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Abstract: Bus emissions have become one of the important contributing factors in urban environmental
pollution due to the frequent use of heavy-duty diesel engines in the day-time. Local bus driving
cycles have a significant influence on bus emissions under the different traffic conditions. This study
investigated the operation mode distributions and emission characteristics for urban buses based on
localized MOtor Vehicle Emission Simulator (MOVES) using sparse Global Position System (GPS)
data in Shanghai, China. Sparse GPS data from forty-three buses were prepared, and then bus
trajectories were reconstructed to calculate local bus driving cycles, including model description,
model calibration, and trajectory reconstruction. MOVES localization was conducted for emission
estimation mainly focusing on the bus emission inventory comparison between US and China. Bus
emission factors were estimated based on the localized MOVES from the aspect of different driving
conditions. Results show that with the increase in average traveling speed, the proportion of idling
operation mode showed a decreasing trend. Four typical vehicle operation mode distributions were
identified with different average speeds to show the impact of traffic conditions. Bus emission factors
first rapidly decreased and then slowly declined towards some minimum values. Bus lanes exhibited
emission reduction benefits under serious traffic congestion. The findings of this study have great
importance for transportation operation management and policy-making to reduce bus emissions,
as well as improving air quality.

Keywords: bus trajectory reconstruction; MOVES localization; operation mode distribution; bus
emission estimation; sparse GPS data

1. Introduction

With the rapid urbanization and motorization in China, vehicle emissions from motorized
transportation is becoming more and more serious in contributing to air quality deterioration. As a
main part of urban comprehensive transportation system, normal buses are the main contributor to
urban environmental pollution due to the frequent use of heavy-duty diesel engines in the day-time.
Meanwhile, bus driving cycles have a significant influence on bus emissions. It is important to evaluate
bus emission features based on local real-world traffic operating conditions.

Recently, many studies have developed bus emission estimation models, such as Motor
Vehicle Emission Simulator (MOVES) [1], COPERT (COmupter Program to calculate Emissions
from Road Transport) [2] and Virginia Tech Comprehensive Power-Based Fuel Consumption Model
(VT-CPFM) [3,4]. MOVES is the state-of-the-art model, which has been widely used to evaluate
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the related influential factors on bus emission features. Vehicle operation mode distribution
representing vehicle driving cycles is the key input into MOVES, which can be calculated using vehicle
second-by-second trajectory data, obtained from microscopic simulation models or high-accuracy
mobile sensor data. For the simulation method, Alam and Hatzopoulou [5] investigated the isolated
and combined effects on bus emissions including traffic congestion, roadway grade, passenger load,
and fuel type. Regarding the approach using high-accuracy mobile sensor data, Alam et al. [6]
analyzed the effects of bus type and passenger load on bus emissions based on second-by-second bus
trajectory data collected on-board from 96 buses in Canada. Chen et al. [7] evaluated the effects of traffic
congestion and passenger load on feeder bus fuel consumption and emissions using MOVES. Jia et al. [8]
explored the effects of road features and bus lane on bus fuel consumption using second-by-second
trajectory data collected from nine bus routes in Shanghai, China. Some researchers also evaluated the
effects of fuel types, bus stops, and passenger load on bus emissions using emission data collected by
Portable Emissions Measurement System (PEMS) in China [9–11]. Furthermore, Li et al. [12] calculated
the characteristics of bus emissions in Hainan by the COPERT model, which was also calibrated using
the data of portable emission measurement system to improve the accuracy of emission predictions.

However, MOVES (released by U.S. Environment Protection Agency (EPA)) is more suitable for
emission estimation in regions of North America. It cannot be transplanted to other countries directly.
Liu et al. [13] proposed a method of MOVES localization for Light-Duty Vehicles (LDVs) in China.
Perugu H. [14] used the LDV activity data with MOVES in India to estimate LDV emission features.
Previous studies mainly focused on MOVES localization for LDVs with the shortage of concern for
Heavy-Duty Vehicles (HDVs). Vehicles’ second-by-second trajectory data were always obtained from
some floating cars equipped with high-accuracy Global Position System (GPS) devices. Nowadays,
large-scale sparse trajectory data are much practical in real-world applications. For example, buses in
Shanghai, China are equipped with GPS devices. Real-time vehicle instantaneous speed and position
are sent to the city’s traffic management center at a certain time interval varying from 10 s to 60 s.
For those sparse GPS data, it was necessary to reconstruct bus trajectories as the key input into localized
MOVES to estimate bus emissions. Shan et al. [15] proposed a modal-activity based methodology for
vehicle trajectory reconstruction using mobile sensor data, which could be adopted in other areas with
new model calibration results.

The primary objective of this study was to evaluate urban bus emission characteristics based on
localized MOVES using sparse GPS data in Shanghai, China. More specifically, this study included the
following three tasks: (1) we reconstructed bus trajectories using sparse GPS data; (2) we localized
MOVES for HDVs in China; (3) we analyzed vehicle operation mode distributions and evaluated bus
emission characteristics. Data and methodology are introduced in the following section. Section 3
illustrates bus trajectory reconstruction using sparse GPS data. MOVES localization is then conducted
in Section 4. The results of vehicle operation mode distributions and bus emission characteristics are
estimated and discussed in Section 5. The paper ends with a brief conclusion in Section 6.

2. Data and Methodology

Considering the effects of route type and bus lane on bus emissions, eight bus routes were selected
for data preparation covering different road levels and regions, as shown in Figure 1. Four bus routes
(An’ting 7, Bei’an line, route 74, and route 55) are operated in the West of Shanghai, while the reminder
four bus routes (route 818, route 729, route 614, and route 779) are operated in the East of Shanghai,
reflecting the different regions on bus emissions.
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Figure 1. Bus routes selection for data collection.

Table 1 shows the details of each bus route, including route type, route length, number of bus
stops, average distance between two adjacent bus stops (ADBS), proportion of bus lane length and
average distance between two adjacent intersections (ADI). Taking the downtown line route 818 for
example, the road length is about 12.4 km, the total number of bus stops is 18, the values of ADBS and
ADI are 729 m and 430 m, and the percentage of bus lane length is 42.4%.

Table 1. Details of each selected bus route for data preparation. Abbreviations: average distance
between two adjacent bus stops (ADBS), average distance between two adjacent intersections (ADI).

Bus Route Route Type Length (km) Number of
Bus Stops ADBS (m)

Proportion
of Bus Lane
Length (%)

ADI (m)

An’ting 7 Suburban 14.4 19 800 0 403
Route 74 Local 20.8 31 693 0 408

Bei’an Local 33.0 36 943 0b 805
Route 779 Local 17.2 22 819 61.8 399
Route 55 Downtown 16.9 25 704 39.1 317

Route 818 Downtown 12.4 18 729 42.4 430
Route 792 Downtown 12.6 20 663 21.1 376
Route 614 Shuttle 6.4 12 582 84.6 374

Each bus is equipped with GPS device. Data of bus position and speed are sent to the city’s traffic
management center with a certain time interval. Sparse GPS data of forty-three buses are obtained from
Shanghai’s traffic management center covering the eight bus routes described above. Figure 2 shows
the distribution of time intervals for a certain bus sending its information to traffic center. We find that
about 75% of GPS data are sent to traffic center with a time interval lower than 20 s, only 8.5% of data
are sent with a time interval higher than 30 s.

This study aims to evaluate urban bus emission characteristics based on localized MOVES using
sparse GPS data in Shanghai, China. The overall analysis framework is shown in Figure 3. After data
collection and preparation, bus trajectories can be reconstructed using modal activity-based model
proposed by Shan et al. [15]. The framework of modal activity-based model is first introduced, followed
by model calibration results for bus type using the collected second-by-second bus trajectory data.
Then bus trajectories are reconstructed using sparse GPS data.



Sustainability 2019, 11, 2936 4 of 15
Sustainability 2019, 8, x FOR PEER REVIEW 4 of 16 

 

Figure 2. Percentage of different time intervals for a certain bus. 

This study aims to evaluate urban bus emission characteristics based on localized MOVES using 

sparse GPS data in Shanghai, China. The overall analysis framework is shown in Figure 3. After data 

collection and preparation, bus trajectories can be reconstructed using modal activity-based model 

proposed by Shan et al. [15]. The framework of modal activity-based model is first introduced, 

followed by model calibration results for bus type using the collected second-by-second bus 

trajectory data. Then bus trajectories are reconstructed using sparse GPS data. 

Due to the shortage of local microscopic vehicle emissions model in China, MOVES should be 

localized to reflect local vehicle characteristics. The following three steps are conducted: (1) 

comparing bus emissions inventory between US and China to find the suitable bus emissions rates 

stored in MOVES database for buses in China; (2) revising model years and vehicle age distributions 

to reflect local bus emission standards; (3) localizing other parameters, such as fuel supply, 

meteorology and road types etc. 

As the key input into MOVES, local link operation mode distributions are calculated based on 

the formula of scaled tractive power (STP) using the reconstructed bus second-by-second trajectories, 

which is introduced in Section 5. Then cluster analysis of K-means method is adopted to explore the 

characteristics of vehicle operation mode distributions under different traffic conditions. Finally, 

based on MOVES localization and local bus operation mode distributions, bus emission factors are 

estimated including hydrocarbon compounds (HC), carbon monoxide (CO), nitrogen oxide (NOx), 

and PM2.5 (fine particulate matter, particles with aerodynamic diameter less than 2.5 um). Benefits 

of bus lane on bus emission reductions are also analyzed. 

 

 

 

 

 

 

Figure 2. Percentage of different time intervals for a certain bus.Sustainability 2019, 8, x FOR PEER REVIEW 5 of 16 

Bus Trajectory 

Reconstruction

MOVES 

Localization

Operation Mode 

Distribution

Bus Emission 

Estimation

Model description

Model calibration

Trajectory 

reconstruction

Data Preparation 

and Description

STP calculation

Cluster analysis

Bus emission 

inventory comparison

Revised model years 

and age distributions

Other revised 

parameters

Emission factor 

estimation 

Benefits of bus lane
 

Figure 3. Overall research framework of this study. STP: scaled tractive power. 

3. Bus Trajectory Reconstruction Using Sparse GPS Data 

3.1. Modal-Activity Based Model Description 

Hao et al. [16] proposed the original modal activity-based model to reconstruct vehicle trajectory 

on arterial roads with a strong assumption, which is that the driving modes of a vehicle must evolve 

with a certain pattern, i.e., idle → acceleration → cruise → deceleration → idle →… periodically. Shan 

et al. [15] released such strong assumption, they assumed that there may exit an inflection speed 

during the time interval for a certain data pair, and modal transition only happens at the starting 

speed, ending speed and inflection speed. The framework of Shan’s revised modal activity-based 

model is descripted as follows: 

3.1.1. Identifying Vehicle Dynamic State 

There are four kernel matrixes to determine a vehicle dynamic state, named modal activity 

sequence (M), modal transition speed vector (V), travel time vector (T), and distance vector (X). For 

a certain sparse data pair, based on the starting speed (u1) and the ending speed (u2), we can determine 

the probability of a certain valid vehicle dynamic state {m, v, t, x}, using Equation (1). 

Figure 3. Overall research framework of this study. STP: scaled tractive power.



Sustainability 2019, 11, 2936 5 of 15

Due to the shortage of local microscopic vehicle emissions model in China, MOVES should be
localized to reflect local vehicle characteristics. The following three steps are conducted: (1) comparing
bus emissions inventory between US and China to find the suitable bus emissions rates stored in
MOVES database for buses in China; (2) revising model years and vehicle age distributions to reflect
local bus emission standards; (3) localizing other parameters, such as fuel supply, meteorology and
road types etc.

As the key input into MOVES, local link operation mode distributions are calculated based on
the formula of scaled tractive power (STP) using the reconstructed bus second-by-second trajectories,
which is introduced in Section 5. Then cluster analysis of K-means method is adopted to explore the
characteristics of vehicle operation mode distributions under different traffic conditions. Finally, based
on MOVES localization and local bus operation mode distributions, bus emission factors are estimated
including hydrocarbon compounds (HC), carbon monoxide (CO), nitrogen oxide (NOx), and PM2.5

(fine particulate matter, particles with aerodynamic diameter less than 2.5 um). Benefits of bus lane on
bus emission reductions are also analyzed.

3. Bus Trajectory Reconstruction Using Sparse GPS Data

3.1. Modal-Activity Based Model Description

Hao et al. [16] proposed the original modal activity-based model to reconstruct vehicle trajectory
on arterial roads with a strong assumption, which is that the driving modes of a vehicle must evolve
with a certain pattern, i.e., idle → acceleration → cruise → deceleration → idle → . . . periodically.
Shan et al. [15] released such strong assumption, they assumed that there may exit an inflection speed
during the time interval for a certain data pair, and modal transition only happens at the starting speed,
ending speed and inflection speed. The framework of Shan’s revised modal activity-based model is
descripted as follows:

3.1.1. Identifying Vehicle Dynamic State

There are four kernel matrixes to determine a vehicle dynamic state, named modal activity
sequence (M), modal transition speed vector (V), travel time vector (T), and distance vector (X). For a
certain sparse data pair, based on the starting speed (u1) and the ending speed (u2), we can determine
the probability of a certain valid vehicle dynamic state {m, v, t, x}, using Equation (1).

P

M = m, V = v, T = t, X = x

∣∣∣∣∣∣∣
Kmax∑
i=1

Ti = ∆t,
Kmax∑
i=1

Xi = ∆x

 (1)

where, ∆t is the time interval, ∆d is the total traveling distance during the time interval, and K is the
length of M.

3.1.2. Reconstructing Vehicle Trajectory for Acceleration/Deceleration Mode

To a certain acceleration/deceleration mode, we know the starting speed (vi), ending speed (vi+1),
time consumption (ti), and traveling distance (xi). Equations (2) and (3) can be used to estimate the
second-by-second vehicle speed. We assume that the accelerate rate follows a linear acceleration mode,
ai(t) = ai,1 + rit. {

v(t) = vi + ai,1 × t + 1
2 ri × t2

x(t) = vi × t + 1
2 ai,1 × t2 + 1

6 ri × t3 (2) ri =
6(vi+vi+1)×ti−12xi

t3
i

ai,1 =
vi+1−vi

ti
−

1
2 ri × ti

(3)
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3.1.3. Considering the Speed Oscillation Effect of Cruising Mode

Speed oscillation effect of cruising mode should be integrated in vehicle trajectory reconstruction.
Equation (4) is used to generate a vector A = [α1,α2, . . . ,ατ]

T, which follows a Gaussian distribution

N(0, σc) and satisfy the constraint (
τ∑

i=1
αi = 0).

A = σ
√

τ
τ−1 QB;

eTQ = 0; QTQ = I
(4)

where, B = [β1, β2, . . . , βτ−1]
T is (τ − 1) independent normal random numbers following N(0, σc), e is a

1 × τ all-one matrix, and Q is the τ × (τ − 1) orthonormal basis matrix.

3.1.4. Selecting the Best Vehicle Dynamic State

We select the best scenario {m*, v*, t*, x*} with the largest probability in a valid vehicle dynamic
state, using Equation (5). Then, vehicle trajectory could be reconstructed.

maxP

M = m∗, V = v∗, T = t∗, X = x∗
∣∣∣∣∣∣∣
Kmax∑
i=1

Ti = ∆t,
Kmax∑
i=1

Xi = ∆x

 (5)

3.2. Model Calibration for Bus Type

Shan et al. [15] conducted model calibration for LDVs on freeways and arterial roads. In this
study, second-by-second vehicle trajectory data from two buses are collected for model calibration for
bus type. Model calibration includes the following three aspects:

3.2.1. Driving Mode Segmentation

The kinematic parameter method with five parameters, (a1, a2, a3, a4, and a5) proposed by
Shan et al. [15] is adopted to segment driving mode for ground truth. For an acceleration driving
mode, the instantaneous accelerations should be greater than a1 m/s2, lasting for 3 s or longer, leading
to a speed increment larger than a2 m/s. Similarly, for a deceleration driving mode, the absolute
instantaneous decelerations are larger than a3 m/s2, lasting for 3 s or longer, with a speed decrease
larger than a4 m/s. The remaining speed points are classified as cruising (speed larger than a5 m/s) or
idling driving mode. Genetic algorithm is used to calibrate these five parameters. Equation (6) is the
function of fitness.

Fitness =
w×

∑
θ1 + (1−w) ×

∑
θ2

N
(6)

where θ1 is the standard deviation of acceleration of any cruising mode; θ2 is the average acceleration
of any cruising mode; w is the weight for the objective of θ1, with the value of 0.5 in this study; N is the
total time of cruising mode, representing the average error of one data point.

The calibrated results of these five parameters are 0.11 m/s2, 0.63 m/s, 0.22 m/s2, 0.68 m/s,
and 0.42 m/s. Compared with the calibration results of LDVs on arterial roads in Shan et al. [15], we find
that the acceleration/deceleration intensities of bus type show much smaller than the intensities of
LDVs because of the impact of bus stops.

3.2.2. Probability Estimation of Inflection Speed Point

Using the collected vehicle trajectory data, we generate the different time interval data pairs.
We calculate the gap between the inflection speed v̂ and the average speed v, donated as φ = v̂− v.
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The Gaussian Mixture Model (GMM) is used to estimate the probability of v̂. The probability density
function of v̂ is formulated as follows:

P(v̂) = P(v−φ) = P(φ) =
G∑

g=1

πgP(φ
∣∣∣g) (7)

where, g is the index of Gaussian distributions; πg is the weighting factor associated with the gth

Gaussian distribution (N(qg, σg)) and
G∑

g=1
πg = 1. We set G = 2. Then maximum likelihood method is

applied to calibrate the values of πg, qg, σ2
g.

max
∑

i

log(
G∑

g=1

πgN(φi
∣∣∣qg, σg) ) (8)

Expectation maximization algorithm is used to solve Equation (8). The parameters of GMM for
different time intervals for urban bus on arterial roads are listed in Table 2.

Table 2. Parameters for Gaussian Mixture Model (GMM) with the different time intervals for urban
bus on arterial roads.

∆t q1 q2 π1 π2 σ1 σ2

10 −0.480 0.582 0.600 0.400 0.742 0.007
15 −0.592 0.6314 0.495 0.505 0.538 0.015
20 −0.733 0.736 0.377 0.623 0.047 0.060
25 −0.806 0.804 0.375 0.625 0.065 0.073
30 −0.875 0.883 0.374 0.626 0.088 0.091

3.2.3. Distribution Parameters for Driving Modals

We assume the acceleration pace follows a Gaussian distribution (see Equation (9)). The distance that
a vehicle travels under the acceleration/deceleration mode also follows another Gaussian distribution
(Equation (10)),

ϕ =
t

∆v
∼ N(µt, σt) (9) d = t× (vs + ve)Φ

Φ = d
t×(vs+ve)

∼ N(µd, σd)
(10)

where vs and ve are the instant speed at the start and end of the acceleration/deceleration modal
respectively. Maximum likelihood estimation method is adopted to parameters calibration. Table 3
shows the calibration results of urban bus for acceleration and deceleration modals.

Table 3. Parameters calibration of urban bus for acceleration and deceleration modals.

Parameters
Acceleration Deceleration

ϕ Φ ϕ Φ

Mean 2.380 0.526 3.225 0.368
Standard deviation 0.660 0.071 0.745 0.045

For speed oscillation effect of cruising modal, we assumed the accelerating rate of cruising modal
followed a Gaussian distribution N(0, σc). The calibrated value of σc is 0.266 m/s2 for urban bus on
arterial roads.
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3.3. Trajectory Reconstruction Using Sparse GPS Data

Based on Shan’s model and calibration results of bus type, bus trajectories are reconstructed using
sparse GPS data. Figure 4 shows the result of a certain bus speed–time trajectory reconstruction with a
twenty-second time interval. Shan’s model shows good performance on bus trajectory reconstruction,
with the consideration of real-world driving behavior, such as acceleration/deceleration intensity and
speed oscillation effect of cruising modal.
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4. MOVES Localization

4.1. Bus Emissions Inventory Comparison

As a type of HDV, conventional diesel buses’ emission characteristics are examined in this study.
China’s vehicle emissions standard for HDVs was proposed in 2001, releasing the emissions limit
values of China I phase and China II phase. Then, HDVs’ emission standard was revised in 2005. Time
periods and vehicle emissions limits for China III phase, China IV phase, and China V phase have been
released through the revised HDVs’ emission standard.

A European steady state cycle measurement and a European load response test were conducted
to test the exhaust pollutants from compression ignition and gas fueled positive ignition engines of
HDVs. Note that the unit of standard emission factors of HDVs is g/kw·h, rather than g/km.

Table 4 shows the comparison of emission limits for diesel fueled HDVs between US and China.
For HC and CO emissions limits, there is no difference between China and US. For NOx, the years of
emission limits for HDVs in the US are ahead of the years of emission limits in China. For example,
China I phase of NOx for HDVs starts in 2001, while US starts in 1990, demonstrating the necessity of
revising vehicle fleet age distribution. The related years for PM emission in the US compared with five
phases in China are 1990, 1994, 1994, 2007, and 2007.

4.2. Bus Age Distribution Revision

Due to the differences of emissions limits standards between China and the US, it is necessary to
revise bus age distribution to reflect the actual vehicle fleet characteristics in Shanghai, China. As a
kind of commercial vehicle, the lifetime of a bus in Shanghai, China is eight years. Bus sparse GPS
data were collected in May 2013. Thus, There are only three bus emission standard phases during
that period, including China II phase, China III phase, and China IV phase. Figure 5a illustrates the
original bus age distribution of a bus fleet. We find that vehicle average age is 5.5 years in Shanghai,
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China. The proportion of buses which are eight years old is 20.3%, larger than the other age categories.
Note that the proportion of new buses operated in 2013 is only 5.5%.

Table 4. Emissions limits for diesel fueled heavy-duty vehicles (HDVs) comparison between the US
and China (g/kw·h).

Emission Standard China I Phase China II Phase China III Phase China IV Phase China V Phase

Time period 20012004 2004–2007 2008–2011 2012–2017 2017–
HC limit in China 1.23 1.1 0.33 0.46 0.46

HC limit in US 1.74 (1985–2010)
NOx limit in China 9.0 7.0 5.0 3.5 2.0

NOx limit in US 8.0 (1990) 6.7 (1991) 5.4 (1994) 3.4 (2004) 0.3 (2007)
CO limit in China 4.9 4.0 2.1 1.5 1.5

CO limit in US 20.8 (1985–2010)
PM limit in China 0.68 0.15 0.10 0.02 0.02

PM limit in US 0.804 (1990) 0.13 (1994) 0.013 (2007)

Note that: texts in parentheses mean the years of emission limits implementation in US.
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For HC and CO emissions estimation, there is no revision on model years and bus age distributions.
For NOx, buses operated in 2013 (compliant with China IV phase emission standard) is equivalent
to the US buses operated in 2005. Thus, model year for NOx estimation should be revised to 2005,
and bus age distribution should be revised to match the actual situation in Shanghai, China, as shown
in Figure 5b. Similarly, the model year for PM estimation should be revised to 2008. Furthermore,
the revised bus age distributions are different for the different vehicle emissions due to the different
control processes in China and the US (see Figure 5b).

4.3. Other Localized Parameters

In addition to the revised model years and bus age distributions, other inputs required by MOVES,
including fuel supply, vehicle/road type selection, and meteorological information, also need to
be localized.

Fuel quality show a significant impact on vehicle emissions [17]. The limited sulfur level for
conventional diesel buses in Shanghai, China is 50%. Thus, we select the MOVES fuel supply with
an ID number of 26010 (sulfur level is 44%, the one most close to Shanghai’s level). As to vehicle
type, the source type in MOVES is different to the highway performance monitoring system vehicle
class. We select type ID 42 transit bus as the vehicle type in this study. Road type is set to be “urban
unrestricted road”. Since temperature and humidity have significant impacts on vehicle emissions,
we set the normal temperature to 25 ◦C (77 ◦F) and the humidity to 70% with consideration of the local
meteorological conditions in Shanghai, China.

More importantly, local link vehicle operation mode distributions were calculated as the key input
in MOVES, which will be presented in the next section. The length of each link was calculated by
sparse GPS data and validated against Baidu Maps.
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5. Bus Operation Mode Distribution and Emission Estimation

5.1. Local Link Operation Mode Distribution Calculation

As for HDVs, STP is used in MOVES to represent HDV power output (see Equation (11)). Table 5
shows the division principle of vehicle operation mode with 23 categories. Vehicle operation mode
distribution describes the fractions of time consumed for each of the 23 categories,

STP = A×v
fscale

+ B×v2

fscale
+ C×v3

fscale
+

(a+g×sinθ)×v×m
fscale

A = m× 0.0643
B = 0.0032 + 5.06× 10−5

×m
C = 0

(11)

where, v is vehicle instantaneous speed (m/s), a is vehicle acceleration (m/s2), g is gravity acceleration
(m/s2), sinθ reflects road grade, m is the total mass of a bus with the number of 16 in this study, and fscale
is the fixed mass factor with the number of 17.1 in MOVES. A, B, and C are the road load factors,
with the unit of kw·s/m, kw·s2/m2 and kw·s3/m3.

Table 5. Vehicle operation mode division principle in MOtor Vehicle Emission Simulator (MOVES).

Braking (Bin0)

Ideling (Bin1)

STP (Kw/tonne)/Speed(mph) 0–25 25–50 >50

<0 kW/tonne Bin11 Bin21
0–3 Bin12 Bin22
3–6 Bin13 Bin23
6–9 Bin14 Bin24

9–12 Bin15 Bin25
>12 Bin16

12–18 Bin27 Bin37
18–24 Bin28 Bin38
24–30 Bin29 Bin39
>30 Bin30 Bin40
6–12 Bin35
<6 Bin33

Figure 6 shows the operation mode distribution of a certain bus for a link. The average speed of
this bus is about 14.7 km/h, and the road length of this link is about 1.2 km. Due to the influence of bus
stops and signal intersections, this bus accelerates and decelerates frequently, resulting in the highest
proportion (36%) of idling driving mode. The second highest proportion of operation mode is Bin 12 at
22%, showing the long duration of bus operation at low speeds. Meanwhile, there is no operation
mode for high speeds, such as vehicle traveling speed larger than 50 mph (or 80 km/h), due to the
speed limits of buses.

5.2. Cluster Analysis of Bus Operation Mode Distributions

Vehicle operation mode distributions of 892 links were calculated from bus sparse GPS datasets.
The average speed of these buses ranges from 1.5 km/h to 47 km/h, covering different traffic conditions.
Road length varies from 1 km to 3 km. Figure 7 shows the relationship between traveling speed and
the proportion of idling operation mode (recorded as Bin 1 in Table 5).

As shown in Figure 7, with the increase of vehicle traveling speed, the proportion of idling
operation mode (Bin 1) shows a decreasing trend. When the traveling speed is less than 5 km/h,
the proportion of Bin 1 is larger than 70%; in contrast, when the traveling speed is higher than 40 km/h,
the proportion of Bin 1 is lower than 10%. Meanwhile, proportions of Bin 1 show difference even at
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the same average speed due to the different driving patterns, resulting in different emission factors as
discussed in next section.
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The K-means cluster analysis method is adopted to explore the characteristics of vehicle operation
mode distributions considering different traffic conditions, implemented in Matlab [18]. Table 6 shows
the classified criteria for road traffic performance level of service (LOS) in China [19]. For example,
as for the major roads, there are four key speeds to divide different road traffic performance levels.
The values are 40 km/h, 30 km/h, 20 km/h, and 15 km/h, respectively. Thus, in our study, we set K
equal to 4. Figure 8 shows the four typical vehicle operation mode distributions. Average speed of
each typical vehicle operation mode distribution is also calculated.

Table 6. Classified criteria for road traffic performance levels. LOS: level of service.

Levels LOS A LOS B LOS C LOS D LOS E

Freeway v > 65 50 < v ≤ 65 35 < v ≤ 50 20 < v ≤ 35 v ≤ 20
Major road v > 40 30 < v ≤ 40 20 < v ≤ 30 15 < v ≤ 20 v ≤ 15
Minor road v > 35 25 < v ≤ 35 15 < v ≤ 25 10 < v ≤ 15 v ≤ 10

Note that: v means the road average speed, and the unit is km/h.

As exhibited in Figure 8, class 1 shows the largest proportion of idling operation mode (55.6%)
with the average speed of 10.78 km/h; the average traveling speed of classes 2 and 3 are 15.02 km/h and
19.90 km/h, respectively. Class 4 shows the lowest proportion of idling operation mode (13.6%) with
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the average speed of 28.36 km/h. For class 4, when the speed is higher than 28 km/h, there are some
high operation modes with proportions greater than 5%, such as Bin 21, Bin 22, and Bin 23.
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5.3. Bus Emission Estimation

Based on MOVES localization and calculated bus operation mode distributions, bus emission
factors were estimated, as shown in Figure 9. Overall, with the increase of vehicle traveling speed, bus
emission factors first showed a rapid decrease and then slowly declining trend, towards some minimum
values. The emission factors of HC, CO, NOX, and PM2.5 varied from 0.25 g/km to 3.92 g/km, 1.03 g/km
to 11.12 g/km, 12.86 g/km to 163.88 g/km, and 0.38 g/km to 3.22 g/km, respectively. Compared to LDVs,
buses show higher NOx and PM2.5 emission factors, due to their fuel type and higher vehicle weight.
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For comparison, NOx and PM2.5 emission factors are also estimated using original MOVES.
Results show that NOx emission factor estimated from localized MOVES is about 3.6 times greater
than estimation factor estimated from the original MOVES. For PM2.5, the emission factor estimated
by localized MOVES is about 2.9 times larger than the that from the original MOVES. The significant
differences in emission estimation between localized MOVES and original MOVES highlights the
necessity of MOVES localization.

5.4. Benefits of Bus Lane on Bus Emission Reductions

Figure 10 shows the boxplots of emissions factors with or without bus lane segmented by different
traveling speed. The boxplots show the range, upper/lower quartiles, and median observed values,
with statistical outliers as crosses or circles. The red-filled rectangles represent emission factors for
buses operating on bus lane, while the emission factors for buses on non-bus lane are denoted by the
blue rectangles.
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Figure 10. (a) bus HC emission factor estimation; (b) bus CO emission factor estimation; (c) bus NOx

emission factor estimation; (d) bus PM2.5 emission factor estimation. Noted that red-filled rectangle
shows the estimation results with bus lane, the hollow rectangle shows the estimation results without
bus lane.

Figure 10 indicates that under serious traffic congestion (traveling speed lower than 10 km/h),
on average, a bus operating on bus lane emits less pollutants than its counterpart on non-bus lane.
The emission reduction benefits of bus lanes can be explained by the fact that buses accelerate or
decelerate more frequently when mixing with private cars under traffic congestion period. However,
when the traveling speed is higher than 10 km/h, bus lane does not show a significant effect on reducing
bus emissions.
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6. Conclusions

This paper aimed to explore the characteristics of bus operation mode distributions and emission
factors based on localized MOVES using sparse GPS data in Shanghai, China. Eight bus routes
with forty-three buses were selected for data preparation covering different road levels and regions.
A research framework was then proposed, including bus trajectory reconstruction, MOVES localization,
operation mode distribution analysis, and emission factors estimation. For bus trajectory reconstruction,
the modal activity-based model was first introduced, followed by model calibration for urban bus
and bus trajectory reconstruction using sparse GPS data. The modal activity-based model showed
better performance than the linear interpolation model, with consideration of the real-world driving
behaviors, such as acceleration intensity and speed oscillation effect of cruising modal.

As to MOVES localization, bus emission inventories between China and the US were compared for
different emission limits to match the model year. Age distribution of bus fleets and other parameters
were also revised to reflect local features in Shanghai, China. Based on the reconstructed bus trajectories,
vehicle operation mode distributions were analyzed. Results reveal that with the increase in vehicle
traveling speed, the proportion of idling operation mode showed a decreasing trend. Four typical
operation mode distributions were identified using K-means cluster analysis. The average speeds of
these distributions were 10.78 km/h, 15.02 km/h, 19.90 km/h, and 28.36 km/h, respectively.

Finally, bus emission factors were estimated using localized MOVES and calculated bus operation
mode distributions. Bus emission reduction benefits of bus lanes were also analyzed. Results showed
that with the increase in traveling speed, vehicle emission factors first showed a rapid decreasing and
then a slowly declining trend, towards some minimum values. Under traffic congestion with traveling
speed less than 10 km/h, the emission factors of a bus operating on bus lane were lower than that
from a vehicle operating on non-bus lane. In contrast, when the traveling speed was greater than
10 km/h, there was no significant difference in emission factors between bus lanes and non-bus lanes.
The findings of this study will be useful for understanding the relationship between traffic conditions
and bus emission characteristics.

Note that this study was conducted mainly based on MOVES, and a validation of the emission
estimation performances using real-world PEMS data is needed for future work. The MOVES
localization method proposed in this study was a little complex, leading to the necessity of proposing a
new localization method to decrease complexity. For example, some average values can be regarded as
the input of localization to estimate bus emissions instead of age distribution revision. Furthermore,
other vehicle types such as LDVs and heady-duty trucks should also be evaluated in emission estimation.
Lastly, the authors note the limitation of the vehicle trajectory reconstruction model which fails to
consider many other factors, such as two or more inflection speeds and GPS position errors, though
model validation indicates its good performance.
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