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Abstract: Nitrogen loading from agricultural landscapes can trigger a cascade of detrimental effects on
aquatic ecosystems. Recently, the spread of aquatic weed infestations (Eichhornia crassipes, Egeria densa,
Ludwigia spp., and Onagraceae) in the Sacramento-San Joaquin Delta of northern California has raised
concerns, and nitrogen loading from California’s intensive farming regions is considered as one of
the major contributors. In this study, we employed the Soil and Water Assessment Tool (SWAT) to
simulate nitrogen exports from the agriculturally intensive San Joaquin River watershed to the Delta.
The alternate tile drainage routine in SWAT was tested against monitoring data in the tile-drained area
of the watershed to examine the suitability of the new routine for a tile nitrate simulation. We found
that the physically based Hooghoudt and Kirkham tile drain routine improved model performance
in representing tile nitrate runoff, which contributed to 40% of the nitrate loading to the San Joaquin
River. Calibration results show that the simulated riverine nitrate loads matched the observed data
fairly well. According to model simulation, the San Joaquin River plays a critical role in exporting
nitrogen to the Delta by exporting 3135 tons of nitrate-nitrogen annually, which has a strong ecological
implication in supporting the growth of aquatic weeds, which has impeded water flow, impairs
commercial navigation and recreational activities, and degrades water quality in Bay-Delta waterways.
Since nitrate loadings contributed by upstream runoff are an important nutrient to facilitate weed
development, our study results should be seen as a prerequisite to evaluate the potential growth
impact of aquatic weeds and scientific evidence for area-wide weed control decisions.

Keywords: nitrogen; tile drainage; SWAT; aquatic weed

1. Introduction

Agriculture plays a vital role in feeding the growing world population of 7.6 billion people, and
nitrogen fertilizer is essential for promoting and enhancing crop growth and development. However,
agricultural activities continue to alter the global nitrogen cycle by increasing the input of bioavailable
N to the environment [1]. There are growing concerns about the negative impacts of anthropogenic
nitrogen inputs on aquatic ecosystems and human health. The United States Environmental Protection
Agency (USEPA) reported nutrient enrichment as a primary reason for the pollution in streams,
lakes, estuaries, and other water bodies in the U.S. [2]. Excess nitrogen can lead to water quality
degradation via surface runoff into water bodies and leaching through the soil profile to groundwater.
High nutrient loading can contribute to eutrophication that triggers a cascade of detrimental effects
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on aquatic ecosystems, including hypoxic waters, altered food webs, and harmful algal blooms [3–6].
For example, recently, the spread of aquatic weed infestations in the Sacramento-San Joaquin Delta
of northern California has raised concerns. Aquatic weeds and associated pests threaten Delta’s
water supply to 25 million people and the statewide irrigated agriculture of $27 billion, a $300 million
recreational boating industry, and habitats for more than 750 species [7]. The Delta is also impacted by
pollution from agricultural areas upstream. Given this urgent need, the United States Department of
Agriculture (USDA) Agricultural Research Service has initiated the Delta Region Areawide Aquatic
Weed Project (DRAAWP) to develop and implement integrated aquatic weed control programs
(https://ucanr.edu/sites/DRAAWP/About_us/) [7]. To reach this goal, it is critical to understand the
nitrogen loading from upstream, which is intensively cultivated in the San Joaquin River watershed
and is the prerequisite to link nitrogen exposure with aquatic weed growth in Bay-Delta waterways.

Ecohydrological models are increasingly used to investigate the off-site movement of agrochemical
pollutants [8–13], since continuous water quality monitoring is labor expensive and cannot cover the
entire space for any time range. Statistical models, for example SPARROW (SPAtially Referenced
Regressions On Watershed attributes), could also be used to simulate nitrogen loads for California
streams. However, this model provides simulation results relevant to an average condition and does
not capture the dynamics of nitrogen loading [14]. Another advantage of ecohydrological models
is their capability to simulate the effects of various management practices in large and complicated
basins on pollutant loading to receiving water bodies under various scenarios, thereby assisting with
area-wide management and planning [15–17].

The Soil and Water Assessment Tool (SWAT) developed by USDA in the early 1990s is one
of the most universally utilized water quality models [18]. It is a continuous, semi-distributed,
and mechanism-based watershed-scale hydrologic model designed to investigate the effects of
nonpoint-source pollution and alternative management scenarios in large river basins. Many studies
reported that SWAT performed well in simulating nitrogen loads in surface water on an annual or
monthly basis [19–21] or on a daily basis [22]. Other studies suggested that SWAT overestimated
nitrate export during wet periods [23].

Although there is scientific need to understand the riverine nitrogen dynamics exported from
the San Joaquin Valley, which is one of California’s most intensive farming regions, nitrogen runoff

modeling is usually not the main focus for previously published studies. Most modeling studies
in this region focused on other agrochemicals, such as pesticides or salinity [24–26]. A mechanical
based nitrate simulation for the entire San Joaquin river basin is either briefly mentioned in previous
studies [8,20], or usually conducted at subbasin level, for example, in the Merced river basin and
Mustang river basin [27,28], which are located in the eastern mountain side of the San Joaquin river
basin. Nitrogen runoff loads from the western flat region of the San Joaquin valley, for example,
Orestimba Creek, Mud and Salt Sloughs, are rarely reported. However, monitoring studies indicated
that almost half the nitrate loading in the San Joaquin River is contributed by west-side agricultural
regions, where agricultural tile drainage is installed, contributing increasing nitrate loadings since
1970 [29].

A subsurface tile drainage system (tile drain) is an agricultural practice used to maintain acceptable
root zone aeration and salinity levels for agricultural production through control of shallow water
tables [30,31]. Ultimately, tile drains convey drainage water to surface water outlets. Tile drains are
installed in considerable portions of the western San Joaquin River watershed, making the receiving
water bodies vulnerable to nitrate pollution [14]. Therefore, when using the modeling method to
investigate nitrate fate and transport in areas with tile drainage installations, it is important to first
configure the model’s ability to capture the nitrate yield contributed by the tile-installed western
San Joaquin River watershed, and then provide predictive modeling and/or scenario analysis for
the entire basin. SWAT currently supports two methods to simulate tile drainage. The original tile
drain module is contributed by three empirical parameters. The alternate tile drainage routine results
from physical-based Hooghoudt and Kirkham equations [32], but has only been tested with a few
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datasets. Moriasi et al. [33] and Boles et al. [34] evaluated the alternate tile drainage equations based
on measured nitrate-nitrogen in tile flow in the Midwestern U.S. at three 13.5 × 15 m continuous
corn plots and in a small (47 km2) agricultural watershed, respectively. Evaluation against additional
datasets is necessary in order to examine the suitability of the alternate tile drainage routine for tile
nitrate simulation. The monitoring data in the tile-drained area of the San Joaquin River watershed in
California is a good dataset to test the new routine.

This paper aims to model nitrogen loading delivered from the San Joaquin River watershed into
the Delta using SWAT to advance scientific understanding of nitrogen transport processes in a partially
tile-drained agricultural basin. Our primary objectives are to (1) examine the performance of the
physically based tile drainage routine in nitrate simulation in the agriculturally intensive San Joaquin
River watershed, (2) quantify nitrate prediction uncertainty at the tile drainage installed area and
entire watershed outlet, and (3) investigate the nitrate export from the upstream San Joaquin River
watershed to the Bay-Delta estuary and discuss the implications for aquatic weed growth.

2. Materials and Methods

2.1. Site Description

The San Joaquin River watershed is one of the most productive agricultural regions in California
and worldwide. It is located in the middle of California’s Central Valley (Figure 1). About two-thirds of
the watershed is agricultural land [35]. The gross value of the agricultural production is over $25 billion
annually in the study region [36]. Its agricultural abundance includes more than 250 commodities.
The major crop types include almonds, vineyards, alfalfa hay, oats, corn, cotton, and tomatoes [37].
Pasture is also a major land use type, as three-quarters of the dairy herd in California is located in the
San Joaquin River watershed [35].
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The study watershed is drained by the San Joaquin River that originates in the Sierra Nevada
Mountains, flows northwest across the central valley, and eventually drains to the San Francisco
Bay-Delta estuary. The three major tributaries to the San Joaquin River are the Merced, the Tuolumne,
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and the Stanislaus Rivers, all located on the east side of the mainstem San Joaquin River (Figure 1).
Tile drainage is mostly installed at the west side flat agricultural land, with a covered area of
27,721 hectares. Regional observation reported a 25 mg/L N concentration in the tile flow to the Mud
Slough [38]. A long-term United States Geological Survey (USGS) monitoring site (#11303500) on the
San Joaquin River near Vernalis was chosen as the entire watershed outlet with the four inlets defined
at the USGS monitoring sites on the major eastern rivers (Figure 1). Another USGS site (#11261500) is
located in the middle of the watershed, which collects outflows mostly from the western flat region.
This region has a typical Mediterranean climate, with a wet and cool winter, but a dry and hot summer.
Previous studies reported 10–12 inches of mean annual precipitation in the San Joaquin river basin [39].

2.2. Data Sources and Preprocessing

2.2.1. Input Data

Required inputs to the SWAT model include topography, stream network (in flat terrain), weather,
land use, soil type, and management data. Topographic data were obtained from the 3D Elevation
Program [40]. Retrieved data are the 1/3 arc-second (10 m) digital elevation models, with a vertical
accuracy of 2 m (expressed as the root mean square error). Stream network data were collected
from the 1:100,000 scale National Hydrography Dataset [41]. We used the stream network data to
match the SWAT subbasin reaches with known stream hydrography [42]. This is most useful when
dealing with flat terrain, where delineation based on topography data could be difficult. Daily climate
data (precipitation, temperature, solar radiation, humidity, and wind speed) were obtained from
the California Irrigation Management Information System (CIMIS) and the Climate Forecast System
Reanalysis (CFSR) global meteorological dataset [43,44]. Land-use data were retrieved from the 2014
Cropland Data Layer [37]. Soil properties were obtained from the Soil Survey Geographic (SSURGO)
database [45].

Nitrogen fertilizer information (application rates at each crop) was estimated based on the
information from literature review and use rate recommendations from farm advisors [46–55]. Corn and
oats were defined to have 80% of the N fertilizer as manure [53,56]. For winter wheat, the value was
designated as 40% [53]. Continuous fertilizer operation was enabled for pastures where fresh manure
was applied daily. For the remaining crop types, only inorganic fertilizer was applied.

2.2.2. Monitoring Data

The monitoring data for nitrate concentrations in surface water were obtained from two sources,
the National Water Information System (NWIS) through the Water Quality Portal [57], and the
California Environmental Data Exchange Network (CEDEN), created by the State Water Resources
Control Board [58]. Nitrate concentrations were available for the San Joaquin River at Fremont Ford
Bridge (USGS #11261500) and for the watershed outlet, the San Joaquin River near Vernalis (USGS
#11303500). The rloadest package, the USGS water science R functions for Load Estimator (LOADEST),
was utilized to estimate monthly nitrate loads [59].

2.3. Model Setup

ArcSWAT (version 2012.10_2.18) was employed to organize and prepare spatial input for the
SWAT model. We partitioned the watershed into 27 subbasins and 647 hydrologic response units
(HRUs) where the HRUs were defined based on an overlap of topography, soil, and land use maps
using a 5% coverage threshold. The study period was from 1/1/2001 to 7/31/2014, as the most recent
data in the CFSR database were available up to 7/31/2014. The years of 2001 and 2002 were used as the
model initialization period. We used the next 6 year period of data for model calibration and data for
the period 1/1/2009 to 7/31/2014 for model validation.

Both the default and alternate tile drainage routines of SWAT were evaluated in this study. For the
original tile drainage routine, tile flow is computed by water table depth, tile drain depth, and the
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time draining soils to field capacity. The alternate tile drainage routine employs the Hooghoudt and
Kirkham tile drain equations to calculate tile flow, which considers water table depth, tile drain depth,
size, and spacing [33]. It also introduces a drainage coefficient that confine the flow rate similar to that
discovered in actual tile drainage systems [34]. Details of the alternate tile drainage routine can be
found in Moriasi et al. [32].

We assumed an equivalent network of parallel tile drains based on the tile-drained areas in the
western San Joaquin River watershed derived from the National Resources Inventory [60], following
Saleh and Domagalski [14]. 28 tile-drained HRUs in Los Banos Creek subbasin (Figure 1) were identified
by overlaying the tile drainage map with the HRU layer. Crop production in the tile-drained areas were
corn, cotton, tomatoes, alfalfa hay, and almond orchards, consistent with a previous report [61]. Most of
the soils in the tile-drained areas are hydrologic soil groups D and C (slow infiltration rate), except for
two almond HRUs where the soils were classified as group B. The tile drain parameters were set at the
starting point of calibration (Table 1) to compare the performance of the two tile drainage routines.
The default values for tile drain parameters were determined based on the SWAT manual, literature
review, and reports on the tile-drained areas in the San Joaquin River watershed [32,61,62]. Later, we
used only the alternate tile drainage routine in subsequent analyses due to its better performance in
simulating nitrate loads, which is considered in more detail in the Results and Discussion sections.

Table 1. Parameters for the original and alternate tile drainage routines of the Soil and Water
Assessment Tool.

Parameter Description Value

Parameters for the original tile drainage routine

ITDRN.bsn Tile drainage equations flag 0 = original,
1 = DRAINMOD

DDRAIN.mgt Depth to the subsurface drain (mm) 1510
TDRAIN.mgt Time to drain soil to field capacity (h) 24
GDRAIN.mgt Drain tile lag time (h) 96

DEP_IMP.hru Depth to impervious layer in soil profile (mm) Approximated by depth to the
bottom of the soil profile

Additional parameters for the alternate tile drainage routine

DRAIN_CO.sdr Daily drainage coefficient (mm/day) 35

LATKSATF.sdr Multiplication factor to determine lateral ksat (conk(j1,j))
from SWAT ksat input value (sol_k(j1,j)) for HRU 1

RE.sdr Effective radius of drains (mm) 20
SDRAIN.sdr Distance between two drain tubes or tiles (mm) 30,000

2.4. Calibration and Uncertainty Analysis

Chen et al. [63] determined the SWAT hydrologic parameters for the San Joaquin River watershed
previously; therefore, our calibration here focused on the nitrogen parameters only while keeping
the hydrologic parameters unchanged. The Sequential Uncertainty Fitting version 2 (SUFI-2)
algorithm embedded in the SWAT-CUP program was used for auto-calibration and uncertainty
analysis. Aggregated uncertainties came from model input, monitoring data, model structure, and
parameterization [64,65]. The parameter uncertainty was propagated through SWAT to generate a
95% prediction uncertainty band (95 PPU) in the output by SUFI-2. In order to evaluate the prediction
uncertainty band, two indices were developed to evaluate observation versus simulation, the P-factor
and the R-factor. The P-factor is the percentage of the observed data bracketed by the 95 PPU. A large
P-factor indicates that a large portion of the model uncertainty is being accounted for [66]. The R-factor
is the ratio between the average thickness of the 95 PPU uncertainty band and the standard deviation
of measurement. The R-factor implies the width of the uncertainty interval. Therefore, small values
(close to 1) are desirable. A trade-off should be sought between the two factors, since the larger P-factor
can be obtained when the R-factor is allowed to increase [67].
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In this study, initial one-at-a-time sensitivity analysis indicated that nutrient transport from the
landscape was the most sensitive process. SWAT was first manually calibrated using nitrate loads
measured at the two monitoring stations beginning with the upstream station and subsequently moving
to the watershed outlet. Initial ranges of the relevant parameters in the upstream and downstream
subbasins were determined based on the results of manual calibration. Automatic calibration was
performed thereafter, which included both monitoring stations in the objective function φ:

φ =

{
|b|R2 if |b| ≤ 1
|b|−1R2 if |b| > 1

where φ is the weighted R2, b is the gradient of the regression line, and R2 is the coefficient of
determination. Considering both b and R2, φ quantifies systematic over- or under-prediction together
with dispersion [68], with ranges only between 0 and 1, so model performance is not governed by
the worst events [66,67]. After each iteration, SWAT-CUP calculated the 95 PPU, the P-factor, and the
R-factor, and new parameter ranges for the next iteration. Iterations were not finished until satisfactory
P-factor and the R-factor values were obtained. Here, we performed four iterations with 500 SWAT
runs each to achieve satisfactory modeling results.

2.5. Performance Measures

Deterministic simulation results (SWAT with the best parameter estimates) are also presented
so that the established performance measures (PMs) and performance evaluation criteria (PEC) can
be applied to evaluate simulation results. The following PMs (Table 2) were chosen in this study:
(1) coefficient of determination (R2), (2) Nash-Sutcliffe efficiency (NSE), and (3) percent bias (PBIAS).
The corresponding PEC for these PMs were adopted from a recent meta-analysis on PMs and PEC
for widely used watershed-scale models including SWAT [69]. The statistical analysis and data
visualization were performed in R [70].

Table 2. Performance measures and associated performance evaluation criteria.

Performance Ratings
Nitrogen

R2=(
∑n

i=1(yi−y)(ŷi−ŷ)√∑n
i=1(yi−y)2

√∑n
i=1(ŷi−ŷ)

2
)2

NSE=1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−y)2 PPBIAS=
∑n

i=1(ŷi−yi)∑n
i=1yi

×100 (%)

Very good R2 > 0.70 NSE > 0.65 |PBIAS| < 15
Good 0.60 < R2

≤ 0.70 0.50 < NSE ≤ 0.65 15 ≤ |PBIAS| < 20
Satisfactory 0.30 < R2

≤ 0.60 0.35 < NSE ≤ 0.50 20 ≤ |PBIAS| < 30
Unsatisfactory R2

≤ 0.30 NSE ≤ 0.35 |PBIAS| ≥ 30

Note: yi and ŷi are the ith observed and modeled values, y and ŷ is the average of the observed and modeled values,
and n is the sample size.

3. Results

3.1. Tile Drainage Simulation

Virtually all the tile drainage from the western San Joaquin River watershed has been discharged
directly to the San Joaquin River since 1985 [38]. The Fremont Ford Bridge monitoring station (USGS
#11261500) along the San Joaquin River is located immediately downstream from the discharge point,
making it the perfect location to use in evaluating the capability of the alternate tile drainage routine in
SWAT. Under default settings, the two tile drainage routines produced almost identical streamflow at
the Fremont station, while peak nitrate loads were reduced by half when the alternate tile drainage
routine was used (Figure 2). By incorporating the more physically based drain equations (Hooghoudt
and Kirkham tile drainage algorithm) with a drainage coefficient, the alternate tile drainage routine led
to better match to measured nitrate loads. According to the model simulation, tile nitrate accounted
for 40% of nitrate yields in the San Joaquin River watershed from 2003 to 2015, which is consistent
with previous published studies [29,71].
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Figure 2. Observed (obs) and simulated (sim) monthly nitrate loads for the San Joaquin River at Fremont
Ford Bridge using (a) the default tile drainage routine, and (b) the alternate tile drainage routine.

3.2. Sensitive SWAT Parameters

Table 3 lists the set of sensitive parameters for nitrogen, their calibrated ranges and values of
the optimal performance. Simulated nutrient fate and transport in SWAT is affected by the land
phase controlling nutrient loading from HRUs and subbasins, and the channel phase regulating the
movement of nutrients via the main channel and in-stream nutrient cycling [72].

Table 3. Sensitive parameters, calibrated ranges, and optimal values.

Parameter Description Lower
Limit

Upper
Limit

Optimal
Value

CMN.bsn Rate factor for humus mineralization of active organic
nutrients (N and P) 0.000145 0.000249 0.000169

CDN.bsn Denitrification exponential rate coefficient 1.1 3 2.357197
SDNCO.bsn Denitrification threshold water content 0.57 1.1 1.001510

NPERCO.bsn Nitrate percolation coefficient 0 0.2 0.176200
ANION_EXCL.sol Fraction of porosity from which anions are excluded 0.01 0.79 0.446
HLIFE_NGW.gw Half-life of nitrate in the shallow aquifer (days) 33 200 90.870819

DEP_IMP.hru Depth to impervious layer in soil profile (m) 0 6 1.23500

BC1.swq Rate constant for biological oxidation of NH4 to NO2
(day−1) 0.21 1 0.909150

BC2.swq Rate constant for biological oxidation of NO2 to NO3
(day−1) 0.37 2 1.789952

BC3.swq Rate constant for hydrolysis of organic N to NH4 (day−1) 0.24 0.4 0.267680

We found that the parameters affecting nitrogen transport from the landscape were the most
sensitive in SWAT predictions. These included the rate factor for humus mineralization of active organic
nutrients (CMN.bsn), the denitrification exponential rate coefficient (CDN.bsn), the denitrification
threshold water content (SDNCO.bsn), the nitrate percolation coefficient (NPERCO.bsn), the fraction of
porosity from which anions are excluded (ANION_EXCL.sol), and the half-life of nitrate in the shallow
aquifer (HLIFE_NGW.gw). Three channel parameters were found to be sensitive for nitrate load
simulation at the watershed outlet. These parameters were the rate constants for biological oxidation
of NH4 to NO2 (BC1.swq), NO2 to NO3 (BC2.swq), and N to NH4 (BC3.swq). Since tile drainage is
only installed in the Los Banos Creek subbasin, the DEM_IMP parameter is only assigned to HRUs in
this subbasin.

3.3. Simulation of Riverine Nitrate Loads

According to the model simulation, an average of 3135 tons of nitrate were exported annually
through the San Joaquin River near the Vernalis outlet over the study period (Figure 3). Annual nitrate
loads at the Vernalis outlet ranged from 1657 tons/year in 2013 to 6283 tons/year in 2006. The 95 PPU
band (shaded area in Figure 3) was calculated based on the final parameter ranges presented in Table 3.
For the San Joaquin River at Fremont Ford Bridge, the 95 PPU band bracketed 56% and 67% of the
measured data during calibration and validation, respectively (Table 4). For the San Joaquin River near
Vernalis, more than 50% of the measurements were captured by the 95 PPU. The average values for
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the R-factor were 0.74 and 1.77 for the Vernalis and Fremont stations, respectively. For deterministic
simulations, nitrate simulation results were rated as at least “satisfactory” based on R2 and PBIAS
during the calibration and validation periods at both stations. In particular, the performance rating
was at least “satisfactory” according to all three metrics during the calibration period at the watershed
outlet. NSE ratings were consistently lower as compared to the other two metrics. Illustrations of
the observed and simulated nitrate loads indicate that some peak nitrate loads were overestimated,
especially at the Fremont station (Figure 3). The poor performance in NSE is caused by the mismatch of
peaks in 2005 and 2011. Since NSE computes the differences between the observation and simulation
as square values (Table 2), it is sensitive to peak values [73]. However, SWAT still tracked the monthly
nitrate loadings in the San Joaquin River reasonably well for other months.
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Table 4. Calibration and uncertainty analysis for monthly nitrate loads in the San Joaquin River
watershed. NSE, Nash-Sutcliffe efficiency; PBIAS, percent bias.

Station P-Factor R-Factor R2 R2 Rating NSE NSE Rating PBIAS
(%)

PBIAS
Rating

Calibration of nitrate simulation (2003–2008)
Vernalis 0.53 0.63 0.68 Good 0.45 Satisfactory −22 Satisfactory
Fremont

Ford Bridge 0.56 1.72 0.67 Good −0.11 Unsatisfactory 16 Good

Validation of nitrate simulation (2009–2014)

Vernalis 0.51 0.86 0.71 Very good 0.25 Unsatisfactory 24 Satisfactory
Fremont

Ford Bridge 0.67 1.82 0.52 Satisfactory −0.73 Unsatisfactory 29 Satisfactory

4. Discussion

4.1. Tile Drainage Simulation

The default tile drainage routine calculates drainage flow timing based on only one parameter,
TDRAIN (time to drain soils to field capacity). This method does not differentiate TDRAIN between
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large storms and small events [34]. The alternate tile drainage routine in SWAT incorporates the more
physically based Hooghoudt and Kirkham tile drain equations, instead of a simple parameter TDRAIN.
It also incorporates a drainage coefficient that limits the possible drainage volume in 24 h, therefore
reducing the allowed maximal nitrate loading rates. The alternate tile drainage routine changes
the shape of the nitrate runoff hydrograph. In that way, the pollutographs with abrupt peaks are
altered to ones with smooth, more widely spread “bumps” (Figure 2). As a result, model predictions
compared fairly well with the observed data. Our results show that the physically based Hooghoudt
and Kirkham tile drain equations together with a drainage coefficient are able to reliably predict nitrate
losses delivered by tile drains. No significant differences in the predicted streamflow compared to the
measured values were found between the original and alternate tile drainage routines. This result
occurs because the flow volume at the Fremont Ford Bridge is heavily dependent on upstream reservoir
releases [24]. As a result, tile drainage has little impact on the overall streamflow trends.

We found that about 40% of the simulated nitrate losses were from tile nitrate in the San Joaquin
River watershed over the study period. This finding is consistent with our knowledge that tile
drains are critical for nitrate movement in surface water within the San Joaquin River watershed [14].
Results from a previous study suggested that tile drainage contributed 22% of the total nitrogen loads
in the San Joaquin River at Vernalis for the years 1985 to 2004 [38]. This percentage was derived from
measured nitrogen loads and a methodology for estimating tile drain discharge and concentrations [39].
Since total nitrogen is the sum of nitrate-nitrogen, nitrite-nitrogen, ammonia-nitrogen, and organic
nitrogen, we consider our estimates comparable to the previous study.

4.2. Simulation of Riverine Nitrate Loads

In general, monthly nitrate loads in the San Joaquin River were well captured by SWAT, except
for the overestimation of peak loads at the Fremont station (Figure 3). As a result, NSE showed less
correspondence between observed and simulated values (Table 4), despite R2 and PBIAS ratings
of at least “satisfactory” that indicated both strong linear relationships between the observed and
simulated loads and low average model simulation bias (over- vs. under-estimation). One of the major
disadvantages of NSE is its sensitivity to large values in a time series [68]. Therefore, overestimation of
peak loads is likely to lead to poor NSE performance ratings.

In hydrologic modeling, uncertainties in predicted output may arise from model structure, model
parameters, and spatial and temporal variability in the input data [64,74]. SUFI-2 maps all parameter
uncertainty sources and aims to achieve the smallest range of parameter uncertainty while bracketing
most of the measurements in the 95 PPU band. These two aspects were quantified by the P-factor,
which measures to what extent model uncertainties are being considered, and the R-factor, which
indicates the strength of calibration [66]. Results from uncertainty analysis indicate that there was a
balance between uncertainty measures and the strength of calibration (Table 4). Although the R-factor
was slightly greater than the desired value of 1, we did not continue to refine the uncertainty analysis
because a further decrease in the parameter ranges would lead to a P-factor of less than 0.5.

In this study, the major sources of uncertainty in nitrogen simulation include the lack of information
about the rate and date of fertilizer and manure application at the HRU level. Fertilization application
rates and timing vary among regions and growers, depending on weather patterns, water availability,
crop prices, yield goals, etc. (M. Lundy, personal communication, March 2017). Uncertainty also exists
in manure application rates and areas. Manure generated by confined animal feeding operations is
typically applied to adjacent forage cropland. Application rates are dictated by a variety of factors,
including the capacity of the manure storage pond and the type of crop [54]. In preparing the nitrogen
input data, we used average nitrogen application rates and a single schedule. We also assumed
that a fixed portion of the nitrogen input was derived from manure for forage crops. While such
simplifications do not strictly represent the actual distribution of nitrogen inputs across the San Joaquin
River watershed, the general lack of explicit fertilizer and manure application data requires the use of
a simplified, standard nitrogen management routine. Such approximations are frequently adopted in
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nutrient modeling [19,75–78]. Previous studies [14,79,80] derived estimates of nitrogen inputs in the
San Joaquin River watershed from reports compiled by USGS in support of its National Water-Quality
Program (NWQP) [2,81,82]. These data are too coarse for our modeling purposes, since they are annual
county-level estimates. There is clearly a need for better estimates of fertilizer and manure application
data with improved spatial and temporal resolution in intensive nutrient input areas, such as the San
Joaquin River watershed.

4.3. Riverine Nitrate Exports, Aquatic Weed Infestation, and Future Climate Change Impact

The San Joaquin River plays a critical role in exporting nitrogen to the Delta, as 3135 tons of nitrate
were exported annually through the Vernalis outlet (Figure 3). Loading from the San Joaquin River is
particularly important during the summer months when the San Joaquin River watershed contributed
50% of the total nitrogen loading to the Delta [38]. Results in this study demonstrate the impacts of tile
drainage on nitrogen loading in the San Joaquin River watershed. Therefore, conservation practices
for reducing tile nitrate loss could be helpful in mitigating aquatic weed infestations in the Delta.
For example, previous research shows that a controlled drainage system, which contains moveable
flash boards to control the subsurface water table, is reliable for reducing nitrate loss through tile
drains [83].

River nutrient inputs are one of the major drivers of the summertime growth of invasive aquatic
vegetation, especially floating aquatic vegetation like water hyacinth, which obtains nutrients primarily
from the water column. In general, increasing nitrogen levels lead to increases in biomass and density
of aquatic macrophytes [3,84]. However, the relative contribution of nutrients in facilitating the growth
and spread of invasive aquatic vegetation is not well understood, especially in the context of the
complex Delta ecosystem [3]. Ongoing efforts to understand the response mechanisms of invasive
aquatic weeds to nutrient inputs include the development of aquatic weed growth models [7,85].
Responses to nitrogen, as well as other limiting factors, such as temperature and light, are explicitly
defined based on data collected in lab and field experiments. Simulated nitrogen loadings and
concentrations from the outlet of the San Joaquin river basin could support aquatic weed growth
models with important water quality parameters, such as nitrate loading to the Delta.

Climate change in the study region indicates a drier tendency with higher temperature and lower
precipitation [86], which reduces snowpack in the eastern mountain region, and hence reduces the
water storage in the state and Federal reservoirs [87]. Brekke, et al. [88] evaluated the potential climate
change impacts on regional water resources in the San Joaquin river basin. Streamflow shifts in both
the amount and timing are predicted by the CalSim model [89]. A generalized tendency of decreased
reservoir inflows with earlier peaks in the eastern San Joaquin region is expected, indicating substantial
impacts on the operation and planning of water resources, especially irrigated agriculture with heavy
reliance on released reservoir water. This tendency will produce adverse effects on water quality,
especially water salinity and nitrate concentration. For example, reduced water deliveries to the west
agricultural regions from reservoirs encourage water reuse and groundwater exploitation, resulting in
tailwater and tile drainage with higher concentrations of salts and nitrates conveyed to the San Joaquin
River, eventually draining to the Bay-Delta Estuary.

Historical observation records already indicate upward trends of nitrate concentrations in the San
Joaquin river basin. For example, nitrate concentration has increased from 1 mg/L to around 1.4 mg/L
from 1975 to 2004 near Vernalis. For a specific monitoring site (Mud Slough) at western agricultural
region, the increasing trend is as high as 493% [38]. Drier and warmer climates in the future has
potentials to accelerate this increasing trend in San Joaquin water ways, facilitating the rapid growth
of water hyacinth, especially under warmer conditions [90]. Previous studies indicated that higher
density and rapid growth rates (10 kg/m2 in 50 days) are predicted for water hyacinth in a eutrophic
environment (dissolved nitrogen more than 1 mg/L) under warm conditions (30 ◦C) [91].

Additional modeling efforts are still required to characterize the fate and transport of nitrogen
within the Delta [7,92]. In the future, coupling watershed and Delta models with aquatic weed growth
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models would allow us to explore the impact of agricultural nitrogen loading on the downstream
aquatic environment. The coupled model could be used to assess alternative agricultural management
practices and climate scenarios (e.g., drought) [6,93–96], leading to proactive management strategies
for aquatic weed control.

5. Conclusions

In this study, we used the SWAT model to investigate nitrogen exports from the San Joaquin River
watershed to Bay-Delta, California. We evaluated the tile drain routines of SWAT and found that the
more physically based Hooghoudt and Kirkham tile drain equations, and the inclusion of a drainage
coefficient, better represent the measured nitrate loads. Simulations suggested that 40% of nitrate
loading to the San Joaquin River came from tile nitrate, consistent with previous studies, which showed
that tile drains are important for nitrate delivery in the San Joaquin River watershed. SWAT tracked the
monthly riverine nitrate dynamics reasonably well, given the uncertainty in the nutrient management
data. More accurate and consistent data on nitrogen use at finer temporal and spatial resolutions are
clearly needed. The San Joaquin River plays an important role in supplying nitrogen to the Bay-Delta
by exporting 3135 tons of nitrate-nitrogen annually, which is an important nutrient source for aquatic
weed growth. Future climate change indicated an increasing trend of nitrate concentration exported
from San Joaquin river basin, which facilitates the rapid growth of water hyacinth under warmer
conditions, leading to a more severe infestation situation in the Bay-Delta waterways. Our modeling
results could be further used to drive downstream aquatic weed growth models to assess the relative
importance of nutrient loading on aquatic weed growth, potentially yielding insights into sustainable
management practices for improved weed control.
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