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Abstract: Land use and land cover (LULC) form a baseline thematic map for monitoring, resource
management, and planning activities and facilitate the development of strategies to balance
conservation, conflicting uses, and development pressures. In this study, changes in LULC in
North Sumatra, Indonesia, are simulated and predicted using an artificial-neural-network-based
cellular automaton (ANN-CA) model. Five criteria (altitude, slope, aspect, distance from the road,
and soil type) are used as exploratory data in the learning process of the ANN-CA model to determine
their impacts on LULC changes between 1990 and 2000; among the criteria, altitude and distance from
the road have strong impacts. Comparison between the predicted and the real LULC maps for 2010
illustrates high agreement, with a Kappa index of 0.83 and a percentage of correctness of 87.28%. Then,
the ANN-CA model is applied to predict LULC changes in 2050 and 2070. The LULC predictions for
2050 and 2070 demonstrate high increases in plantation area of more than 4%. Meanwhile, forest and
crop area are projected to decrease by approximately 1.2% and 1.6%, respectively, by 2050. By 2070,
forest and crop areas will decrease by 1.2% and 1.7%, respectively, indicating human influences on
LULC changes from forest and cropland to plantations. This study illustrates that the simulation of
LULC changes using the ANN-CA model can produce reliable predictions for future LULC.

Keywords: land use; land cover; cellular automata; artificial neural network; LULC prediction; North
Sumatra; Indonesia

1. Introduction

Land use refers to the purpose that land serves, for example, recreation, wildlife habitat, or
agriculture. Land cover refers to the surface cover on the ground, whether vegetation, urban
infrastructure, water, bare soil or other. Although the meanings of the terms are distinct, land use and
land cover (LULC) are often used interchangeably. Identifying, delineating and mapping land cover is
important for global monitoring studies, resource management, and planning activities. Identification
of land cover establishes the baseline from which monitoring activities (change detection) can be
performed and provides the ground cover information for baseline thematic maps. Moreover, land use
applications involve both baseline mapping and subsequent monitoring, since timely information is
required to know what current quantity of land is involved in what type of use and to identify the
land use changes from year to year. Therefore, knowledge of LULC will help with the development of
strategies to balance conservation, conflicting uses, and development pressures. Additionally, issues
can be identified from LULC studies, such as the removal or disturbance of productive land, urban
encroachment, and the depletion of forests suitable for species distribution [1].
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Simulation of LULC changes provides the baseline scenario for use when predicting future
scenarios and patterns in future development. Simulation of LULC changes can indicate anthropogenic
impact, identify land use problems, such as the degradation and deforestation, and be used in land
use planning [2]. Land use changes have been important aspects for regional and urban planning for
centuries. Most of the research predicts land use changes using the independent variable with the
highest correlation to those changes. Verburg et al. [3] illustrated that the multiscale characteristics of
land use systems require new techniques to quantify neighborhood effects. Furthermore, Verburg et
al. [3] also explicitly dealt with temporal dynamics and achieved a higher level of integration among
disciplinary approaches and between models studying urban and rural land use changes. Multivariate
spatial models [4], Markov analysis [5], cellular automata (CA) [3,6–9], neural-network-based CA [2],
empirical-statistical models [10,11], optimization models [12], and agent-based models [13,14] have all
been used in the simulation of land use change. More details on each method can be found in [15].

The CA is a common method for simulating the LULC change spatial evolution by estimating the
state of a pixel according to its initial state, surrounding neighborhood effects and transition rules. A CA
model can generate rich patterns and effectively represent nonlinear spatially stochastic LULC change
processes [16,17]. The applications of CA models have been growing in urban development studies,
with strong capabilities for simulating the spatiotemporal complexity of urban systems [18–23], and in
the simulation of deforestation under the influences of natural hazards or human activities [24,25].
However, most of these studies simulate the dynamics of one individual land use, while in many cases,
various LULC change processes occur at the same time and affect each other [16,26]. In addition, these
models do not account well for the role of climate change in long-term land use pattern changes.

LULC changes from human activities hinder predictive use. The changes are dynamic,
depending on many factors, such as politics, regulation, and economic and social conditions.
Regarding this condition, projection analysis needs to appear in the simulation to predict possible
future scenarios. Among many methodologies described, agent-based modelling combines the
cellular model (representing the landscape of interest) with an agent-based model (representing
decision-making entities) [27]. Meanwhile, the other models use machine learning to process changes
based on historical events and factors that provide the input for change. One of the models is an
artificial-neural-network-based cellular automaton (ANN-CA), which was developed to simulate
multiple land use changes and complex land use systems [2]. This approach can be used to determine
LULC changes by considering the possible factors that may influence the changes. Therefore, ANN-CA
is utilized in this study.

The study of land use change in the Asian region has been undertaken for many years. For
instance, in China, a land use change model was developed using geographic information system
(GIS) to monitor and predict change in the land [12,16,23,28]. Furthermore, LULC change is monitored
and detected by remote sensing and GIS in Indonesia [29]. This LULC change model is based on
multicriteria analysis in the GIS programme. The criteria are weighted, based on the researcher’s
input, to determine their relative impacts on the model. The subjectivity of the researcher’s input
for the weights is the limitation in the model. This limitation needs to be addressed by reducing the
subjectivity and uncertainty of the researcher’s input.

The LULC is an essential factor influencing species distributions. This factor is one of the important
environmental factors for addressing human activities that will affect the area suitable for biological
populations in the present and future. North Sumatra, as one of the provinces in Indonesia with
large forest area, requires that attention be paid to its LULC due to the threats of conversion and
forestland degradation. Therefore, this research aims to define the transition of land use changes in
North Sumatra between two different years (1990 and 2000) and to predict and demonstrate future
land use changes in 2050 and 2070 using the ANN-CA approach for forest conservation, land use
management and development, and species distribution management in the future.
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2. Study Area and Data

2.1. North Sumatra

North Sumatra is located between 0◦34′6.39” S–4◦18′16.59” N in latitude and
97◦3′32.7”–100◦25′27.85” E in longitude in the western part of Indonesia, where it borders the
Indian Ocean on the west and Malaysia to the east. On the north, North Sumatra borders the Aceh
region, and on the south, it borders the Riau and West Sumatra regions. North Sumatra covers 26
regencies and seven cities with a total area of approximately 71,068.68 km2 (Figure 1).
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North Sumatra has experienced massive development over the last three decades where
industrialization has changed the land use of most of the area, followed by agricultural expansion [30].
The forest area in North Sumatra is one of the largest in Indonesia, with more than 1,206,881 ha of
preservation forest and 51,600 ha of conservation forest. However, there is forest degradation resulting
from forest disturbance, especially from land conversion [31]. Several changes impact the forest as the
habitat for many tree species displaced by other functions or land use. Moreover, the cover has also
changed from trees to buildings or crops.

The human interest in land allocation influences the planning in North Sumatra to support
the development of the area to be more productive, rather than maintaining it as forest [30]. For
instance, most of the residents choose crop plantation for restoration of tree cover, rather than favouring
hardwood trees, in the Lake Toba catchment area [32]. The LULC changes result from conflicting
land interests. Crop plantation expands to increase profit, reducing forest area [33]. These conditions
require the LULC perspective to emphasize the future impact of the changes, especially for loss of
forest biodiversity.

Since the 17th century, North Sumatra has become a famous regency for forest products, such
as Sumatra benzoin from the Styrax sumatrana trees. This product has become the income source of
primary importance for communities around the forested areas in North Sumatra [34]. However, North
Sumatra faces a problem with space allocation due to the increase in the population and industries,
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especially palm oil, rubber, and log-forest product plantations owned by private companies [35].
S. sumatrana was threatened by land conversion. This conversion influences the species sustainability
in North Sumatra. The spatial LULC information is crucial to analyze the potential area for this
species to grow. Therefore, the purpose of LULC change prediction in this study is to contribute to
regional planning and management for the distribution of S. sumatrana in North Sumatra, and this is
the rationale for choosing North Sumatra as the study region.

2.2. Data and Criteria

The data collected and used in this study include a digital elevation model (DEM), road map,
soil types and three LULC maps for 1990, 2000, and 2010, as presented in Table 1. The Advanced
Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER
GDEM) v2 is one of the most widely used DEM datasets and is used in this study. The road map and
LULC maps were obtained from the Ministry of Environment and Forestry of Indonesia, and the soil
type map was obtained from the Food and Agriculture Organization (FAO).

From the dataset, five criteria, including altitude, slope and aspect from the DEM, distance from
the road from the road map, and soil type, were selected for further analysis. Then, the criteria were
classified into the input data and the explanatory data in the LULC simulation and prediction. The
three LULC maps are the input data, and the other criteria, altitude, slope, aspect, distance from the
road, and urban density, belong to the explanatory data (Table 1).

The three LULC maps were converted into raster data using ArcGIS. The resolution was 30 arc
seconds, with 25 categories. Then, the number of categories was reduced into 12 classifications by
regrouping several categories as shown in Table 2. The airport is considered separately, since it is
assumed to be unchangeable in land use.

Table 1. Summary of dataset, including digital elevation model (DEM), road map, soil type map, and
land use and land cover (LULC) map used in this study.

Data Criteria LULC
Simulation Year Description Source Data

Format

DEM
Altitude Exploratory

map
2017

ASTER GDEM
with 30 arc-sec

spatial
resolution

United State Geological Survey (USGS)
(https://earthexplorer.usgs.gov/) GeoTIFF

Slope Exploratory
map

Aspect Exploratory
map

Road
map

Distance
from the

road

Exploratory
map 2000

The main road
map of North

Sumatra

Ministry of Environment and Forestry,
Indonesia shp

Soil type Soil type Exploratory
map 2000

A spatial soil
type inventory
(30 arc seconds)

for year 2000

Food and Agriculture Organization (FAO)
(http:

//www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/harmonized-

world-soil-database-v12/en/)

TIFF

LULC
map LULC Input map

1990 A satellite image
from Landsat,

USGS and
LAPAN

Ministry of Environment and Forestry,
Indonesia

(http://webgis.dephut.go.id:8080/
kemenhut/index.php/id/fitur/unduhan)

KML
2000

2010

Table 2. Twelve classifications for LULC maps.

No Classification Description

1 Airport The built area for transportation
2 Crop The area for crop plants alone and with shrub plants
3 Forest The area of primary, secondary and plantation forest
4 Lake The area of large-scale water bodies
5 Mangrove The area for primary and secondary mangrove forest
6 Open area The barren area

https://earthexplorer.usgs.gov/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://webgis.dephut.go.id:8080/kemenhut/index.php/id/fitur/unduhan
http://webgis.dephut.go.id:8080/kemenhut/index.php/id/fitur/unduhan
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Table 2. Cont.

No Classification Description

7 Garden field The area with square and near human settlement
8 Plantation The area dominated by oil palm and rubber plant
9 Pond The area of small-scale water bodies for fisheries

10 Residential Transmigration and permanent residential area
11 Shrub Shrub and juvenile plant area
12 Swamp Primary and secondary swamp forest area

3. Methodology

3.1. Artificial-Neural-Network-Based Cellular Automaton Model

The simulations of LULC change and prediction were conducted using the ANN-CA model. ANN
is used to determine the transition probability of LULC using multiple output neurons for simulating
multiple LULC changes, within the structure of ANN-CA presented in Figure 2. CA is used to model
the LULC changes by applying the transition probabilities from the ANN learning process. The overall
analytic procedure is described in the following steps (Figure 3), and QGIS and its MOLUSE module
were utilized for the ANN-CA modelling [24].

Step 1: The first step is to define the inputs to the neural network for the simulation. The
simulation is cell-based (pixel-based), and each cell has a set of n attributes (spatial variables) as the
inputs to the neural network. The spatial variables can be represented by

X = [x1, x2, x3, . . . , xn]
T, (1)

where xi is the i-th attribute, and T is transposition.
The initial (1990) and final (2000) LULC maps, as well as the five exploratory maps, are loaded

as input data. Since we use five criteria from exploratory maps and 12 categories in LULC maps, 17
attributes (spatial variables) for each cell are used for modelling and simulating LULC changes. All
datasets are processed to retrieve the attributes and have the same spatial extent and resolution (30 arc
seconds) in raster format.

Step 2: Each correlation between spatial variables is evaluated in a two-way raster comparison
by selecting the first raster from one variable and the second raster from another variable. Then, the
LULC area and changes for each category are computed between the initial (1990) and final (2000)
time periods. The transition matrix showing the proportions of pixels changing from one category to
another is also obtained from the computation.

Step 3: In this step, the transition probability is modelled by ANN. The neural network structure
consists of three layers, namely, the input, hidden, and output layers (Figure 2). Each spatial variable is
associated with a neuron in the input layer after scaling within the range of [0, 1]. Therefore, the 17
neurons corresponding to the 17 attributes are used in the input layer.

In the hidden layer, the signal received by the j-th neuron, netj(k,t), from the input layer for the
k-th cell at time t was computed by

net j(k, t) =
∑

i

wi,kx′i (k, t), (2)

where wi,k is the weight between the input and the hidden layers, and x′i (k, t) is the i-th scaled attribute
associated with the i-th neuron in the input layer with respect to the k-th cell at time t. In terms of the
number of neurons in the hidden layer, the use of 2n + 1 is recommended to guarantee the perfect
fit of any continuous functions, and reduction of the number of neurons may lead to lower accuracy.
However, based on Wang [25], 2n/3 hidden neurons can generate results of almost similar accuracy
while requiring much less time to train. Therefore, we used 12 hidden neurons in this study.
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percent of correctness from the other categories.

The output layer includes 12 neurons corresponding to the 12 classifications in LULC maps
(Table 2). The l-th neuron in the output layer generates a value that represents the transition probability
from the initial type to the l-th (target) type of LULC. The transition probability is obtained by the
following equation according to the output function of a neural network.

P(k, t, l) =
∑

j

w j,l
1

1 + e−net j(k,t)
, (3)
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where P(k, t, l) is the probability of conversion from the existing to the l-th type of LULC for the k-th
cell at time t, and w j,l is the weight between the hidden and the output layers. A higher value indicates
that the transition probability from the initial type to the lth type is larger.

An iterative neural network based on the back-propagation learning algorithm is designed to
simulate land uses in this study. At each iteration, each neuron in the output layer generates a transition
probability from an existing type to another type of land use. In this simulation, LULC change is
determined by comparing the values of transition probability such that LULC will convert from the
existing type to the type with the highest value of transition probability. If the same type of LULC has
the highest transition probability, the state of the corresponding cell remains unchanged.

Step 4: Once the transition probability is obtained, then modelling of LULC change is carried
out by the CA simulation. The CA consists of regular spatial lattices of cells, each of which can have
any one of a finite number of states, depending on the states of neighboring cells [27]. CA considers
the composition of associations of cells around one cell [36]. CA simulation usually involves many
iterations to decide whether a cell is changed or not. A predetermined threshold value should be used
to control the rate of change so that land use conversions occur step-by-step. If the highest transition
probability is lower than the threshold value, which is 0.9 in this study based on Li and Yeh [2], then
the cell remains unchanged. The threshold value varies from 0 to 1, and the large value of 0.9 is used to
keep the LULC changes stable in each iteration, thus obtaining fine patterns of simulation [2]. The
CA in urban areas in this study only divides the classification into urban and non-urban areas for
simplicity, because, if multiple land uses are presented, the transition rules of urban CA models become
substantially more complicated, since the simulation involves the use of a much larger set of spatial
variables and weights and more complex model structures.

Step 5: Validation of the LULC simulation using values of the Kappa coefficient to evaluate and
compare the real (reference) and predicted (simulated) LULC maps for 2010 is described in Section 3.2.

Step 6: After the validation, the predictions of the future LULC maps in 2050 and 2070 are
computed, assuming the continuation of the current trends and dynamics of the LULC changes. The
same weight values are utilized for the neural network in the simulation of future LULC changes.

3.2. Validation

The validation is carried out by comparing the predicted and the real LULC maps for 2010. The
true agreement from this validation is measured by the Kappa coefficient.

The Kappa coefficient is widely used in LULC assessments for accuracy [37] to measure the true
agreement between the observed agreement and chance agreement [38]. The Kappa coefficient is
calculated by

Kappa =
po − pe

1− pe
(4)

where po is the proportion of observed agreements, and pe is the proportion of agreements expected
by chance.

po =
c∑

i=1

pi j (5)

pe =
c∑

i=1

piTpT j (6)

where pij is the i-th and j-th cell of the contingency table, piT is the sum of all cells in i-th row, pTjis
the sum of all cells in j-th column, and c is the count of the raster category. The contingency table
is a matrix form that illustrates the frequency distribution of the variables and is used to show the
interrelation between i-th and j-th cells in this study. The interaction of every cell is tabulated into a
matrix and calculated. The result explains the agreement of every criterion of each cell. Finally, the
contingency table is used to express the percent agreement as a Kappa coefficient.
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To determine the exploratory map using the five criteria, a number of simulations to predict the
LULC changes for 2010 were conducted by using each criterion, alone and in combinations of two to
five, for the exploratory data in the LULC simulation. The result of explanatory map analysis from the
seven simulations with different combinations of variables is presented in Table 3.

Table 3. Simulation results in terms of the percent of correctness and Kappa coefficient for explanatory
data validation with difference combination of criteria.

No Criteria/Combination % of Correctness Kappa

1 Alt, road, urban 86.59 0.83
2 Alt, urban 87.48 0.83
3 Alt, road 87.82 0.83
4 Urban, road, 85.8 0.81

5 Alt, urban, road, soil
type, aspect 86.85 0.82

6 Alt, urban, road, soil
type, slope, aspect 87.4 0.83

7 Aspect, urban, slope 87.28 0.83

As displayed in Table 3, the overall correctness and Kappa coefficients are high and similar. Among
these values, the exploratory data with altitude and distance from the road and their combination
produced the highest Kappa score of 0.83 and the highest percent of correctness of 87.28%. The highest
Kappa value indicates that the two criteria, altitude and distance from the road, have greater impacts on
LULC changes than the other criteria. The two criteria are illustrated in Figure 4. Table 4 demonstrates
the transition matrix of the 12 LULC categories between 1990 and 2000. Then, the result is employed to
simulate the prediction of LULC for the years 2050 and 2070.
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Figure 4. (a) The altitude and (b) distance from road as the explanatory map for ANN-CA model.
Altitude and distance from road are chosen as the explanatory map, since they and their combination
result in higher scores for percent of correctness and Kappa index than the other criteria, such as slope,
aspect, and urban density.
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Table 4. Transition matrix of LULC classifications from 1990 to 2000 showing the changes in LULC for each classification. The values in the table vary from 0 to 1, with
higher values indicating larger changes, except for the diagonal cells with high values, which depict no changes by remaining as the same category.

Classification
2000

Sum
Airport Crop Forest Lake Mangrove Open Area Garden Plantation Pond Residential Shrub Swamp

1990

Airport 1 0 0 0 0 0 0 0 0 0 0 0 1
Crop 0 0.96143 0.00046 0 0 0.00210 0.00631 0.02882 0.00018 0.00063 0.00004 0.00004 1

Forest 0 0.00908 0.92400 0 0 0.01547 0.00013 0.04580 0 0 0.00493 0.00060 1
Lake 0 0.00252 0 0.99748 0 0 0 0 0 0 0 0 1

Mangrove 0 0.00521 0 0 0.81250 0.04167 0 0.00521 0.11458 0 0 0.02083 1
Open Area 0 0.00417 0 0 0.00139 0.97153 0 0.02292 0 0 0 0 1

Garden 0 0.02036 0 0 0 0.00750 0.93283 0.03108 0 0.00822 0 0 1
Plantation 0 0.09766 0 0 0 0.01163 0 0.88856 0.00017 0.00009 0.00190 0 1

Pond 0 0 0 0 0 0 0 0 1 0 0 0 1
Residential 0 0 0 0 0 0 0.00571 0 0 0.99429 0 0 1

Shrub 0 0.11184 0.00144 0 0 0.00497 0 0.05318 0 0 0.82833 0.00026 1
Swamp 0 0.03147 0.00305 0 0.00025 0.05279 0.00685 0.15685 0.00812 0 0.03325 0.70736 1

Sum 1.0 1.24374 0.92894 0.99748 0.81414 1.10765 0.95184 1.23242 1.12305 1.00322 0.86843 0.72909 12.0
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4. Results and Discussion

The percentage of area changes is presented by a transformation matrix that is used as the input
for the neural network to obtain the transition probability for every input and to produce the LULC
output layer. The LULC transition matrix is produced by comparing the area percentages of the LULC
categories between the years 1990 and 2000, as shown in Table 4.

The ANN-CA model shows the prediction of LULC for the year 2010 by calculating the transition
probability of every cell in the layer between two different LULC raster maps by considering altitude
and distance from the road as the explanatory variables. The validation was implemented by comparing
the factual LULC in the year of 2010 with the predicted LULC of the same year. The simulation shows
a percentage of correctness of 87.28% and a Kappa value of 0.83 by using altitude and distance from
road as the explanatory map. The percentage of correctness shows the percentage of the predicted
area that is precisely the same as the real area in the same year. The Kappa value shows the degree of
accuracy and reliability in a statistical classification. The value of 0.83 shows high agreement between
the two different LULC maps from the same year [39].

The difference between the predicted and the real LULC maps of 2010 is described in Table 5. A
positive value in the second column shows the overestimation of the prediction over the real condition,
while a negative value indicates the opposite. A value of zero occurs when the real and predicted
maps are equal or have the same value. The third and fourth columns explain the changes of every
classification from the initial year of 2000 to the predicted and the real maps in 2010, respectively.
Furthermore, the deviation between the predicted and the real maps of the LULC classifications are
displayed in Figure 5.

LULC prediction maps show the projected land use changes in 2050 and 2070 (Figure 6). The
classifications in 2050 and 2070 are based on the classifications in 2000. To predict a species’ distribution,
the land use change represents the percentage change in suitable land cover classification required
for the species to survive in the future prediction. The percentages of these changes are presented in
Table 6.
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Figure 5. Comparison between (a) the real and (b) the predicted LULC maps for 2010. The percentage
of correctness is 87.28%, and the Kappa index is 0.83.
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Table 5. Comparison of changes between the predicted and the real maps in 2010 from the initial
year in 2000. A positive value indicates the increase in the classification, whereas the negative values
illustrate the decrease in the corresponding classifications. The differences between the predicted and
the real maps in 2010 show the deviation values. The positive values indicate overestimations, while
the negative values illustrate the underestimations of the changes.

Classification
LULC Change Ratio

The Predicted
(2010)–The Real (2010)

The Predicted
(2010)–The Real (2000)

The Real (2010)–The
Real (2000)

Airport 0.0001 0.0000 −0.0001
Crop 1.1763 0.1986 −0.9777
Forest 0.9279 −0.5885 −1.5164
Lake −0.0133 −0.0173 −0.0040

Mangrove 0.0740 −0.0222 −0.0962
Open area −0.8128 −0.2665 0.5464

Garden −0.6965 −0.0864 0.6102
Plantation −1.8071 1.1732 2.9804

Ponds −0.0438 −0.0234 0.0203
Residential −0.0621 −0.0456 0.0165

Shrub −0.2222 −0.1752 0.0471
Swamp 1.4796 −0.1468 −1.6264

Table 6. Percentage of land use land cover changes. A positive value indicates the increase in the
classification, whereas the negative values illustrate the decrease in corresponding classifications.

Classifications
LULC Changes (%)

2070–2050 2070–2000 2050–2000 2000–1990 2010–2000

Airport 0.0000 −0.0001 −0.0001 0.0001 −0.0001
Crop −0.0012 −1.2860 −1.2848 1.3730 −0.9777
Forest −0.0477 −1.7256 −1.6779 −1.9777 −1.5164
Lake 0.0000 −0.0444 −0.0444 0.0023 −0.0040

Mangrove 0.0000 −0.1084 −0.1084 −0.0817 −0.0962
Open area −0.0098 0.3616 0.3714 0.9826 0.5464

Garden field 0.0073 0.3606 0.3532 0.0485 0.6102
Plantation 0.0330 4.1709 4.1379 2.1559 2.9804

Pond 0.0000 0.0081 0.0081 0.1031 0.0203
Residential −0.0012 −0.1218 −0.1206 0.0534 0.0165

Shrub 0.0220 0.1768 0.1547 −1.2761 0.0471
Swamp −0.0024 −1.7916 −1.7891 −1.3834 −1.6264

The percentages of shrub and garden fields are projected to increase by approximately 0.1547%
and 0.3532% from 2000 to 2050 and 0.1768% and 0.3606% from 2000 to 2070, respectively. However, the
crop and forest areas are projected to decrease by 1.24848% and 1.6779% from 2000 to 2050, followed by
1.2860% and 1.7256% from 2000 to 2070, respectively. Moreover, most of the classification will change
to plantation. In 2050, the percentage of changes to plantation area are projected to increase to 4.1379%
by 2050 and 4.1709% by 2070, respectively.

Land use change between 1990 and 2000 in the transition matrix shows that most of the area
changed from forest and shrubland into plantations. Two areas with significant changes are forest
by 0.045% and shrubland by 0.053% into plantation. However, the highest change was shrubland to
crop area at 0.11%. This transition shows that human activities in forest and shrubland are high. The
demands of land for human activities change LULC classifications from less profitable (the non-valuable
classification: forest and shrubland, which are allotted lower economic profits) to a more profitable
classification (valuable classification: plantation such as palm oil and rubber, which provide annual or
seasonal income). This condition threatens the species in forest and shrubland by reducing the suitable
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area for species to survive. Other studies have demonstrated that changes in forest and crop area into
oil palm plantation is higher in Indonesia, in particular on Sumatra Island [40,41].
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Figure 6. The LULC classifications based on the suitable land use for Styrax sumatrana. (a) LULC for
the year 2000, (b) the predicted LULC in the year 2050, and (c) the predicted LULC in the year 2070.
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The differences between the land use map from 2000 and those of 2050 and 2070 illustrate the
high increases in plantation area of more than 4%, while the other classifications show changes of
approximately 0%–1.8%. An increase in one classification indicates a decrease in other classifications.
Higher changes of the categories into plantation indicate that the probability for plantation is higher
than for the other categories. The changes were acquired by the ANN to weight the categories
proportionally for use in the model.

5. Conclusions

The LULC is of critical importance and forms a baseline thematic map for monitoring, resource
management, and planning activities. Moreover, the LULC can be used to develop strategies to balance
conservation, conflicting uses, and development pressures. In this study, changes in LULC in North
Sumatra, Indonesia, are simulated and predicted using the ANN-CA model.

Five criteria, including altitude, slope, aspect, distance from road, and soil type, are derived from
a DEM, road map and soil type map, and utilized as exploratory data for training the ANN-CA model.
In the simulation of LULC changes between 1990 and 2000, two criteria, altitude and distance from
road, show high impacts on LULC changes. The Kappa index also indicates high agreement between
the predicted and real LULC maps of 2010. Then, the ANN-CA model is used to predict the LULC
changes for the years 2050 and 2070.

The LULC predictions for 2050 and 2070 show high increases in plantation area, which increase
by more than 4% from the same category in 2010. Meanwhile, forest and crop areas are projected to
decrease by approximately 1.2% and 1.6%, respectively, by 2050, and by approximately 1.2% and 1.7%,
respectively, by 2070, relative to the 2010 LULC, indicating the human influences on LULC changing
forest and cropland to plantations.

As described, among all regions in Indonesia, North Sumatra is one of the regions with great
forest area that has been threatened by climate change and land use change [31]. In fact, North Sumatra
has experienced massive development over the last three decades, as industrialization has changed
the land use of most areas, followed by the agricultural expansion [30]. Therefore, there is forest
degradation as the result of forest disturbance, especially from land conversion [31]. The human
interest in land allocation lures the planning in North Sumatra to support the development of the
region. Development changes the land to more productive uses, such as agriculture or industrial types,
rather than preserving it as forest [30]. For instance, most of the residents choose crop plantations
for reforestation rather than hardwood trees in the Lake Toba catchment area [42]. The resident
corporations expand their plantations to increase profit and reduce the forest area [33]. This condition
demands the LULC perspective to emphasize the future impact of the changes, especially on loss of
forest biodiversity.

The ANN-CA model in this study is based on historical information and observes changes
supported by explanatory variables. The CA demonstrates that the change of one pixel into another
category relies on its neighborhood. The changes will continue until every pixel undergoes the
changing process. The ANN-CA model might be more reliable in terms of reduced subjectivity and
uncertainty when compared to other methods such as analytic hierarchy process (AHP) and technique
for order preference by similarity to ideal solution (TOPSIS) for weighting criteria [43,44]. Moreover,
this study illustrates that the ANN-CA model is successfully applied to conduct multiple LULC change
simulations within one CA model by considering the complicated interactions and competition among
different land use categories.

On the other hand, long-term effects altering the landscape dynamics, as exhibited in [26,45,46],
due to climate factors, such as global warming, extreme weather events, etc., and ecological degradation,
such as hydrological variation, soil erosion, etc., are not considered in this study. Moreover, this
ANN-CA model does not consider planning and development factors in such a way as to determine
demands for different land use types from the macro-scale perspective and to examine scenarios
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representing future development pathways [47,48]. Therefore, it should be noted that predicted future
LULC changes obtained in this study are very limited in a conservative manner.

The forest area in North Sumatra, as described, is one of the largest in Indonesia with large
preservation forest and conservation forest areas. However, there is forest degradation resulting
from forest disturbance, especially from land conversion. The development of the region by human
interests changes the land to more productive uses, such as agriculture or industrial types, rather than
preserving it as forest. In general, the LULC changes occur as the impact of conflicts over land interests.
For instance, the local residents choose crop plantations for reforestation, and corporations expand
their plantations to increase profit and thus reduce forested area in the region. This condition demands
the LULC perspective to emphasize the future impact of the change, particularly for loss of forest
biodiversity. Therefore, the LULC changes predicted by this study can be used in sustainable forest
management and regional planning.

In this study, however, other variables, such as climate, policy, regulation or human development,
affecting LULC changes are not taken into account. Therefore, future investigation will be improved
by including those variables.
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