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Abstract: Sustainable and green technologies include renewable energy sources such as solar power,
wind power, and hydroelectric power. Renewable power output forecasting is an essential contributor
to energy technology and strategy analysis. This study attempts to develop a novel least-squares
support vector regression with a Google (LSSVR-G) model to accurately forecast power output with
renewable power, thermal power, and nuclear power outputs in Taiwan. This study integrates a
Google application programming interface (API), least-squares support vector regression (LSSVR),
and a genetic algorithm (GA) to develop a novel LSSVR-G model for accurately forecasting power
output from various power outputs in Taiwan. Material price and the search volume via Google’s
search engine for keywords, which is used for various power outputs and is collected by Google APIs,
are used as input data. The forecasting model uses LSSVR. Furthermore, the LSSVR employs a GA to
find the optimal parameters for the LSSVR. Real-world annual power output datasets collected from
Taiwan were used to demonstrate the forecasting performance of the model. The empirical results
reveal that the proposed LSSVR-G model is superior to all other considered models both in terms of
accuracy and stability, and, thus, can be a useful tool for renewable power forecasting. Moreover, the
accuracy forecasting thermal power and nuclear power could effectively assist in understanding the
future trend of renewable power output in Taiwan. The accurately forecasting result could effectively
provide basic information for renewable power, thermal power, and nuclear power planning and
policy making in Taiwan.

Keywords: renewable energy; least-squares support vector regression; social media

1. Introduction

Governments currently promote methods of electricity generation with high efficiency, minimal
pollution, and greenhouse gas emissions in accordance with the United Nations” Sustainable
Development Goals (SDGs). Sustainable and green technologies have been widely studied, including
non-dispatched renewable energy sources such as solar power and wind power. However, thermal and
nuclear power outputs still contribute a higher percentage toward industry and public requirements
in Taiwan. Governments need to engage in long-term planning for electricity generation. Therefore,
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an accurate forecasting system is needed for governments to efficiently plan the future distribution
of power generation. Material price and government policy influence thermal power and nuclear
power generations. Moreover, renewable power generation mainly depends on government policy
and public expectations, and the trend of thermal power and nuclear power outputs would influence
the renewable power generation. Therefore, this study develops a forecasting model for observing the
changes in annual power output in Taiwan combining the least-squares support vector regression with
google (LSSVR-G).

In recent times, many researchers have studied the power output forecasting problem. Shi et al. [1]
developed a hybrid model that forecasts wind power output 15 min ahead of time and is based
on grey relational analysis and wind speed distribution features. Their hybrid model combined a
least-squares support vector machine (LSSVM) model and a radial basis function neural networks
(RBFNN) model, which improves forecasting accuracy and reduced computational burden. Xu et al. [2]
proposed a forecasting model that comprised a K-means clustering-based bad data detection module
and a neural network (NN)-based forecasting module. Results indicated an accuracy improvement
resulting from an adjustment in short-term wind power forecast detection. Zhang et al. [3] indicated
that weather conditions cause solar power generation to be highly volatile. They developed and
presented a similar day-based forecasting tool and analyzed the challenges of solar power forecasting.
Yang et al. [4] developed a support vector machine (SVM)-enhanced Markov model for short-term
wind power forecasts. Their model takes into account wind ramps, diurnal non-stationarity, and
the seasonality of wind farm generation. Numerical examples showed that Yang et al.’s approach
significantly improved accuracy. Li et al. [5] developed multivariate adaptive regression splines for the
daily power output of a grid-connected photovoltaic system. A numerical example showed that the
method outperformed artificial neural networks (ANNSs), k-nearest neighbors (KNNs), classification
and regression trees (CARTs), and support vector machines (SVMs). Hossain et al. [6] designed an
extreme learning machine (ELM) approach to forecast three grid-connected photovoltaic systems.
The proposed ELM model was judged as an acceptable and efficient machine learning approach and
to be superior to support vector regression (SVR) and ANNs. Yang et al. [7] proposed a day-ahead
forecasting method of photovoltaic output power with similar cloud space fusion based on incomplete
historical data mining. Simulation tests based on the measured data of photovoltaic systems at a
photovoltaic power station in China verified the effectiveness and correctness of the proposed method.
Paulescu et al. [8] developed a black-box Takagi-Sugeno fuzzy model and a semiparametric statistical
model for forecasting the output power of photovoltaic plants. Output power at time horizons of
1-72 h ahead was used as an example to examine the proposed two models. Results showed that
the proposed models effectively improved predictive performance. Zjavka and Misdk [9] developed
a new general differential equation that used a polynomial decomposition method for wind power
forecasting. The new polynomial networks were able to describe the local atmospheric dynamics and
could produce fraction substitution sum terms for all nodes. Their results indicated that midterm
numerical forecasts or adaptive intelligence techniques using a local time series that outperformed all
other models. Seyedmahmoudian et al. [10] used differential evolution and particle swarm optimization
for a forecasting model of a polynomial (six-dimensional) form on the basis of the Maclaurin series
expansion. The proposed method outperformed other methods in terms of photovoltaic output
power. Rosiek et al. [11] presented a hybrid system for forecasting building-integrated photovoltaics.
The system combined satellite images with a neural network. This hybrid system yielded spectacular
results. Dadkhah et al. [12] proposed a hybrid system, using Kohonen'’s self-organizing map (SOM) as
a clustering method and radial basis function (RBF) as a classification method for accurate wind power
output forecasting in a power plant. A real-world case study demonstrated the effectiveness of the
proposed approach. Hao and Tain [13] used a nonlinear ensemble method and a multi-objective grey
wolf optimizer algorithm for wind power forecasting. The results indicated superior performance
in three real-world wind power datasets. Abuella and Chowdhury [14] showed that forecast tools
could be used to manage the ramp rates of wind and solar resources. They used a post-processing
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adjustment approach for forecasting. The method was able to improve the capability of combined
hour-ahead forecasts of solar power to capture ramp events.

Over the past few decades, the studies mentioned above have led to superior forecasting of
hourly/daily power output datasets for wind and solar power. However, previous literature indicates
that (1) Google data has not been widely used as a data source for forecasting problems and that
(2) the yearly renewable power output dataset mainly was discussed with economic optimization
strategies [15,16]. The yearly power output forecasting has not been widely investigated because of
higher uncertainty. Our proposal is a prediction model that adopts LSSVR coupled with the Google API
for the prediction of annual power output values. In addition, our method adopts a GA to determine
the optimal parameters for LSSVR-G, which enhances performance. The rest of this paper is organized
as follows. Section 2 introduces the proposed method—LSSVR with Google data—which include
procedures for using the Google APl and LSSVR technology. Section 3 presents the experimental results
of LSSVR-G in long-term power output prediction of parameters such as renewable power, thermal
power, and nuclear power outputs. Conclusions are drawn and suggestions for further research are
made in Section 4.

2. LSSVR with Google

The LSSVR-G prediction model adopts the Google API for collecting public information and LSSVR
technology to approach annual power output datasets. The main difference between LSSVR and support
vector machines is that LSSVR adopts the minimization of the sum square errors (SSEs) of the training
dataset and minimizes the margin error by an objection function. Some studies have extended the LSSVR
and obtained good performance, which yields, for example, intuitionistic fuzzy LSSVR [17], twin least
squares support vector regression [18], robust weighted least squares support vector regression [19],
evolutionary seasonal decomposition least-square support vector regression [20], robust L,-norm least
squares support vector regression [21], and bi-sparse optimization-based least squares regression [22].
Furthermore, the LSSVR-G prediction model considers the public information that may improve the
degree of accuracy while the forecasting values will be affected by public information.

Figure 1 shows the flowchart of the proposed LSSVR-G model. The input data include yearly
material prices, search volume via Google, and yearly power output are divided into three parts when
using the LSSVR-G model: the training set, the validation set, and the testing set. (1) The training
dataset is used to determine a proper LSSVR-G model. The input datasets were collected from the
Internet, which count the number of discussion times from the Google search engine and Google
plus. (2) The optimal parameter combination is determined by using the GA to train the LSSVR-G
model with training data and the parameter (G) via a linear kernel function. The validation dataset
is employed to search for the parameter of LSSVR-P. The negative error measure index is designed
as a fitness function. (3) Based on the GA, the optimal parameters are input to examine the testing
dataset and determine the predictive performance of the LSSVR-G model. The testing errors measured
via root mean square error (RMSE) and mean absolute percentage error (MAPE) were calculated.
The procedures of the LSSVR-P prediction model are as follows.

Step 1 (Google API): This procedure uses crawlers. (1) The Google API is employed in the
LSSVR-G, which (2) extracts and places downloaded pages that generate a queue set based on input
key terms. (3) Downloaded information is analyzed and compressed into a storage database via
Python. (4) The process is repeated for each of the desired periods. In this study, the condition period
is one year.

Step 2 (LSSVR with Google data): LSSVR is applied to the regression problem. The LSSVR-G
approach is to approximate an unknown function using a training dataset {(XG;, v;),i=1,... ,N, } and
following notations are adopted.
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Figure 1. A flowchart of the LSSVR-G prediction model.

y The regression function.

Q The feature of the inputs.

w Coefficients of LSSVR-G.

B Coefficients of LSSVR-G.

a; Lagrangian multiplier vector due to the i input pattern.
& Error due to the i input pattern.
k() The kernel function.

The regression function can be formulated as follows.
y=f(x) = ' p(XGi) +p (1)

where ¢ denotes the feature of the inputs, and w and § indicate coefficients. Formulating the regression
problem by LSSVR-G, we have the following equation.

N
Min Oy(w, B, €) = |’ + 3G ¥ &2
= @

subjective to
vi=w'9(XG;) +p+e¢,i=12,--,N

This study adopts the Lagrangian to solve the constrained minimization problems as seen in the
formula below.

N
M(w,Be,a) = O1(w,B,€) + ) ailyi - 0 9(XGi) = f - &) ®)
i=1
where qa; is the Lagrangian multiplier vector. We apply the Karush-Kuhn-Tucker conditions to

provide the necessary conditions for identifying local optima of non-linear programming problems.
The conditions for optimality are shown below.

N
ALY =0=w= Z aigo(XGi),
i=1

Jdw ;
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‘f;%} =0>y; = (XG;)+B+e,i=1,...,N.
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In this scenario, k(XG;, XG;/) denotes a kernel function whose value is equal to the inner product
of two vectors, XG; and XG;, in the feature space ¢(XG;) and ¢(XG;), which means that k(XG;, XG;) =
goT(XGl-) @(XG;). This work examines linear kernel functions in a numerical example: K (XG;, XG ]-) =
XGTXG;. We denote K = (kij)nxn, kij = k(XGj, XGj), and V = diag{1/G,1/G, ..., 1/G}, so LSSVR-G can be

described by the equation below.
p o1 a y
[ 1T oflo] o] ©

where = K + V. Hence, the regression model is formulated from Equation (3). The resulting LSSVR-G
then becomes the equation below.

=

f(x) =Y ak(XG,XG;) +b. ©6)

i=1

Note that, in the case of linear kernels, only one tuning parameter (G) is tested in the GA.

Step 3 (Genetic algorithm): In this study, LSSVR-G employs a GA to search for the optimal
model parameters. The parameter selection is crucial for the success of the LSSVR-G model and
well-chosen parameters improve LSSVR-G performance. Therefore, a GA [23,24] is used to select
constant parameters (G) for the LSSVR-G.

Step 4 (Measure indexes): The root mean square error (RMSE) and MAPE were used to measure
the forecasting accuracy of the model. The estimated values approached the actual values more
closely than those of the RMSE or the MAPE (in percentage terms). Equations (7) and (8) illustrate the
expression of the RMSE and MAPE (as a percent), respectively.

RMSE = 1NA‘ F,)? 7
= N;< i~ F) ?)

N
MAPE(%) = %Z"%‘ ®)
i=1 !

3. Numerical Examples, Experimental Results, and Discussion

This research investigated the LSSVR-G model and its usefulness as a yearly forecast-generating
mechanism with renewable power, thermal power, and nuclear power outputs from Taiwan. All yearly
various power output datasets could be collected from a Taiwan power company. Figures 2—4 show
material prices, the search volumes via Google, and actual power output during the period from 1987
to 2016. Figure 2a—c show that the trend of uranium price decreased in the past 10 years. The trend
of the search volume via Google increased and the trend of nuclear power output decreased in the
past two years because of government policy. The people of Taiwan requested that a new nuclear
power plant not be built during the period of 2014 to 2016. Hence, the trend of nuclear power output
decreased, as shown in Figure 2c, and the search volume via Google data was larger in the past two
years, as shown in Figure 2b. Figure 3a—c shows that the trend of crude oil, natural gas, and coal prices
increased in the past several years. The trend of the search volume via Google for thermal power
generation has also increased, as shown in Figure 3d, and the trend of thermal power output increased
in the past several years, as shown in Figure 3e. This is because a nuclear power output reduction
strategy was implemented in Taiwan. Figure 4a,b show that the search volume via Google increased,
and the trend of renewable power increased in the past 10 years. The yearly renewable power output
is the amount of the wind, solar, and hydroelectric power outputs in Taiwan.
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Figure 2. Illustration of actual values from 1987 to 2016 for nuclear power output. (a) Uranium price
(US$/pound). (b) Search volume via Google related to nuclear power generation. (c) Actual nuclear
power output (Giga watts, GW).

As shown in Figures 2—4, the training set covers 1987-1996, the validation set covers 1997-2006,
and the testing set covers 2007-2016. Table 1 displays Pearson’s correlation coefficients between the
input datasets and actual power output datasets. The search volume via Google for renewable power
generation has a higher positive correlation (0.805) and is statistically significant, and total input
datasets are statistically significant, except for the search volume via Google data for nuclear power
generation. The reason for this phenomenon is that nuclear power generation reduces power output.

Table 1. Pearson’s correlation coefficients between input datasets and actual power output datasets.

Search Volume via Google Crude Oil Natural Coal Uranium
& Price Gas Price Price Price
Renewable Thermal Nuclear Nuclear
Power Power Power Thermal Power Generation Power
Generation Generation Generation Generation
Pearson 0.805 0.612 0.079 0.780 0.530 0.665 0.585
Correlation
p-value 0.000 * 0.000* 0.677 0.000 * 0.005 * 0.000 * 0.001 *

* p-value < 0.05.

To demonstrate the superiority of the proposed LSSVR-G model, three other forecasting
models—the back propagation neural network (BPNN) [25], the general regression neural network
(GRNN) [26], and the autoregressive integrated moving average (ARIMA) [27]—were used for
comparison. Furthermore, the LSSVR-G model in this study was also extended to LSSVR with material
prices and LSSVR with both Google data and material prices, which are referred to as LSSVR-P and
LSSVR-GP, respectively.



Sustainability 2019, 11, 3009 7 of 13

120.00 10
9
100.00 8
80.00 /
6
60.00 5
4
40.00 3
2
20.00
1
0.00 0
I~ @ o M v I~ @ o M W N~ & v oMmon t\ ) N ) {0 /\ (=) - e (_) /\ 9 N, ) "_)
9898485 SSSS888 FFE P EELL LSS
(a) (b)
160.00 45000.00
140.00 40000.00
120.00 35000.00
100.00 30000.00
25000.00
80.00
20000.00
60.00 15000.00
40.00 10000.00
20.00 5000.00 I | |
0.00 D) Eememes v ow e w mges l-..lllII
N~ @ = NN ~ & = o N~ & = Mmoo oy = M o~ = N~ = M o
W 0 O O D0 0 0 S O d A - 0o oo @2 2 < o oo
RSS9 S 258 8EREER 2322233322333 8R3¢

—
(g}
~
—
(=]
~

2000.00
1800.00
1600.00
1400.00
200.00
1000.00
800.00
600.00
400.00
200.00
0.00

A O N D 5
N ,&Q X >, ,,‘Q\'

Figure 3. Illustration of actual values from 1987 to 2016 for thermal power output. (a) Crude oil price
(US$/barrel). (b) Natural gas price (US$/million British thermal units). (c¢) Coal price (US$/Metric tons).
(d) Search volume via Google for thermal power generation. (e) Actual thermal power output (GW).
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Figure 4. Illustration of actual values from 1987 to 2016 for renewable power output. (a) Search volume
via Google for renewable power generation. (b) Actual renewable power output (GW).

Table 2 shows the actual nuclear power output forecasting results from 2007 and 2016. It indicates
that the LSSVR-P model performed better (MAPE and MSE were 6.57 and 844.03, respectively) than the
compared methods. Figure 5a—f show the point-to-point comparisons of actual values and predicted
values of the nuclear power output data. Based on Table 2 and Figure 5, the following were observed.
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First, the proposed LSSVR-G, LSSVR-P, and LSSVR-GP models outperformed the other models in
terms of forecasting accuracy. MAPE was smaller than 10%. Second, LSSVR-P based on MSE obtained
a superior performance to the traditional approaches (BPNN, GRNN, and ARIMA (1,1,0)) because the
mechanism was extended with higher relational multi-variables. In the nuclear power output example,
the uranium price had a higher relation with nuclear power output. Moreover, the GA improved
the testing performance based on the optimal parameters of LSSVR-G, LSSVR-P, and LSSVR-GP.
This verifies that our proposed forecasting models can assist traditional prediction models to obtain
optimal performances.

Table 2. Comparison of the forecasting results for nuclear power output.

Actual Value  ooyp G LSSVR-P LSSVR-GPBPNN-SP GRNN  ARIMA

(GW/Year)
2007 389.61 36094  397.88 37406 34846 38325  388.26
2008 392.60 37032 38535 37262 35408 38319 39171
2009 399.81 37166 37909 37296  369.07 38317 39561
2010 400.29 37396 37884 37504 36996 38317 39938
2011 405.22 37892 38251 38016 34094 38317  403.19
2012 388.87 37579 37989 37689  380.09 38317  406.99
2013 400.79 37926 37620 37956 37371 38317 41079
2014 408.01 381.04 37439 38095 37939 38317  414.60
2015 351.43 38721 37555 38681 38404 38317 41840
2016 304.61 40229 37182 40022 38317 38317 42220
MAPE 8.84 6.57 8.47 10.26 6.46 6.87
MSE 152426 84403 143462 180384 93238  1881.08
Ranking 4) ) ) ©) 2 (6)

Table 3 shows the actual thermal power output forecasting results from 2007 and 2016. Table 3
indicates that the LSSVR-GP model can perform better than the compared methods (MAPE and MSE
were 12.51 and 43,284.69, respectively). Figure 6a—f show the point-to-point comparisons of actual
values and predicted values of the thermal power output data. Based on Table 3 and Figure 6, the
following was observed. The proposed LSSVR-GP model outperformed the other models in terms
of forecasting accuracy because the search volume via Google obtain high correlation for thermal
power output. The material prices of thermal power generation have decreased in the last 10 years.
The LSSVR-GP simultaneously considered the search volume via Google and material prices for
thermal power generation. Therefore, the proposed forecasting models could more robustly predict
thermal power output.
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Figure 5. Cont.
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Figure 5. Illustration of actual values and forecasting values (GW/Year) of various models for nuclear
power output.

Table 3. Comparison of the forecasting results for thermal power output.

Actual Value  yoqyp G LSSVR-P LSSVR-GPBPNN-SP GRNN  ARIMA

(GW/Year)
2007 1518.27 121394 123588  1257.94 87859 131719  1550.41
2008 1503.57 122305 129014 131798 96973 133509  1609.63
2009 1434.94 123758 1223.18 127514 99937 135108  1675.27
2010 1567.55 125498 124843 148093 110672 136525  1737.82
2011 1616.92 127535 127185 137516 114822 137773 180186
2012 1602.47 127779 125374 134959 121526  1388.67  1865.18
2013 1604.27 1329.04 125040 139258 129566 139825  1928.85
2014 1665.27 1360.82 124097 144323 136770 140663  1992.35
2015 1716.49 145949 1204.68 146351 143295 141397  2055.93
2016 1804.51 167553 120490 166829  1477.86 142040  2119.47
MAPE 17.13 22.16 12,51 26.23 13.86 14.17
MSE 78118.00 143,940.71 432846 18367583 56,809.92  62,900.79
Ranking @ B B © @ ©

Table 4 shows the actual renewable power output forecasting results from 2007 to 2016. It indicates
that the LSSVR-G model performs better than the other methods (MAPE and MSE were 19.25 and
340.46, respectively). Figure 7a—d shows the point-to-point comparisons of actual and predicted values
of the renewable power output data. Based on Table 4 and Figure 7, the following was observed. For
renewable power output, only the search volume via Google was considered as an input dataset, since
renewable power does not require any material and utilizes only the natural environment. However,
the natural environment cannot be easily controlled. The Google data mainly focused on promoting
renewable power output in Taiwan. Therefore, the proposed LSSVR-G models outperformed the other
models in terms of forecasting accuracy because the search volume via Google had a higher correlation
with renewable power output than thermal and nuclear power output.
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Figure 6. Illustration of actual values and forecasting values (GW/Year) of various models for thermal
power output.

Table 4. Comparison of the forecasting results for renewable power output.

Actual Value
(GW/Year) LSSVR-G  BPNN-S GRNN ARIMA
2007 71.44 50.04 52.22 62.81 51.47
2008 71.65 51.46 61.78 64.88 60.37
2009 68.4 55.41 50.26 65.43 55.45
2010 75.54 90.09 45.41 65.57 58.82
2011 79.39 65.10 50.73 65.61 57.22
2012 96.49 63.62 27.62 65.62 58.59
2013 97.49 72.03 30.22 65.62 58.19
2014 87.87 82.90 31.99 65.62 58.85
2015 92.89 92.953 41.33 65.62 58.87
2016 115.97 130.19 65.62 65.62 59.27
MAPE 19.25 44.61 21.92 31.08
MSE 340.46 2010.96 616.11 966.02

Ranking 1) 4) 2 3)
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Figure 7. Illustration of actual values and forecasting values (GW/Year) of various models for renewable
power output.

For assessment of power output in Taiwan, government policy, costs, and social perception
should be considered. Choosing the right forecasting tool is an important factor for government and
decision-makers. The LSSVR-G, LSSVR-P, and LSSVR-GP models proposed in this study provide
accurate forecasts for power output generation. Our study suggests that the LSSVR-G model can be
implemented to enhance renewable power output forecasting for government/decision-makers. Due
to the trend of thermal power and how nuclear power outputs would influence the renewable power
generation, the study suggests that the LSSVR-GP can be implemented for thermal power output,
and LSSVR-P can be implemented for nuclear power output. The proposed methods can be used
as an alternative forecasting tool for government and decision-makers in Taiwan. Furthermore, the
forecasting results show that the renewable power output grow gradually in 2012 to 2016. The engine
police promote the renewable power output that actually reflects the yearly renewable power output
in Taiwan. The government will implement large investment software and hardware equipment for
renewable energy based on the forecasting results.

4. Conclusions

Power output prediction is a crucial issue in many countries, and power output forecasting is an
essential contributor to energy technology and strategy analysis. This study investigates the LSSVR-G,
LSSVR-P, and LSSVR-GP models and their usefulness as a forecasting mechanism for power output
generation. The results indicate that the LSSVR-G model is a promising alternative for forecasting
power output, especially renewable power output. In addition, the LSSVR-GP model offers a promising
alternative for thermal power output forecasting, and LSSVR-P offers a promising alternative model
for nuclear power output. The superior performance of the LSSVR-G, LSSVR-GP, and LSSVR-GP
models for renewable thermal and nuclear power output, respectively, can be attributed to two causes.
First, the proposed method can efficiently capture trends in Google data via the Google API. Second,
GA mechanisms can effectively improve the performance of predictions for power output forecasting.
Future studies may consider using social media data to incorporate other forecasting models, such as
deep learning networks.
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