soil particles and prevent the influence of particle size on
spectral data, the soil samples should be fully ground before the experiment. In accordance with
the crop residues, five trays of soil were prepared as experimental materials. The soil samples were
dried to obtain dry weight, then soaked overnight to allow the soil and water to mix well, filtered for
excess water, and weighed. When the ASD spectroradiometer was used to obtain spectral data, the soil
samples were placed in pure black plastic trays with depth of 2 cm and diameter of 10 cm. The times
of soil spectral measurements and weighing were consistent with crop residue. Measurement methods
were strictly taken according to crop residue samples data acquisition standards. The flow chart of the
laboratory experiment is shown in Figure 1.
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2.2. Data Processing

2.2.1. Preprocessing

ViewSpecPro 6.0 software was used to process the spectral data. We visually judged and deleted
the spectral curve with the largest difference of each sample datum and took the mean value of the
remaining spectral curves. In order to eliminate the noise interference, the Savitzky–Golay filter is
used to smooth the graph to get the final result.
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2.2.2. Spectra and RWC Data Processing

In practice, the crop residues could not cover all the farmland, so the collected reflectance in the
field was affected by both soil reflectance and crop residues reflectance. In this paper, the reflectance of
actual crop residues in farmland was simulated by a linear combination of crop residues spectra and
soil spectra. The applicated function is shown in Formula (2) [22,25],

ρ(M,λ) = ρ(S,λ)(1− fR) + ρ(R,λ)( fR) (2)

where ρ(M,λ) is the simulated reflectance of the actual crop residue in farmland in λ band, which can
be regarded as the true spectral value; ρ(S,λ) is the reflectance of soil in λ band; ρ(R,λ) is the reflectance
of crop residues in λ band; fR is the assumed value of crop residue cover and can be regarded as true
observation value of coverage. fR in this study was acquired randomly by an algorithm.

For RWC data processing, like spectral data, the method of linear combination of the RWC of crop
residues and the RWC of soil obtained with weighing method was also adopted to simulate the overall
RWC of crop residues in the field. The Formula is (3) [22],

RWCm = RWCS(1− fR) + RWCR( fR) (3)

where RWCm is the overall water content of crop residues under simulated field condition, which can
be regarded as the true value collected in field; RWCS is the RWC of soil; and RWCR is the RWC of crop
residues. fR is the assumed value of crop residue cover and can be regarded as true observation value
of coverage. In the case of linear combination of spectral reflectance and RWC of crop residues and
soil, in order to fully simulate the field conditions, the time of moisture reception and air drying for
crop residues and soil should be consistent. Therefore, only the crop residue and soil data measured
at the same time should be combined. The fR of Formulas (2) and (3) should be consistent when the
spectral data and RWC data acquired are combined linearly.

2.3. Data Analysis Method

2.3.1. Crop Residue Cover Estimation Method

CAI, constructed based on hyperspectral data, was selected to establish the correlation with crop
residue cover, and the equation of CAI was expressed as Equation (4) [22],

CAI = 100(0.5(R2.0 + R2.2) −R2.1) (4)

where R2.0, R2.1 and R2.2 are the reflectance of 10 nm bands centered at 2030 nm, 2100 nm, and 2210
nm, respectively. The relationship between CAI and crop residue cover was determined by unitary
regression analysis. The essential function of CAI is to reflect the absorption intensity of crop residues
spectra at 2100 nm or to roughly calculate the depth of the absorption valley at 2100 nm, which is the
absorption characteristic position caused by the large amount of cellulose in crop residues. Therefore,
there was a strong correlation between CAI and crop residue cover. The reason why spectral reflectance
at 2000 nm was not selected is that carbon dioxide in the atmosphere has a narrow absorption valley at
2010 nm. Application of spectral data at 2030 nm can minimize the influence of the atmosphere [18].

2.3.2. Improvements to Crop Residue Cover Estimation Model

It had been proved that CAI and crop residue cover were linearly correlated, and crop residue
cover can be estimated by a linear model with CAI [18,22,25,26]. But RWC of crop residues and soil
influenced the slope and intercept of the function of the model [22,26]. There were different slopes
and intercepts under varied RWC. If we want to estimate crop residue cover accurately, slopes and
intercepts under varied RWC must be acquired. The relationship between the RWC, the slope, and the
intercept of the model were analyzed by regression methods.
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2.3.3. Sensitivity Analysis of RWC and Reflectance

This research calculated the sensitivity of the RWCm and the R(M,λ) over the range of 350–2500
nm to determine the sensitive band. The reflectance of the sensitive band was affected by moisture and
could invert moisture.

2.3.4. RWC Inversion by Water Indices and Sensitive Band

The RWC of the soil and crop residue samples were calculated by weighing method. The simulated
field moisture was obtained by linear combination of the RWC of the soil and crop residue samples.
However, these methods cannot be extended to the field, so we needed to use remote sensing means
to achieve the RWC simulation. A study used ratio water indices to indicate RWC in 2016 [22]. This
paper also detected a sensitive band to invert RWC. The water indices proposed in 2016 [22] were
compared with the sensitive band to verify the RWC inversion effects of the sensitive band.

2.4. Validation

In order to further verify the accuracy of the model, 70 sample points were selected for model
validation in this paper. First, CAI can be calculated by spectral data, and the RWCm of the two kinds
of samples was inverted by water indices and the sensitive band. Second, the slope and intercept of
crop residue cover estimation model were calculated under different moisture conditions. Finally, the
crop residue cover was simulated by the crop residue cover estimation model. The three estimation
results, which improved by two water indices and the sensitive band, were compared with the true
crop residue cover obtained randomly through the algorithm.

3. Results

3.1. Analysis of Crop Residues and Soil Spectra

In total, we acquired spectral data eight times under different moisture conditions. The spectra
of crop residues and soil samples are shown in Figures 2 and 3. The gaps are spectral reflectance at
1350–1430 nm, 1795–1970 nm and 2400–2500 nm. The spectral values in these three ranges would
be affected by the moisture in the air that would produce noise, which would affect the spectral
characteristics of the samples. Therefore, these parts of the spectral value were deleted.
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As can be seen from Figure 2, the total spectral values of crop residue samples decreased with the
increase of moisture. Moreover, as the wavelength increased, the spectral difference caused by moisture
increased, which was because the absorption intensity of water in the infrared band is greater than that
in the visible bands. When the moisture of crop residue increased, some of its spectral characteristics
also disappeared, and the curves became more and more gentle. For example, the absorption intensity
of cellulose at 2100 nm gradually weakened and disappeared when the overall spectral reflectance
dropped. In the ranges of 1700–1795 nm and 2280–2400 nm, the spectral curves of crop residue with
low moisture had zigzag features, while in the case of high moisture, the “zigzag” of the spectral curves
disappeared, and smooth spectral features were presented. However, under any moisture condition,
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the high reflection peaks at 1640 nm and 2210 nm always existed, and the higher the RWC, the more
obvious the peak characteristics.

Figure 3 is the spectral characteristic curves of soil samples under different moisture conditions.
Similar to crop residues, the higher the RWC, the lower the total spectral reflectance of the soil. Since the
crop residue samples and soil samples were weighed and their spectra were collected at the same time,
it can be seen that the rate of water evaporation of crop residue and soil were roughly the same when
the moisture was high. While at the later stage of drying, the rate of soil water loss was significantly
higher than that of crop residues, and a similar situation has occurred in another study [22]. The
absorption valley at 2200 nm in the dry soil spectra was caused by the stretching vibration of hydroxyl
(−OH) molecule of silicate water [27]. When the RWC increased, the absorption characteristic at 2200
nm became very weak. However, when the RWC increased, the strong absorption characteristics of
the water at 1450 nm and 1960 nm will make the soil have a very obvious peak value in the range of
short-wave infrared (1600~1780 nm), which can be used as the basis to roughly judge the soil water
content [22]. In addition, excessive water also caused a significant single-peak phenomenon in the
range of 2100–2330 nm of the soil spectra.

3.2. Crop Residue Cover Estimation Model and Moisture Effect

In this paper, the actual mixed reflectance of crop residues and soil under different coverages
were not collected in the field. Instead, the individual spectral reflectance of crop residues and soil
were acquired in the laboratory, and the actual spectral values in the field were simulated by linear
combination. Under different moisture conditions, the relationships between spectral reflectance and
CAI is shown in Figure 4.
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In Figure 4, the abscissa is CAI, and the ordinate is the crop residue cover obtained randomly. The
legend represented different moisture conditions, and the straight line was the unitary regression line
of CAI and crop residue cover. It was clear that CAI and crop residue cover had a significant linear
relationship with any moisture. Therefore, a linear model including CAI can be used to simulate crop
residue cover. The slope and the intercept remained positive. While the RWC varies, the slope and
intercept of the linear model are different. As the RWC increases, the slope and intercept increase, which
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means that moisture would result in overestimation of crop residue cover. The influence of moisture on
crop residue cover estimation can be determined and eliminated by finding the relationships between
the RWC, slope, and intercept.

3.3. Inversion of the Slope and Intercept of Model

Obviously, there were different slopes and intercepts under varied RWC. Regression analyses were
conducted on the RWC and the slope, the intercept of the model. The results are shown in Figures 5
and 6.
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There were definite functional relationships between the RWC, the slope, and the intercept of
the model. RWC and slope conformed to a single exponential decay relationship. RWC was linearly
dependent on the intercept. The specific functional relationships are shown in Table 2.
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Table 2. Slope and intercept as the functions of RWC.

Parameter Equation Adj.R2 RMSE

slope slope = 0.15471 ∗ exp
(

RWC
0.51696

)
+ 0.01725 0.99868 0.01268

Intercept intercept = 0.50728∗RWC + 0.36342 0.9743 0.03336

3.4. Sensitivity Analysis of RWC and Reflectance

In this paper, correlation analysis was conducted between the RWC and spectral reflectance to
determine the sensitive band, and the results are shown in Figure 7.
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Figure 7. Sensitivity between RWC and reflectance.

There was no obvious regular correlation between RWC and spectral values in the whole range.
Spectral values of the band range from 350 nm to 1180 nm are positively correlated with RWC, but
correlation coefficients, which were less than 0.2, were generally small. The correlation coefficients
at 350 nm and 1070 nm were relatively high, and were almost irrelevant around 580 nm. Therefore,
the wavelength ranges that were less than 1180 nm had little significance for the inversion of RWC.
There were negative correlations between sample reflectance and RWC from 1300 nm to 2500 nm.
There were strong correlations at 1460 nm, 1900 nm, 2005 nm, and 2420 nm, and the absolute values of
the correlation coefficients were significantly higher than those of the adjacent bands. The spectral
reflectance of 2005 nm band is the most correlated, close to 0.6. Therefore, this single-band spectral
reflectance was used as the basis for the inversion of RWC. The selected sensitive band was centered at
2005 nm with a 10 nm width (R2005). In order to verify the accuracy of this sensitive band, two proposed
water indices were chosen in this paper for reference and comparison. The specific information of each
water index and the sensitive band is shown in Table 3.

Table 3. The information of water indices and the sensitive band.

Water Indices/The Sensitive Band The Selected Bands

R1.6/R1.5
R1.5 is 10-nm band centered at 1500 nm
R1.6 is 10-nm band centered at 1600 nm

R1.6/R2.0
R1.6 is 10-nm band centered at 1600 nm
R2.0 is 10-nm band centered at 2030 nm

R2005 R2005 is 10-nm band centered at 2005 nm
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3.5. Inversion of RWC of Soil and Crop Residue

A study proposed three ratio water indices to invert RWC [22]. Since the inversion effect of
R2.2/R2.0 was not ideal in the original text, only R1.6/R1.5 and R1.6/R2.0 were selected for comparison
with the R2005 in this paper. The results of fitting the individual RWC of soil and crop residue samples
with R2005, R1.6/R1.5 and R1.6/R2.0 are shown in Figure 8.
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Figure 8. RWC of crop residues and soil as a function of the sensitive band and two water indices: (a)
R2005 (b) R1.6/R1.5 (c) R1.6/R2.0.

In the case of using R2005, RWC of crop residues and soil can be fitted accurately with the same
exponential decay function. R2 = 0.90 and root-mean-square error (RMSE) = 0.12, which indicates that
R2005 had similar simulation effects on the RWC of crop residues and soil. Therefore, the R2005 can be
used to simulate the RWC of the mixture of crop residue and soil with the same curve. In Figure 8b,c,
because the saturation plateau occurred when the RWC was 1, two ratio water indices used piecewise
functions to simulate water. When R1.6/R1.5 < 1.54, RWC = 1.76 * (R1.6/R1.5) − 1.72. When R1.6/R1.5 ≥

1.54. RWC = 1, R2 = 0.75, RMSE = 0.17; similarly, when R1.6/R2.0 < 2.53, RWC = 0.59 * (R1.6/R2.0) − 0.50.
When R1.6/R2.0 ≥ 2.53, RWC = 1. R2 = 0.84, RMSE = 0.14.

3.6. Inversion of RWCm

Under actual field conditions, crop residue and soil are mixed together. Therefore, it was necessary
to verify the inversion effect of R2005 obtained from laboratory experiments on a field with mixed
moisture. Figure 9 shows the fitting results of RWCm and the R2005, R1.6/R1.5, R1.6/R2.0.
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Figure 9. RWCm as a function of the sensitive band and two water indices: (a) R2005 (b) R1.6/R1.5 (c)
R1.6/R2.0.

It was obvious that R2005 was the best band for inverting RWCm. R2 is 0.935, RMSE is 0.07.
Of the two water indices, R1.6/R2.0 was more effective than R1.6/R1.5 in simulating RWCm. Through
comparison, it can be seen that the RWCm inversion effect is significantly improved after using the
R2005. R2 increased from 0.828 to 0.935 and RMSE declined from 0.12 to 0.07, which shows that the
regression fitting degree between the R2005 and the actual RWCm was high, and the gap between the
observed values and the true values was small. The use of the R2005 had the advantage of precision in
the inversion of RWCm that is moisture mixture of crop residues and soil.

3.7. Validation

The research selected 70 sample points to validate the accuracy of models improved by R2005,
R1.6/R1.5 and R1.6/R2.0. The results are shown in Figure 10.
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Figure 10. The contrast between estimated crop residue cover and true crop residue cover.

The solid lines were linear equations obtained by regression analysis of simulated and true values
of crop residue cover. The dotted lines were the y = x standard lines. Compared with the two ratio
water indices, the slope of the simulated and true values of crop residue cover using R2005 is the closest
to 1 and intercept was minimum. R2 was 0.958, and RMSE was only 0.06.

4. Discussion

Compared with the two ratio water indices, the R2005 had a number of advantages. Unlike the
ratio water indices, which required piecewise fitting functions, the R2005 only needed a curve to be
fitted without impact of saturation plateau. In practical application, R2005 was more suitable to be
promoted in the field than ratio water indices, due to fewer bands applied and simple and efficient
calculation methods. The R2005 can quickly and accurately simulate the moisture condition of farmland,
especially when the available bands of satellite images or aerial images in the study area are limited.
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Moreover, R2005 had a higher accuracy than ratio water indices in terms of moisture inversion. R2

increased from 0.828 to 0.935, RMSE declined from 0.12 to 0.07 at the point of RWCm inversion. At
the point of results verification, the highest R2 with 0.958 and the lowest RMSE with 0.06 indicated
that the use of the R2005 can estimate RWC most accurately and effectively to further improve crop
residue cover estimation accuracy. The R2005 could minimize the influence of moisture in the estimation
process of crop residue cover to a great extent.

Since it is difficult to simulate a realistic varied terrain in a laboratory experiment, the effect of
topographic relief was not considered. In fact, studies have shown that topographic fluctuations can
affect reflectance [28,29]. When the study area is mountainous, researchers should also consider terrain
effect. The experiment samples were collected from Liaocheng City, Huang-Huai-Hai Plain, where
the main cultivated soil is the moist soil and the main crop is winter wheat [30–32]. Therefore, only
one kind of soil and one kind of crop residue were collected for study. When considering alternative
study areas, which are not the Huang-Huai-Hai Plain, the type of soil and crop residues may change.
The experiment needs to be redesigned for different study areas. The laboratory experiment was
carried out under ideal conditions and there are differences in the realistic fields. The incapability of
simulating real field conditions is a limitation of laboratory experiments. In addition, soil salinity, PH
value, trace element content, and other variables can also become the future research subjects of crop
residue cover factors.

5. Conclusions

The influence of water on the estimation of crop residue cover in cultivated land was discussed
and eliminated largely. Crop residue cover can be assessed by a linear model with CAI, while moisture
would lead to low estimations. A sensitive band, R2005, was proposed in this paper to invert the RWC
of crop residues and soil and improve estimation of crop residue cover. The R2005 was compared with
two ratio water indices in many aspects. At the point of validation, the result of R2 was 0.958 and
RMSE was only 0.06, proving that the model improved by R2005 had the highest reliability. In addition,
unlike the piecewise fitting functions of ratio water indices, the R2005 only needed a single function
for accurate fitting. For the promotion to practical application, the R2005 had great advantages, such
as simple bands calculation. It could avoid unavailable spectral bands and select appropriate and
high-quality data, especially for limited spectral data or spectral channels.
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