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Abstract: Slender steel footbridges suffer excessive human-induced vibrations due to their low
damping nature and their frequency being located in the range of human-induced excitations. Tuned
mass dampers (TMDs) are usually used to solve the serviceability problem of footbridges. A multiple
TMD (MTMD) system, which consists of several TMDs with different frequencies, has a wide
application in the vibration control of footbridges. An MTMD system with well-designed parameters
will have a satisfactory effect for vibration control. This study firstly discusses the relationship
between the acceleration dynamic amplification factor and important parameters of an MTMD
system, i.e., the frequency bandwidth, TMD damping ratio, central frequency ratio, mass ratio and the
number of TMDs. Then, the frequency bandwidth and damping ratio optimal formulas are proposed
according to the parametric study. At last, an in-service slender footbridge is proposed as a case study.
The footbridge is analyzed through a finite element model and an in situ test, and then, an MTMD
system is designed based on the proposed optimal design formulas. The vibration control effect of
the MTMD system is verified through a series of in situ comparison tests. Results show that under
walking, running and jumping excitations with different frequency, the MTMD system always has an
excellent vibration control effect. Under a crowd-induced excitation with the resonance frequency,
the footbridge with an MTMD system can meet the acceleration limit requirement. It is also found
that the analysis result agrees well with the in situ test.

Keywords: footbridge; serviceability problem; multiple tuned mass damper; optimal design; in situ
test; human-induced vibration; passive control

1. Introduction

Because of the beautiful architectural appearance, short construction period and high economy,
slender steel footbridges became more and more popular than before and were common in urban
areas [1–8]. With the development of high-performance materials, footbridges became slenderer and
lighter [9–11]. However, slender steel footbridges usually had a low damping ratio, and their frequency
was located in the range of human-induced excitations [12,13], e.g., walking, running and jumping
excitations. They were suffering from excessive human-induced vibrations [14]. When the resonance
phenomenon happens, it would cause a more and more conspicuous serviceability problem [15].

To solve the serviceability problem, one choice was to strengthen the footbridge. However, this
would cause the waste of materials and environmental pollution, but obtains little effect. A sustainable
way was to use structural control technology [16]. One of the most traditional structural control
devices was the tuned mass damper (TMD), which consisted of a mass element, a stiffness element
and a damping element. It was usually used to control the in-service human-induced vibrations of
the slender footbridges [17]. When the frequency of a TMD was well-tuned and its damping ratio
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was also reasonable, it would have an excellent vibration control effect [18]. TMDs already had a
wide application in vertical pedestrian induced vibration control. Moutinho et al. [19] controlled a
footbridge using passive and semiactive TMDs. Lievens et al. [20] designed a TMD for a footbridge
to improve its serviceability. Elsa et al. [21] proposed the implementation of TMDs to protect the
Pedro e Inês footbridge. Casado et al. [22] proposed the implementation of passive and active
TMDs for an in-service pedestrian bridge. Tubino and Piccardo [23] optimized a TMD to control
the human-induced vibration of footbridges. Huang et al. [24] proposed a shape memory alloy
(SMA)-based TMD to reduce the excessive human-induced vibration. Rathi and Chakraborty [25]
optimized the TMD considering the reliability-based performance. Lievens et al. [26] proposed a
robust vibration serviceability assessment of footbridges under pedestrian excitations. Rezaei and
Banazadeh [27] proposed a probabilistic risk-based performance evaluation of seismically base-isolated
steel structures under far-field earthquakes. Tajammolian et al. [28] presented a seismic fragility
assessment of asymmetric structures supported on TCFP bearings subjected to near-field earthquakes.
From References [26–28], it could be known that supplemental dampers (such as TMD) can be used in
parallel to other controlling devices (such as base isolations) to optimally design the performance.

However, a TMD had a narrow control bandwidth, and it is sensitive to the frequency
deviation [29–32]. When a TMD was mistuned due to the unreasonable design and the variation of
the primary structural frequency, its vibration control effect would decrease [33,34]. A multiple TMD
(MTMD) system, which consisted of several TMDs with different frequency, had a wide application
in vibration control of footbridges [35]. An MTMD system could extend the control bandwidth of a
single TMD, and therefore, it was more robust and effective.

There were several pieces of research and real project applications of MTMD systems. Carpineto
et al. [35] mitigated the human-induced vibration in suspension footbridges using MTMDs. Li et al. [36]
presented the crowd-induced random vibration control using MTMDs. Lu et al. [37] applied an MTMD
system to control the human-induced vibration in the Expo Culture Centre. Gaspar et al. [38] studied
the multimode vibration control using MTMDs, under the human rhythmic activities. Daniel et al. [39]
proposed the multimode control of footbridges using MTMDs. Jokic et al. [40] presented a reduced-order
optimization of MTMDs. Roman and Justyna [41] carried a dynamic analysis of structures with
MTMDs. Hoang and Warnitchai [42] designed an MTMD system through a numerical optimizer.
Nakhorn et al. [43] proposed a nonlinear MTMD system for a footbridge. Recently, Li et al. [6] proposed
a numerical study of vibration control of a large-span pedestrian suspension bridge using an MTMD
system. Wang et al. [7] presented the vertical human-induced vibration control of a long-span steel
footbridge using TMDs. Though they are both important contributions, however, the detail parametric
study and optimal design method are absent in these two references.

For a single TMD, it was generally accepted that the parameters could be optimized according to
Reference [44]. However, to the knowledge of the authors, there was still no widely-recognized design
criteria for an MTMD system. There was little research about how to design the main parameters of an
MTMD system, i.e., the central frequency ratio, mass ratio, the number of TMDs, frequency bandwidth
and damping ratio. In order to fill this blank, a parametric study and an in-service footbridge case
study were proposed in this paper.

To propose an optimal design method of an MTMD system, it was necessary to parametrically
study every important parameter in the MTMD system first, which had not been proposed in other
papers. Then, the optimal process of an MTMD system was concluded and further verified through a
particular case study. Therefore, this paper firstly discussed the parameters of an MTMD system, i.e.,
the frequency bandwidth, TMD damping ratio, central frequency ratio, mass ratio and the number of
TMDs. Then the frequency bandwidth and damping ratio optimal formulas were proposed according
to the parametric study, which are shown in Section 2. Then, the optimal design process of an MTMD
system was proposed in Section 2.7. Section 3 presented an in-service slender steel footbridge as a case
study. The footbridge was analyzed through the finite element model and an in situ test, and then, an
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MTMD system was designed based on the proposed optimal design formulas. Section 4 presented a
series of in situ human-induced vibration comparison tests to verify the control effect of the MTMD.

2. Parametric Study and Optimal Design

2.1. Schematic Diagram and Dynamic Analysis

For a simply supported footbridge, the first vertical mode is usually dominated [13]. Therefore,
this kind of footbridge can be simplified as a single-degree-of-freedom (SDOF) system. When it
is coupled with an MTMD system, the schematic diagram is shown in Figure 1, under a vertical
harmonic excitation.
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Figure 1. The schematic diagram of a single-degree-of-freedom (SDOF) primary structure with a
multiple tuned mass dampers (MTMD) system.

In Figure 1, ms, ks and cs are the mass, stiffness and damping coefficients of the primary structure.
n is the total number of TMDs in the MTMD system. mn, kn and cn are the mass, stiffness and damping
coefficient of the TMD with the numerical order n. P and ω are the amplitude and circular frequency of
the external harmonic excitation respectively. t means the time. It is assumed that the TMD is arranged
in order of frequency increase, and their frequency is in an arithmetic progression.

The dynamic equation of the dynamic system in Figure 1 can be written as
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In Equation (1), j is the numerical order of a TMD in the MTMD system. Under a harmonic
excitation, the dynamic response in the steady state can be written as [1]{

xs = Hseiwt

x j = H jeiwt , (2)

In Equation (2), Hs and H j are the response amplitude of the primary structure and a TMD with the
numerical order j, respectively. To analyze the relationship between the primary structural response
and the parameters of an MTMD system, Hs can be firstly calculated as

Hs =
P

ks −w2ms + iwcs −w2
n∑

j=1
m j

k j+iwc j

k j+iwc j−w2m j

, (3)
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For simplification, it is defined that primary structural circular frequency ωs =
√

ks
ms

; circular

frequency of the TMD with the numerical order j, ω j =

√
k j
m j

; damping ratio of the primary structure

ξs =
cs

2msωs
; excitation frequency ratio g = ω

ωs
; TMD frequency ratio f j =

ω j
ωs

; single TMD mass ratio

with the numerical order j µ j =
m j
ms

; MTMD mass ratio µ =
n∑

j=1
µ j; central frequency ratio fT = ωT

ωs
,

where ωT is the central frequency of TMDs in an MTMD system; frequency bandwidth ratio χ = ωn−ω1
ωT

,
where ωn is the circular frequency of the last TMD with the maximum frequency, and ω1 is the circular
frequency of the first TMD with the minimum frequency; TMD damping ratio ξ j =

c j
2m jω j

, where m j, k j

and c j are the mass, stiffness and damping coefficient of the TMD with the numerical order j, and it is
assumed that all TMDs have the same damping ratio.

As for the serviceability problem, the primary structural acceleration response is usually used as
the evaluation index. The detailed acceleration limit value can be found in References [45–50], and
also according to the requirement of the client. Then, the acceleration dynamic amplification factor can
be calculated as

DMFacc =
g2√

R2
z + I2

z

, (4)

In Equation (4), Rz and Iz mean that
Rz = 1− g2

− g2
n∑

j=1
µ j

f 2
j ( f 2

j −g2)+(2ξ j f j g)
2

( f 2
j −g2)

2
+(2ξ j f j g)

2

Iz = 2ξsg + g4
n∑

j=1
µ j

2ξ j f j g

( f 2
j −g2)

2
+(2ξ j f j g)

2

, (5)

It can be seen in Equations (4) and (5) that the primary structural acceleration dynamic amplification
factor is mainly related to the frequency bandwidth, TMD damping ratio, central frequency ratio, mass
ratio and the number of TMDs in the MTMD system. Therefore, in order to decrease the primary
structural acceleration response, it is necessary to discuss and optimally design these parameters.

Considering that the damping ratio of the slender footbridge is low and for simplification, in the
following parametric discussion, ξs is ignored and set to be zero. It can be known from Reference [23]
that for a single TMD, the optimal frequency is fT =

√
1/(µ+ 1), and it is also reasonable when fT = 1.

To find a better choice for the MTMD system, these two cases will be compared in the following.

2.2. Discussion on the Frequency Bandwidth and TMD Damping Ratio

The relationship between DMFacc and excitation frequency ratio g, with different TMD damping
ratios ξT is shown in Figure 2.

In Figure 2, the number of TMDs is 5, the frequency bandwidth is set to be 0.225, the MTMD mass
ratio is 4.0% and fT = 1. It can be seen that because it is a six DOF system, there are six distinct crests
when the TMD damping ratio is low (ξT = 1.9%). As the ξT increases, the maximum DMFacc will
decrease firstly and then increase. It also can be known from Figure 2 that, in this case, the optimal ξT

is about 4.9%.
The relationship between DMFacc and excitation ratio g, with different frequency bandwidth χ is

shown in Figure 3. In Figure 3, the TMD damping ratio ξT is set to be 4.9%, for example.
It is proposed in Figure 3 that, when χ = 0.0, which means that it becomes a single TMD, the

DMFacc is at its maximum compared to the other three cases. As the χ increases, the maximum
DMFacc decreases firstly and then increases. Therefore, there is an optimum value for the frequency
bandwidth χ.
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In order to further study the tendency between DMFacc, χ and ξT, the relationship between DMFacc

and χ, with different ξT is presented in Figure 4, and the relationship between the maximum DMFacc

and ξT, with different χ is presented in Figure 5.Sustainability 2019, FOR PEER REVIEW 5 of 15 
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In Figure 4, it is obvious that as χ increases, Tuned mass dampers DMFacc decreases firstly and
then increases. The similar conclusion can be obtained from Figure 5 that, as ξT increases, DMFacc

decreases firstly and then increases. Therefore, it is no doubt that there are optimal values for χ and
ξT, respectively.

2.3. Optimal Design of the Frequency Bandwidth and TMD Damping Ratio

The same as Section 2.2, when the number of TMDs is 5, the MTMD mass ratio is 4.0% and fT = 1,
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In Figure 6, it is clear that in this case, the optimal TMD damping ratio ξopt is 4.9%, and the optimal
frequency bandwidth χopt is 0.225.

The optimal goal is to minimize the maximum DMFacc. Through the aforementioned method,
when the number of TMDs n is in the range of (2, 12) and the MTMD mass ratio µ is in the range of
(0.005, 0.100), the optimal frequency bandwidth χopt and the optimal TMD damping ratio ξopt can be
calculated through the following formulas ( fT = 1):

χopt = 1.048−
0.498
ln(n)

+ 0.27 ln(µ) +
0.108

ln2(n)
+ 0.02 ln2(µ) −

0.05 ln(µ)
ln(n)

, (6)
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ξopt = 0.175 +
0.092

n
+ 0.058 ln(µ) +

0.074
n2 + 0.005 ln2(µ) + 0.019

ln(µ)
n

, (7)

DMFopt = 1.136µ−0.486− 0.023
ln(n) + 0.334, (8)

When the central frequency ratio is fT =
√

1/(µ+ 1), χopt and ξopt can be calculated through the
following formulas:

χopt = 1.065−
0.48

ln(n)
+ 0.269 ln(µ) +

0.063

ln2(n)
+ 0.018 ln2(µ) −

0.062 ln(µ)
ln(n)

, (9)

ξopt =
nµ

−1.595 + 1.122n + 8.139µ
+ 0.014, (10)

DMFopt = 1.136µ−0.486− 0.023
ln(n) + 0.334, (11)

Then, it can be concluded that after the MTMD mass ratio µ and the number of TMDs n are chosen,
χopt and ξopt can be calculated through Equation (6)–(8) or (9)–(11). To see the tendency between χopt

and µ, and ξopt and µ clearly, Equation (4) and Equation (5) are drawn in Figure 7a,b, respectively, for
example. To see the tendency between χopt and n, and ξopt and n clearly, Equation (4) and Equation (5)
are drawn in Figure 8a,b, respectively, for example.
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It can be seen in Figure 7 that the increment of χopt and ξopt is in direct proportion to the increment
of µ. In Figure 8, as the n increases, χopt also increases; however, ξopt decreases as the n increases.

In Equations (8) and (11), DMFopt is also related to the MTMD mass ratio µ and the number of
TMDs n. Therefore, it is necessary to discuss the central frequency ratio fT, mass ratio µ and the
number of TMDs n in the MTMD system.

2.4. Discussion on the Central Frequency Ratio

The relationship between DMFopt and the number of TMDs n, with different MTMD mass ratios µ
and central frequency ratio fT is shown in Figure 9. In Figure 9, for different µ, n and fT, the ξopt and
χopt can be calculated from Equations (4) and (5).
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From Figure 9, it can be known that with a larger mass ratio µ, DMFopt will have a smaller value;
DMFopt decreases as the number of TMDs n increases, however, the drop rate is small after n = 4. In all
cases, the fT = 1 case has a smaller DMFopt than the fT =

√
1/(µ+ 1) case. Therefore, it is suggested

that the central frequency ratio fT can be set to be 1.

2.5. Discussion on the Mass Ratio

The relationship between DMFopt and the MTMD mass ratio µ, with different numbers of TMD n,
and the relationship between DMFopt and the excitation ratio g, with different MTMD mass ratio µ, are
proposed in Figure 10 respectively.

From Figure 10a, it can be seen that DMFopt decreases as µ increases and the curve of n = 3
and n = 12 are quite similar. It can be known from Figure 10b that in a wide excitation frequency
bandwidth, DMFopt decreases as µ increases, however, the increment rate is smaller when µ is larger.

In general, DMFopt is inversely proportional to µ. However, in real projects, it may be impossible
to obtain a too-large mass ratio, and it should be reasonable.
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2.6. Discussion on the Number of TMDs

The relationship between DMFopt and the number of TMDs n, with different MTMD mass ratios
µ, and the relationship between DMFopt and the excitation ratio g, with different number of TMD n,
are presented in Figure 11 respectively.
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From Figure 11a, it can be seen that DMFopt decreases as n increases from 1 to 3, and then, it is
steady. The same conclusion can be obtained from Figure 11b. In real projects, it may be inconvenient
to produce and implement too many TMDs with different frequencies. Therefore, the number of TMDs
is suggested to be 3~5.

2.7. Design Process of an MTMD System

As aforementioned, an MTMD system with well-designed parameters will have a satisfactory effect
for man-induced vibration control. The relationship between the acceleration dynamic amplification
factor and important parameters of an MTMD system, i.e. the frequency bandwidth, TMD damping
ratio, central frequency ratio, mass ratio and the number of TMDs, has been discussed in detail in
the previous sections. A general design method and process of an MTMD system is concluded and
proposed in this section.
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Firstly, the MTMD mass ratio should be chosen. An MTMD system with a larger mass ratio will
has a better vibration control effect. However, in real projects, it may be impossible to obtain a too-large
mass ratio. Usually, the MTMD mass ratio is located in the range of 1~5%. Then, the number of TMDs
in the MTMD system is chosen according to Section 2.6. The number of TMDs is suggested to be
3~5. Thirdly, it is referred in Section 2.4 that the central frequency ratio fT can be set to be 1, which
means that the central frequency of an MTMD system is set to be the same as the structural dominant
frequency. At last, the optimal frequency bandwidth χopt and the optimal TMD damping ratio ξopt can
be calculated through Equations (6) and (7).

An MTMD system can be optimized and designed according to the proposed process and it is
also suggested to be applied in the location where the structure has the maximum modal response.

3. Optimal Design of an MTMD System for a Footbridge

3.1. Model Analysis and In Situ Test

In order to illustrate and verify the aforementioned optimal design method and formulas, an
in-service steel footbridge is proposed as a case study in this and the next sections. The footbridge
is simply supported and 55.2 m in length. Because it is slender and light, it suffers from excessive
human-induced vibrations and needs to be controlled by an MTMD system.

To provide a reference for the following in situ test, the footbridge finite element model built in
SAP2000 is analyzed firstly. The model in SAP2000 [51] and the first three vertical modes are shown in
Figure 12.
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Shell members are used to simulate the steel deck. Beam elements are adapted for steel members.
Finally, the footbridge is fixed at the base of piers. The detailed structural parameters and input
parameters are proposed in Table 1.

Table 1. The detailed structural parameters and input parameters of the finite element model.

Type Component Size (mm) Number Input Loads

Crossbar Beam element 150 × 150 × 8 56 Walking, running
and jumping
excitations, which
are measured from
the in situ test, are
input in the
midspan node.

Longitudinal bar Beam element 550 × 550 × 20 108

Vertical bar Beam element 550 × 550 × 20 54

Diagonal bar Beam element 350 × 350 × 16 108

Bridge deck Shell element 55181 × 1450 × 100 1

Through the model analysis, it is found that the first vertical frequency is 2.55 Hz, which is
sensitive to human-induced excitations. The second and third vertical frequencies are 7.18 Hz and
13.86 Hz respectively, which are difficult to be excited compared to the first mode. Besides, the first
mode mass participation ratio is 86.5%, which is no doubt dominant. Therefore, the main attention
should be paid to the first vertical mode and it can be simplified as an SDOF system.

The dynamic response in the mid-span is the maximum for the first vertical mode. Therefore, in
the following in situ test, three measurement points are arranged near the mid-span and are presented
in Figure 13.
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Figure 13. The location of three measurement points.

Under ambient excitation, the acceleration response of three measurement points are obtained
through three acceleration sensors and are analyzed through fast Fourier transformation (FFT). The
results of the three points are quite similar, and for brevity, only the result of the A2 point is shown in
Figure 14.
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Figure 14. The fast Fourier transform (FFT) result of the A2 point.

The frequency identification result comparison between the model analysis and in situ test
is shown in Table 2 and the first order damping ratio is identified through the fitting exponential
function [1].
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Table 2. The comparison of the frequency identified results.

Order Test Frequency/Hz Analysis Frequency/Hz Deviation Damping Ratio

First 2.55 2.55 0.00% 0.35%
Second 7.96 7.18 –9.80%
Third 14.00 13.86 –1.00%

It can be seen in Table 2 that the frequency identification result of the model analysis agrees well
with the in situ test, especially the first mode. The first order damping ratio is only 0.35% and can
be ignored.

To analyze the structural dynamic response more precisely, a 700 N worker walks, runs and jumps
in the mid-span with the resonance frequency (2.55 Hz) under the guidance of a metronome [52]. The
human-induced forces and also the acceleration responses are measured at the A2 point. For example,
the jumping force and the comparison of A2 point response between the model analysis and in situ
test are proposed in Figure 15. In a personal computer with an Intel(R) Core(TM) i5-7200U CPU @
2.50 GHz–2.71 GHz, for every walking, running and jumping excitation simulation case, it only takes
about 30 s.
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Figure 15. The jumping excitation comparison (a) Jumping force time history; (b) Comparison of
structural acceleration response (note: “gal” means “cm/s2”.).

From Figure 15, it can be seen that, on the one hand, the model analysis result fits well with the
in situ test; on the other hand, the maximum response of the in situ test is 74.5 gal. According to
References [38–40] and also the requirements of the client, as for the walking excitation, the structural
acceleration response limit value is 15 gal and 50 gal for running and jumping excitations. The structural
acceleration response of the A2 point under walking and running excitations are shown in Figure 16.
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Figure 16. The dynamic response in the mid-span under (a) Walking excitation; (b) Running excitation.
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In Figure 16, the structural maximum acceleration is 22.8 gal for the walking case and 49.5 gal for
the running case. In Figure 16a, the acceleration amplitude “22.8 gal” is only the response value of a
single person walking. In fact, according to References [41–43], a 0.5 person/m2 crowd-load should be
considered. Based on the equivalent flow analysis result, the walking coefficient should be multiplied
by 3.2, and therefore, the structural equivalent maximum acceleration is 73.0 gal for the walking case.
It can be seen that neither of the above three cases can meet the serviceability requirement.

3.2. Optimal Design of an MTMD System

In order to improve the serviceability of the aforementioned in-service footbridge, an MTMD
system is optimized in this section.

According to Section 2.4, the central frequency ratio fT is set to be 1; according to Section 2.5, the
MTMD mass ratio is chosen to be 3.6%; according to Section 2.6, there are three TMDs with different
frequency in this MTMD system. Then, according to Equations (6) and (7), the optimal frequency
bandwidth χopt and damping ratio ξopt can be calculated, which are 0.16 and 6.0%, respectively. The
optimal process can be seen in Figure 17.
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Detailed parameters of the optimized MTMD system are shown in Table 3.

Table 3. The parameters of the optimized multiple tuned mass dampers (MTMD) system.

Structural frequency 2.55 Hz
Structural modal mass 83.3 t
Total number of TMD 3

Order of TMD A1 A2 A3
Mass of TMD 1.0 t 1.0 t 1.0 t

MTMD mass ratio 3.6%
Optimal frequency bandwidth 0.16

Central frequency ratio 1.00
Central frequency 2.55 Hz
TMD frequency 2.35 Hz 2.55 Hz 2.75 Hz

Optimal damping ratio 6.0%
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4. Implementation of the MTMD System and Vibration Test

The MTMD system in Table 3 is produced and implemented in the in-service footbridge. The
location of each TMD is shown in Figure 13.

To verify the vibration control effect of the MTMD system, the same as Figures 15 and 16, the
worker of 700 N walks, runs and jumps in the mid-span. The acceleration responses of the A2 point
are presented in Figure 18.
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Figure 18. The dynamic response in the mid-span with the MTMD system, under (a) Walking excitation;
(b) Running excitation; (c) Jumping excitation.

The comparison of maximum responses between Figures 15, 16 and 18 are shown in Table 4.

Table 4. The maximum acceleration response comparisons.

Case Without Control/gal With the MTMD System/gal Reduction/%

Walking excitation 72.9 9.1 87.5%

Running excitation 49.5 5.2 89.5%

Jumping excitation 74.5 13.5 81.9%

It is obvious in Table 4 that the optimized MTMD system has an excellent control effect for all
kinds of human-induced vibrations. After the implementation of the MTMD system, the footbridge
can meet the serviceability requirement.

To further illustrate the control effect of the MTMD system, under the jumping excitation, the
acceleration time history of both the footbridge and TMD in all measurement points are drawn in
Figure 19.
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(b) A2 point; (c) A3 point.

It can be seen in Figure 19 that there is a phase difference of about 90 degrees between the
footbridge and TMD acceleration time history curves. This means that the vibration energy of the
footbridge passes to the TMD and TMD gives an opposite force to the footbridge to suppress its
movement. The vibration energy of the footbridge is dissipated quickly and the TMD can accelerate
the vibration attenuation of the footbridge.

To verify the MTMD control effect in a wide excitation bandwidth, the comparison of walking,
running and jumping excitation response spectra in the A2 point are shown in Figure 20.

From Figure 20, it can be known that the MTMD system is robust in a wide excitation bandwidth.
The footbridge has the maximum response when the resonance happens and, at that time, the MTMD
system has the best reduction in the structural acceleration response.

At last 16 people walks through the footbridge with the resonance frequency twice to verify
whether it can meet the serviceability requirement of 15 gal. The photo of this test is shown in Figure 21
and the acceleration time history of A2 point is presented in Figure 22.
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Figure 22. The acceleration time history of the mid-span.

It can be seen in Figure 22 that the maximum acceleration of the mid-span is 12.5 gal and it can
meet the serviceability requirement.

5. Conclusions

Slender steel footbridges suffer from excessive human-induced vibrations due to their low
damping nature and their frequency being located in the range of human-induced excitations. An
MTMD system, which consists of several TMDs with different frequencies has a wide application in
the vibration control of footbridges. An MTMD system with well-designed parameters would have a
satisfactory effect for human-induced vibration control.

This paper firstly discussed the relationship between the acceleration dynamic amplification factor
and the main parameters of an MTMD system, i.e., the frequency bandwidth, TMD damping ratio,
central frequency ratio, mass ratio and the number of TMDs. Then, the frequency bandwidth and
damping ratio optimal formulas were proposed according to the parametric study. At last, an in-service
slender footbridge was proposed as a case study. The following conclusions could be obtained:

1) According to the parametric study, the central frequency ratio was suggested to be 1; a larger
mass ratio would get a better control effect, but it also should be reasonable; the number of TMDs
was suggested to be 3~5.

2) The frequency bandwidth and damping ratio of the MTMD system could be calculated through
the proposed optimization formulas.

3) A slender steel footbridge was analyzed through the finite element model and an in situ test, and
an MTMD system was designed based on the proposed optimal design formulas.

4) The vibration control effect of the MTMD system was verified through a series of in situ comparison
tests. The results showed that under walking, running and jumping excitations with different
frequencies, the MTMD system always had an excellent vibration control effect, and the footbridge
with an MTMD system could meet the acceleration limit requirement. The analysis result agreed
well with the in situ test.

Though the proposed optimal design method had been verified through a particular case study, it
did not consider the primary structural damping ratio. Besides, as time went by, the primary structural
dynamic parameters (mass, stiffness and damping coefficients) would vary and they had an uncertainty
which had not been considered in the proposed design framework. These aspects need to be studied
in further research. It was also worth studying the effectiveness of the proposed MTMD system design
framework in lateral human-induced vibration control in further research.
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