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Abstract: This study analyzes a skip-stop strategy considering four types of train choice behavior
with smartcard data. The proposed model aims to minimize total travel time with realistic constraints
such as facility condition, operational condition, and travel behavior. The travel time from smartcard
data is decomposed by two distributions of the express trains and the local trains using a Gaussian
mixture model. The utility parameters of the train choice model are estimated with the decomposed
distribution using the multinomial logit model. The optimal solution is derived by a genetic algorithm
to designate the express stations of the Bundang line in the Seoul metropolitan area. The results
indicate the travel times of the transfer-based strategy and the high ridership-based strategy are
estimated to be 21.2 and 19.7 min/person, respectively. Compared to the travel time of the current
system, the transfer-based strategy has a 5.8% reduction and the high ridership-based strategy
has a 12.2% reduction. For the travel behavior-based strategy, the travel time was estimated to be
18.7 minutes, the ratio of the saved travel time is 17.9%, and the energy consumption shows that the
travel behavior-based strategy consumes 305,437 (kWh) of electricity, which is about 12.7% lower
compared to the current system.

Keywords: urban railway; skip-stop strategy; smartcard data; travel behavior; Gaussian mixture
model; greenhouse gas emission

1. Introduction

For sustainable development at the global level, public transportation has emerged as an effective
alternative. OECD member countries are planning and carrying out transportation policies focusing on
public transportation, especially railway, in order to reduce emissions of air pollutants. Railway attracts
more attention as an environmentally friendly mode than road transport. Recently, the skip-stop
strategy has become increasingly and globally popular in terms of improving the efficiency of railway
operation and passenger convenience.

Community of metro (CoMET) is the urban railway research institute with 34 metro operators
around the world, providing the key performance index regarding sustainability, i.e., energy
consumption and GHG emissions. The skip-stop strategy contributes to the construction of sustainable
transportation systems, such as the reduction of greenhouse gas (GHG) emissions and traffic congestion
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by improving the share of railway modes [1]. The skip-stop strategy reduces energy consumption and
environmental costs in terms of sustainability [2]. It efficiently consumes power energy by reducing
the number of stop stations while increasing the transport capacity [3].

In the transportation engineering field, the skip-stop strategy has also received much attention
in recent years due to its transit efficiency, which increases capacity and the scheduled speed by
allowing trains to skip designated stops along a railway line. The skip-stop strategy has allowed for
the simultaneous operation of both express and local trains on the same railway line in the urban
railway network [4]. Compared with the general operations of an urban railway, the skip-stop strategy
has been considered an efficient transportation technique that maintains a high scheduled speed and
short travel time [5]. The main idea of the skip-stop approach was to reduce the total travel time by
skipping the local stations that have less ridership. Although the passengers’ waiting times would be
increased at these local stations, this strategy had the advantage of reducing the total travel time of the
railway network [6–9]. The skip-stop strategy has been designed properly and coordinated sensibly by
considering various conditions [10–15]. In practice, the express stations were designated based on
empirical criteria, in that they served as transfer stations with other railways lines and tended to have
a considerable number of riderships within the station [5].

Since the skip-stop strategy is an NP-hard problem, the metaheuristic algorithm is required to
estimate the optimal solution. Representative metaheuristic methodologies include genetic algorithm
(GA), simulated annealing algorithm and Tabu search algorithm. Simulated annealing algorithms are
generally known to have a disadvantage in that it is difficult to consider various solutions compared to
GA [16]. It is also known that the Tabu search algorithm does not guarantee a better solution than a
random search such as the GA [17]. GA is widely used for skip-stop analysis because it estimates a fast
and accurate solution compared with other algorithms [18]. Many previous studies have used GA to
deal with complex issues, such as the skip-stop strategy and scheduling the trains [6]. The GA was
considered suitable for finding a global solution that goes beyond the local solution. The GA applied
for a process of determining the optimal solution by checking the convergence of each solution that
evolves over generations. Many skip-stop related studies, therefore, have determined the optimal
solution for the designation of an express station using GA [3].

The problem has been solved as an optimization problem, i.e., by minimizing the passengers’
travel time. The scheduled travel time was separated into specific components, i.e., accelerating time,
constant travel time, decelerating time, and dwelling time. The influence of each component was
used to solve the problem [12]. These studies derived an optimized skip-stop strategy, but it had
limitations in that it did not reflect the passenger’s behavior, such as train choice behavior between
local and express. In the conventional traffic assignment problem, many studies have conducted the
analysis assuming that the passenger chooses the route with the minimum travel time. However, in
reality, train choice behavior was varied depending on individual preferences. Even with the same
origin–destination (O-D), train passengers chose the express train or local train according to their
preferences. For practical field skip-stop operations, it was necessary to reflect travel behaviors for
designating express stations of the transit network. Studies have been conducted to distinguish the
characteristics of routes according to the distribution of probabilistic travel time of the O-D pair. The
Gaussian mixture model (GMM) has been used extensively as a method of separating groups of
passengers using the distribution of variables [19,20]. GMM has shown results in decomposing groups
and in defining group-specific characteristics according to their specific distribution.

The government of Seoul has been operating the automatic fare collection (AFC) system based on
the smartcard since 2004. With the introduction of the AFC system, it has become possible to identify
the trip information of individual transit passengers [21,22]. This information provided an opportunity
to analyze individual travel behaviors. The smartcard data consisted of 20 million instances of personal
transit information per day, containing 99% of transit passengers’ trips. Regarding the skip-stop strategy,
the train choice behavior was distinguished according to the travel time from an individual’s smartcard
data, and the probability of train choice was estimated through the distribution of the travel time.
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This study proposed an optimal skip-stop strategy that considers travel behaviors. The energy
consumption and GHG emissions were also measured quantitatively to identify the sustainability of
the optimal strategy. The two types of train choice were defined as travel behavior, since the probability
of train choice varies when the skip-stop system is installed. In addition, we analyzed the solution to
derive the express stations of the skip-stop through a genetic algorithm. The travel time distribution of
O-D was estimated by using individual smartcard data, and it was decomposed by two distributions
for the express trains and the local trains based on the GMM. A model for designating express stations
was proposed considering the probability of individual travel behaviors. Two empirical models in the
practical field were compared to evaluate the proposed model. The models were sufficiently detailed
to enable consideration of various characteristics, including the designation of stations on the skip-stop
networks. Regarding the sustainability of proposed skip-stop strategy, the energy consumption and
GHG emissions were quantitatively measured. The environmental benefit–cost was also identified by
comparing the current railway system.

2. Methodology of Optimizing Skip-Stop Strategy

2.1. Modeling Strategy
This study considers the trains that stop at all stations as local trains and the trains that stop only

at designated stations as express trains. Express trains of this scheme have higher scheduled speeds
than the local trains and increase the scheduled speed by skipping stations [23]. To create the optimal
design of the skip-stop strategy, we incorporated technological advancements in the optimization
model. The optimization model is designed to three main steps; i.e., (1) the classification of the travel
behavior type, (2) classification of the travel time distribution, and (3) modeling the skip-stop strategy
with the various constraints [12,13].

Four types of travel behavior of the train choices are identified as shown in the skip-stop network
in Figure 1. The travel patterns using the express train and the local train are defined as train choice
behavior. Passengers exhibit four travel behaviors that represent the behaviors of the railway networks.
Figure 1 shows a conceptual network of skip-stop strategy consisting of seven stations, which is
comprised of three express stations and four local stations. The red line indicates the express train
route, which stops only at the express stations, i.e., station numbers 2, 4, and 6. The blue line shows the
route of the local train, which stops at all the stations which are number 1 to 7. In this network, four
types of travel behaviors can be defined, i.e., the local train only, the express train only, one transfer,
and two transfers. When passengers choose the local train, the passenger has the choice to travel to
any stations within the railway line. The express train passengers can only travel to stations where the
express trains stop. When passengers consider the transfer type, both express and local stations should
be considered. A transfer passenger should get off the local train at an express station to transfer to
the express train stopping at the current station. As an example, the one transfer type available for
route choice is i.e., 1-2-4, 1-2-6, 1-4-6, and 3-4-6. The O-D trips that lie on local stations but require long
distance travel have the opportunity to transfer twice within a single line. The two transfer type is done
by using the one transfer type and by traveling until the passenger arrives at the closest express station
to transfer to the destination which is a local station. As an example, shown in Figure 1, passengers
that travel from station 1 to station 7 take too long just using the local train to travel to the destination.
As such, the passenger transfers at station 2, to an express train and rides this express train to station 6.
Again, the passenger gets off the express train and takes a local train at station 6 to go to the desired
station at station 7. These are the types of travel behavior that is shown according to the skip-stop
strategy, and they are a preliminary step to reflect travel behavior in the model.
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2.2. Genetic Algorithm for Optimizing the Skip-Stop Strategy

Genetic algorithm (GA) is a method which provides the optimal solutions of both constrained and
unconstrained optimization problems. The algorithm derives an optimal solution based on a natural
selection process of biological evolution. To employ the GA for optimizing the skip-stop strategy,
the chromosome and the gene need to be defined. In the skip-stop strategy, the chromosomes are
defined as the stations which are composed of two types, i.e., express and local. The gene is the set of
the chromosomes which are the array of the stations. Since the objective function of this study set to
minimize the total travel time, the fitness of each gene evolves toward decreasing the travel time.

The operation of the genetic algorithm consists of selection, crossover, mutation, and replacement
steps. Selection is the most critical operation, a computational process for selecting a genetically good
parent in a population [12]. Parents that have evolved to meet the objective function and the constraint
(array of the inverse of the line) are selected. The crossover is the operation of producing the offspring.
The crossover uses the parents who are selected in the selection step. The crossover creates the offspring
(a new array of the stations consisting the railway line) by crossing the type and order of the selected
station. The mutation is the step of modifying the generated gene of the offspring. In the mutation
step, the type of station in the new array could be changed as express or local randomly. The Mutation
step prevents local minima problems. Finally, Replacement is to change the population to evolve into
the next generation. Replacement constructs a population of new generations by replacing genes in the
population with newly created genes. The population of a new generation could simply be substituted
for all genes, or only the inferior genes could be substituted.

GA was used in this study to search for an optimal skip-stop strategy since the all-enumeration
methods require massive computational power, i.e., 2x computations, where x is the number of stations.
The skip-stop strategy was implemented in AMD Ryzen 5 1600X on a six-core processor with 16 GB
memory. The computation time of solving the optimal solution of the skip-stop strategy is about
15 min with 30 stations, i.e., 230 computations. The process of the GA for optimal skip-stop strategy
and the conceptual diagram of the step of GA are shown in Figure 2.
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2.3. Gaussian Mixture Model for Travel Behavior

In a network that operates express strategy, the travel time distribution is shown as a bimodal
form because the travel time distribution of the express train and local train are mixed. Figure 3 shows
that the travel time distribution of O-D for the skip-stop railway system is a mixed distribution of
the distributions of an express train and a local train. There are two peaks on the distribution, which
are the express travel time and local travel time, respectively. The peak of the left side of the mixed
distribution is for the express train distribution and the peak of the right side of the mixed distribution
is for the local train distribution. Since two distributions are mixed, there is an overlapping part of
the distribution. On the uncertain section, which is shown with the shaded area, the distribution
is illustrated as overlapping. To understand the passenger’s behavior concerning train choice, it is
essential to decompose the distribution curves of the overlapping sections. Decomposition of the
mixed distribution provides information on the probability of train choice behavior (express or local).
Since distributions by O-D pairs do not appear as the same type, a stochastic approach is required to
calculate the respective travel times of the local train passengers and the express train passengers for the
O-D pair. Previous studies analyzed the skip-stop strategy with the deterministic assumptions [13–15].
For example, the travel times of one station is fixed to three minutes. However, in the real world,
passengers’ travel times are different even with the same O-D. This indicates that passengers’ travel
behaviors occur stochastically. Regarding the skip-stop strategy, some only take the express train,
while others take the local train. The proposed approach stochastically considers the traffic volume of
O-D according to the travel time.

Sustainability 2019, 11, x FOR PEER REVIEW 5 of 18 

that the travel time distribution of O-D for the skip-stop railway system is a mixed distribution of the 
distributions of an express train and a local train. There are two peaks on the distribution, which are 
the express travel time and local travel time, respectively. The peak of the left side of the mixed 
distribution is for the express train distribution and the peak of the right side of the mixed distribution 
is for the local train distribution. Since two distributions are mixed, there is an overlapping part of 
the distribution. On the uncertain section, which is shown with the shaded area, the distribution is 
illustrated as overlapping. To understand the passenger’s behavior concerning train choice, it is 
essential to decompose the distribution curves of the overlapping sections. Decomposition of the 
mixed distribution provides information on the probability of train choice behavior (express or local). 
Since distributions by O-D pairs do not appear as the same type, a stochastic approach is required to 
calculate the respective travel times of the local train passengers and the express train passengers for 
the O-D pair. Previous studies analyzed the skip-stop strategy with the deterministic assumptions 
[13–15]. For example, the travel times of one station is fixed to three minutes. However, in the real 
world, passengers’ travel times are different even with the same O-D. This indicates that passengers’ 
travel behaviors occur stochastically. Regarding the skip-stop strategy, some only take the express 
train, while others take the local train. The proposed approach stochastically considers the traffic 
volume of O-D according to the travel time. 

 
Figure 3. Example of travel time distribution of express and local train passengers. 

As previously mentioned, the distribution of the travel time appears in a bimodal form and can 
be separated depending on the choice of the trains to identify the travel behaviors. The GMM assumes 
that all of the data points are generated from a mixture of a finite number of Gaussian distributions 
with unknown parameters. Since the smartcard data can only provide the passenger’s travel time to 
understand the travel behavior, GMM is reasonable for estimating the unknown multivariate 
distribution parameters of the train choice behavior [20]. In Equation (1), three parameters, i.e., 𝑤 , 𝜇 , and Σ ,  are updated based on the empirical method algorithm, and the estimations of the 
probability of travel time, 𝜃, can be obtained via one of several estimators, such as the mean or 
maximum of the posterior distribution. The formulation of GMM is as shown in Equation (1). 

𝑝(𝜃|𝑥)  =  𝑤  𝑔(𝜇 , Σ ) (1)

where, 𝜃 is the parameter of distribution of observation associated with travel time, 𝑥 is the vector 
of travel time, 𝐾 is the sum of the number of the mixture, 𝑖 is the number of the mixture (𝑖:1, …,  𝐾), 𝑤  is the weight of the mixture 𝑖, 𝑔 is the number of travel time observations, 𝜇  is the mean 
travel time. 

Figure 3. Example of travel time distribution of express and local train passengers.

As previously mentioned, the distribution of the travel time appears in a bimodal form and can
be separated depending on the choice of the trains to identify the travel behaviors. The GMM assumes
that all of the data points are generated from a mixture of a finite number of Gaussian distributions
with unknown parameters. Since the smartcard data can only provide the passenger’s travel time
to understand the travel behavior, GMM is reasonable for estimating the unknown multivariate
distribution parameters of the train choice behavior [20]. In Equation (1), three parameters, i.e., w̃i, µ̃i,
and Σ̃i, are updated based on the empirical method algorithm, and the estimations of the probability
of travel time, θ, can be obtained via one of several estimators, such as the mean or maximum of the
posterior distribution. The formulation of GMM is as shown in Equation (1).

p(θ|x) =
K∑

i=1

w̃ig
(
µ̃i, Σ̃i

)
(1)
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where, θ is the parameter of distribution of observation associated with travel time, x is the vector of
travel time, K is the sum of the number of the mixture, i is the number of the mixture (i:1, . . . , K), w̃i is
the weight of the mixture i, g is the number of travel time observations, µ̃i is the mean travel time.

2.4. Multinomial Logit Model for Estimating Travel Behavior

The mode choice model is used to analyze and predict a passenger’s choice of one alternative
from a finite set. Since many behavioral responses are discrete or qualitative in the transportation field,
mode choice models have various applications [24–26]. It corresponds to choices of one or another of a
set of alternatives. This estimates a mode choice probability according to the variables.

The multinomial logit model (MNL) is the most representative model for discrete choice analysis
in the train choice problem [27]. We employ the model to analyze the relationships between the
dependent variable and a set of independent variables. The response models can be classified into
two distinct types, depending on whether the dependent variable has an ordered or an unordered
structure. Since passengers may not only choose the minimum travel time in the real world, train
choice behavior must be identified. In order to consider travel behavior, it is necessary to estimate the
utility of train choice behavior. With the railway service, the utility of the train choice is affected by
various factors, such as time value, congestion, and comfort. As illustrated above, the probability of
train choice behavior was estimated with the GMM, and it provides an opportunity to estimate utility
parameters. The logit model with travel time as the independent variable is shown in Equation (2):

F(k) = exp
(
α+ βttk

i j

)
(2)

P(l|k) =
F(k)∑

k′∈Kn F(k′)
, for ∀k ∈ Kn (3)

where, F(k) is the exponential of the utility function for each type of train, k is the type of train, α is the
alternative specific constant, βy is the coefficient of travel time, tk

i j is the travel time for each type of

train, k, from station i to station j, P(l
∣∣∣k) is the probability of alternative k for individual l, Kn is a set of

types of trains.

2.5. Mathematical Formulation for Skip-Stop Strategy

This section presents the formulation of the skip-stop strategy model to apply to urban railway
networks. With the GMM and logit model mentioned above, the travel behavior of the skip-stop
strategy is reflected to the proposed formulation. The travel behavior of skip-stop strategy is identified
by the GMM model, separating the travel time distribution. With the decomposed distribution, the
utility parameter of travel time for train choice behavior is estimated by the logit model.

The primary objective of this model is to minimize passengers’ total travel time while taking
into consideration their actual behaviors. Since the travel time of each O-D pair is changed when the
skip-stop strategy is calculated, the demand flow of station is also changed by the estimated utility
parameter. The designation of the station is based on minimizing the passenger’s total travel time, as
shown in Equation (4). Equation (5) represents the total travel time, expressed as the multiplication of
the demand flow and the passenger’s travel time between station i and station j:

Min f (Xi) (4)

f (X) =
n∑

i=1

n∑
j=1

ODi jTi j (5)

where, Xi is the decision variable that determines whether or not trains are to be skipped (Xi is 1 if an
express train stops at station i; otherwise, it is 0.), ODi j is the demand flow rate of station i to j, and Ti j
is the travel time from station i to j.
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Travel time consists of the sum of the maximum speed time of the moving train, dwelling time,
acceleration time, overtaking time, and waiting time, as shown in Equation (6):

Ti j = MTi j + DTi + STi + ATi + OT j + WTi (6)

where, Ti j is the travel time from station i to j, MTi j is the maximum speed travel time from station i to
j, DTi is the dwell time at station i, STi is the safety distance (time) between local and express train at
station i, ATi is the acceleration speed of the train, OTi is the overtaking time of the express train at
station i, and WTi is the waiting time for riding the train.

The most crucial formulation is Equation (7), which reflects the train choice behavior of the
passenger. The results of GMM and MNL are considered in Equation (7). O-D ridership volume, local
train choice probability, and express train choice probability are calculated using the estimated utility
parameter, and the probability according to the type of train is expressed as the rate of flow:

ODi j =

(
el

el + er
×ODi j

)
+

(
er

el + er
×ODi j

)
(7)

where, ODi j is the demand flow rate of station i to j, el is the estimated exponential of utility the of the
local train l, and er is the estimated exponential of the utility of the express train r.

Since skip-stop allows for express trains to skip local stations, the distance to the local train ahead
becomes shorter than the safety distance. Equation (8) sets the safe distance (time) required between
the two trains to prevent a collision as follows:

ST =


j∑

i=1

Tr
i j + ϕ

−
j∑

i=1

Tl
i j > 0 (8)

where, ST is the safety distance (time), Tr
i j is the travel time of the express train, Tl

i j is the travel time of
the local train, and ϕ is the interval with the local train when the express train departs at station i.

Equation (9) ensures the appropriate overtaking time that allows for the express train to overtake
the preceding local train at the station where the auxiliary rail is installed. The overtaking time is the
maximum time that it takes for an express train to overtake a local train at the i ∈ P station:

OTi =


j∑

i=1

Tr
i j + ϕ

−
j∑

i=1

Tl
i j < 0 ∀i ∈ P (9)

where, OT is the overtaking distance (time), Tr
i j is the travel time of the express train, Tl

i j is the travel
time of the local train, ϕ is the interval with the local train when the express train departs at station i,
and P is a set of the stations where siding tracks are installed.

Equation (10) describes the waiting time as the minimum time between half of the headway
or maximum time of six minutes [12]. In general, the waiting time of the local train is set to half of
the headway. However, the passenger who rides the express train has less waiting time than half
of the headway, since the express train has a two to three times longer headway than the local train.
Considering the passenger characteristics, the minimum waiting time is set to half of the headway and
the maximum waiting time is set to 5 min:

WTi = min[hi/2, 5] (10)

where, WTi is the waiting time of the passenger at station i, and hi is the headway of the train at
station i.

The travel time is classified as the travel time of the local train and the travel time of the express
train to identify the passenger route choice. The travel time of the local train is defined as the time that



Sustainability 2019, 11, 2791 8 of 18

the passenger travels only riding the local train. The travel time of the express train is defined as the
time that the passenger travels on an express train, including the transfer time between local trains
and express trains at express stations. Equations (11) and (12) are the mathematical formulation of the
travel time of the local train and the express train, respectively. In Equation (11), the travel time consists
of the time with a maximum speed of the moving train, dwelling time, acceleration, deceleration time,
waiting time and overtaking time. In Equation (12), there is no overtaking time. Since local trains wait
at an overtaking siding track while the express trains pass, overtaking times are only included in the
travel times of the local trains:

Tr
i j = IVTr

i j + DTr
i + ATr

i + WTr
i + STr

p (11)

Tl
i j = IVTl

i j + DTl
i + ATl

i + WTl
i + OTl

p (12)

where, Ti j is the travel time from station i to station j using the train type r or l, r is the express train,
l is the local train, IVTi j is the in-vehicle time from station i to station j, DTi is the dwell time of the
traversing stations by train type, ATi is the acceleration time, WTl

i is the waiting time at station i, OTl
p

is the overtaking time for the local train when the express train overtakes, and STr
p is the safety time for

the express train before overtakes local train.

3. Empirical Analysis

3.1. Description of Test Network (Seoul Metro Bundang Railway Line)

In 2017, The Ministry of Land, Infrastructure, and Transport announced a master plan for the
metropolitan railway to apply the skip-stop strategy. The Bundang railway line was one of the major
lines mentioned in the plan, as it connected the outer district, the city of Suwon, to Seoul. Bundang
railway line introduced the skip-stop strategy from the Suwon-to-Jukjeon section in 2013, and it
operated only 12 times a day by designating five express stations (i.e., Suwon, City Hall, Mangpo,
Kiheung, and Jukjeon stations). The local train took 86 min through the start-to-end station of a total
of 36 stations, i.e., 52.9 km. The express train took 75 min through the start-to-end station of a total
of 28 stations. The expansion of the express stations was under consideration since there was only
a 11 min difference between taking the local train and taking the express train. There was a plan
to introduce the skip-stop strategy in 2022 for the entire Bundang railway line. Since some sections
already operated using the skip-stop strategy, it was essential to designate additional express stations.
As mentioned above, the Bundang railway line was a good example of the application of the skip-stop
strategy, which was modeled in this study. The network of Bundang railway was shown in Figure 4.
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3.2. Description of the Smartcard Data

The government of Seoul introduced automatic toll collection (AFC) based on smartcards in 2004.
The smartcard data of Seoul contained individual information for about 14.5 million trips per day,
providing 99% of individual transit passenger trip information. Since the smartcards used in Seoul
include traffic information for all passengers of public transit, the smartcard data were suitable for
analyzing passengers’ travel behaviors [28–30]. In the case of the urban railway trip information,
the smartcard data only recorded the origin and destination station of the passenger trip. For this
reason, estimating the traveled train and route of the urban railway related study has been conducted
in recent years.

In this study, we analyzed the optimal skip-stop strategy for minimizing the passengers’ total
travel time using smartcard data, which provides the opportunity for considering travel behaviors. To
analyze the optimal skip-stop strategy, we developed an O-D matrix of all stations in the Bundang line
using smartcard data, and the ratio of train choice behavior was also estimated based on the smartcard
data. The smartcard data used in this study was from 31 October 2017. It contains 24 columns of
information, of which, eight indices were selected, i.e., card ID, boarding station ID, boarding time,
alighting station ID, alighting time, total travel distance, total travel time. The data extracted from the
smartcard were used to construct the primary dataset, i.e., individual travel time and ridership of the
O-D matrix. The eight indices of smartcard data used in this study are shown in Table 1.

Table 1. Smart Card Data Information.

No. Data Information No. Data Information

1 Card ID * 13 Boarding station ID *
2 Transaction ID * 14 Boarding penalty
3 Passenger code 15 Boarding time *
4 Vehicle ID 16 Alighting date
5 Zone code 17 Alighting fare
6 Line ID 18 Alighting station ID *
7 Mode code 19 Alighting penalty
8 Company code 20 Alighting time *
9 Starting time 21 Number of transfers

10 Ending time 22 The number of passengers
11 Boarding date 23 Total travel distance *
12 Boarding fare 24 Total travel time *

* represents data information used in this study.

3.3. Estimation of Parameters of Passengers’ Mode Choice Behavior

The travel time was calculated considering the ratio of four passengers’ choice behaviors. GMM
indicated that the train choice probabilities varied depending on the distance and the travel time
between station i and station j. Figure 5 illustrated the train choice probabilities according to the four
passenger travel behaviors. Two overlapping distribution curves were drawn, except for the station
O-D pairs connected by passengers that rode one type of train. Figure 5a,b represented a single peak
travel time distribution of the passengers that take one type of train only. Figure 5c,d conversely
showed the double peak distribution of train choice probabilities. For the one transfer trips of Figure 5c,
the choice probabilities of the express and the local train by GMM were estimated to be 0.63 and 0.37,
respectively. For the two transfer trips of Figure 5d, GMM estimated the choice probabilities of the
express and the local train as 0.53 and 0.47, respectively. According to the passengers’ train choice
behaviors, the graph showed the apparent total frequency of local trains and express trains.
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Based on the individual smartcard data, the train choice ratio varied according to the distance and
the travel time between stations. Utility parameters of MNL were estimated by the GMM results using
0.6 million individual trips extracted from the smartcard data of railway line 9, where the skip-stop
strategy has been already been operational. The parameters were applied to estimate the train choice
probability of each station O-D pair in the Bundang line. The parameters of the utility functions are
shown in Table 2. As a result of the utility function, the parameter of travel time (β) was estimated to
be −0.03. Since the utility increases as the travel time decreases, the minus sign (-) of the estimated
parameter of travel time was shown to be reasonable. The p-value is estimated to be less than 0.001,
which is statistically significant at the 99% confidence level. The Pseudo R2 is estimated to be 0.41,
which is about 41% explanatory power:

Uk = a + βtk
i j (13)

where, Uk is the utility function for each type of train, k is the type of train (express train: e, local train:
l), and tk

i j is the travel time of each train between station i to station j.

Table 2. Utility parameters for travel time.

Variable Coefficient Standard Deviation p-Value Pseudo R2

Constant (a) 9.19 0.31 <0.01
0.41Travel time (β) −0.03 0.01 <0.01

3.4. Results of Designating Express Stations for the Skip-Stop Strategy

The performance of the proposed passenger travel behavior-based strategy was evaluated by
comparing two empirical strategies which were used in the practical field, i.e., transfer station-based
strategy and the high ridership-based strategy. The transfer station-based strategy was a widely used
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method for designing the skip-stop strategy. It designated all of the transfer stations as express stations.
The Korea Rail Network Authority also arranged the stations by high ridership order and designated
the stations with high ridership as express stations up to the station with the most significant difference
in ridership.

As a result of the transfer station-based strategy (TBS), 13 stations were designated as express
stations. Regarding the connectivity of the transfer stations, it was reasonable to designate transfer
stations as express stations. The travel time of the transfer station-based strategy was estimated to
be 21.2 min/person, and it saved as much as 5.8% of the travel time compared to the current system
of the Bundang Line. With the results of the high ridership-based strategy (RBS), nine stations were
designated as express stations, shown in Table 3. Seven transfer stations within the designated express
stations had more than 59,687 daily trips. The other two express stations also had more than 61,217
daily trips. The travel time was estimated to be 19.7 min/person. Compared to that of the current
system, this saved as much as 12.2% of the total travel time.

Table 3. Express Stations of the Optimal Skip-Stop Strategies.

St. #
Ridership
Trip/Day

Designated
Express Station St. #

Ridership
Trip/Day

Designated
Express Station St. #

Ridership
Trip/Day

Designated
Express Station

TBS RBS PBS TBS RBS PBS TBS RBS PBS

1 * 94,250 O O O 13 * 59,687 O O 25 6283
2 18,461 14 29,969 26 12,801
3 37,322 15 32,175 27 10,947

4 * 61,164 O O 16 * 62,011 O O O 28* 38,654 O O
5 * 31,714 O 17 65,377 O 29 13,063
6 * 83,477 O O O 18 * 32,356 O 30 11,119
7 32,335 19 61,217 O O 31 25,259

8 * 40,166 O O 20 32,941 32 34,819 O
9 5606 21 * 84,478 O O O 33 22,211

10 7922 22 * 50,453 O 34 30,389 O
11 7209 23 30,492 35 7913

12 * 38,128 O O 24 42,871 O 36 83,280 O O O

*: 13 transfer stations of the Bundang line.

In the passenger travel behavior-based strategy (PBS) which was proposed in this study, the
express stations were found using mathematical formulations of Equations (4) through (13). The
primary objective of this model was to minimize passengers’ total travel time while taking into
consideration their actual behaviors. The express stations were designated based on minimizing
the passengers’ total travel time as shown in Equation (4). Passenger behavior on train choice was
reflected in constraint Equation (7). The train choice probability of the local and the express train was
estimated based on the utility parameters of Equation (13), which is estimated by GMM and MNL.
As a result of the travel behavior-based strategy, 12 stations were designated as express stations, and
the travel time was estimated to be 18.7 min/person. The ratio of saved travel time was analyzed as
17.9%, in comparison to the current system. The PBS strategy showed notable performance among
the other empirical strategies, i.e., TBS, RBS. Among the 12 designated express stations, nine stations
were identical to the results of TBS and RBS. The newly designated express stations were only three
stations, i.e., station number 24, 32, and 34. Compared to the local stations, the features of express
stations are totally different, particularly given the low density and mono-functional land use of the
first ones. Since the PBS optimized the skip-stop strategy based on the O-D pattern, many of the
transfer stations and high ridership stations with active urban activities were included in the express
stations. Figure 6 shows the designated express stations using the proposed strategies, and Table 4
shows the performance of each strategy.
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Table 4. Performances of the optimal skip-stop strategies.

Items Current System Empirical Strategy Proposed Strategy

TBS RBS PBS

Number of express stations 5 13 9 12
Total travel time (hours)

(Saved travel time)
249,214

( - )
234,815

(514,399)
218,201

(531,013)
207,124

(542,090)
Travel time (min/person) 22.5 21.2 19.7 18.7

Saved travel time ratio (%) - 5.8 12.2 17.9

The energy consumption was measured to evaluate the sustainability of the PBS strategy, which is
the optimal strategy in this study. The evaluation was performed by comparing the energy consumption
of the PBS strategy to that of the current system. The energy consumption data was generated by
referring to the data of Line 5 and Line 8, since the statistics of Bundang line was not provided. There
are two considerations for energy consumption in the railway strategy, i.e., energy consumption of train
and system maintenance. The energy consumption of a train consists of powering, and regenerated
energy. Powering energy is the power consumed when the train accelerates and the regenerated energy
is the power stored during braking. That is, the train consumes energy at the time of accelerating
and stores the energy power at the time of braking. The energy consumption of maintenance is the
power consumed to operate the railway system, such as rail road. The total energy consumption
of the strategy, therefore, is calculated by subtracting the regenerated energy from the sum of the
powering and maintenance energy. The most crucial factor of the energy consumption of train is the
ratio of the regenerated energy from the powering energy. The ratio of the regenerated energy of Seoul
metro is about 45.8% from the powering energy [31]. The mathematical expression of the total energy
consumption is shown in Equation (14):

Ec =
n−1∑

i

Ei
p −

n−1∑
i

Ei
g +

n−1∑
i

Ei
mdi,i+1 (14)



Sustainability 2019, 11, 2791 13 of 18

where, Ec is total energy consumption of the train, i is the number of stations, Ep is the powering
energy of the strategy, Eg is the regenerated energy of the strategy, Em is the maintenance energy of the
strategy, and di,i+1 is the distance of the station i to i + 1.

As a result of energy consumption evaluation of the Bundang line, total energy consumption
of the PBS strategy was estimated to be 305,437 (kWh), which is about 12.7% lower than the current
system. Since the trains of the current system stop at 36 stations with 35 links, the consumption of the
powering energy occurs 35 times. However, the express trains of PBS strategy stop at 12 stations with
11 links. With the PBS strategy, the energy consumption could be decreased, since 33% of the local
trains were switched to the express trains.

In order to estimate the GHG emissions, the conversion factors of 0.459 of CO2 (t/MWh), 0.0052 of
CH4 (kg/MWh), 0.004 of N2O (kg/MWh), and 0.46 of CO2e (t/MWh) were applied in this study. These
factors are provided by the National Institute of Environmental Research (NIER) of South Korea. As
results of the GHG emissions from the PBS strategy, the CO2, CH4, N2O, and CO2e were estimated to
be 140.2 ton/day, 1.6 kg/day, 1.2 kg/day, 140.5 ton/day, respectively. These results were also shown to be
12.7% lower than the current system. The environmental conversion cost of CO2, $20.11/ton, is also
provided by NIER. The environmental cost of the current system and the PBS strategy were estimated
to be $3230 per day and $2819 per day, respectively. These results indicate that the sustainability of the
proposed skip-stop strategy is significant enough with the 12.7% reduced environmental cost. The
results of the sustainability performances are shown in Table 5.

Table 5. Sustainability performances of the optimal skip-stop strategies.

Items
Current System Proposed Strategy (PBS)

Local Express Total Local Express Total

Energy
consumption

(kWh/day)

Powering 465,456 14,934 480,390 338,513 59,738 398,251
Regenerated 213,179 6,840 220,019 155,039 27,360 182,399
Maintenance - - 82,120 - - 82,120

Total 334,397 15,560 349,957 243,198 62,240 305,437
Saved ratio (%) - - - - - 12.7

GHG emissions
(per day)

CO2 (t) 153.5 7.1 160.6 111.6 28.6 140.2
CH4 (kg) 1.7 0.1 1.8 1.3 0.3 1.6
N2O (kg) 1.3 0.1 1.4 1.0 0.2 1.2
CO2e (t) 153.8 7.2 161.0 111.9 28.6 140.5

Environmental
cost ($/day) Cost of CO2 3087 144 3230 2245 575 2819

Conversion factor: 0.459 of CO2 (t/MWh), 0.0052 of CH4 (kg/MWh), 0.004 of N2O (kg/MWh), and 0.46 of CO2e
(t/MWh).

4. Discussion

4.1. Statistical Difference Test of Saved Travel Time between Current System and PBS

Statistical difference test was performed to determine the significance of the saved travel time
produced by the passenger travel behavior-based strategy against those of the current system. We
analyzed the differences in travel time by comparing the travel time of the proposed strategy to that of
the current system for each of the 664,572 passengers. In-vehicle time was calculated as the sum of the
maximum speed time of the moving train, dwelling time, safety time, acceleration time, deceleration
time, and overtaking time. Waiting time was the time required for the passenger to wait for the coming
train or transfer to the train. The total travel time was the sum of in-vehicle time and waiting time
multiplied by the number of passengers of each O-D pair.

Figure 7 represented the travel time distributions of 664,572 passengers on the Bundang line for
the current and the proposed strategy, e.g., in-vehicle time, waiting time, and total travel time. The
distributions of in-vehicle time represented the shorter time in passenger based- model than that of the
current network due to the applying for the express train system. Since the passenger-based model
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applied the different waiting time in the express and local train, the distribution of waiting time in the
passenger-based model had the shape of a bimodal distribution. Due to the in-vehicle and waiting
time, the distribution of total travel time in the passenger-based model was derived for more positively
skewed distribution than that of the current network. It was possible to identify the characteristics of
applying for the express train system from the distributions of travel time of individual passengers.
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We performed the t-test to analyze the statistical significance for the difference of the mean of the
in-vehicle time and waiting time. Statistical significance was also confirmed using the chi-squared test
to verify the distribution of variations for 42,090 h of the total saved travel time between the passenger
travel behavior-based strategy and the current system. The results of t-test show that the average
in-vehicle time was decreased by 4.2 min while the average waiting was slightly increased by 0.4 min
for the 664,572 passengers. The t-statistics and the p-value of the saved in-vehicle time were estimated
to be 352.7 and 0.001 respectively, with statistical significance. The waiting time was slightly increased,
and statistically significant, since the t-statistics and the p-values were estimated to be −495.2 and 0.001
respectively. By the t-test for the total travel time, the t-statistics and the p-value were estimated to
be 383.8 and 0.001, respectively. The statistical significance of the travel time difference between the
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passenger travel behavior-based strategy and the current system was also verified with the significance
level of 0.001. By the chi-squared test the variation of the total travel time distributions between the
passenger travel behavior-based strategy and the current system was also verified with the significance
level of 0.001. Based on the statistical difference test, it was possible to confirm that the trade-off

relationship between in-vehicle time and waiting time was established in the skip-stop strategy. The
results of the statistical difference test are shown Table 6.

Table 6. Results of the statistical difference test.

Difference Test Mean
(min/person)

Standard
Deviation

t-Statistics/
Pearson x2

Degrees of
Freedom p-Value

t-test

Differences of
in-vehicle time 4.2 8.7 352.7 664,571 <0.001

Differences of
waiting time −0.4 0.7 −495.1 664,571 <0.001

Differences of
Total travel time 3.8 8.0 383.8 664,571 <0.001

x2-test
Differences of

Total travel time 3.8 - 38,000,000 520,968 <0.001

4.2. Comparison with Other Strategies

In order to identify the performance of the proposed model, we conducted a comparison with the
strategy developed in the previous studies. Since the analysis environment for each model is different,
a direct comparison is difficult. However, the evaluation could be indirectly compared through a
comparison of the same measures of effectiveness. The four-comparison model was selected from the
previously reviewed studies, which have objective functions to minimize the travel times [12–15].

The strategy for the Seoul subway Line 5 was designed for minimizing the total travel time and the
waiting time, and the travel time was reduced by about 12.9% [12]. The strategy for the Seoul subway
Line 4 was minimizing the total travel time and the travel time was reduced by about 17.1% [13]. Two
strategies for the Shenzhen Metro developed models were to minimize total travel time, reducing
travel time by 4.8% and 16.2%, respectively [14,15]. The proposed model in the study showed the
17.9% saved travel time of Bundang line in Seoul.

As results of comparisons to other studies [12–15], PBS demonstrated the best performance which
saved travel time of approximately 17.9%. In the comparative models, it is assumed that the passengers
are rational in travel and this model does not take into account the passengers’ probabilistic traffic
behavior. On the other hand, in reality, the passenger’s irrational passages are probabilistic. Many
studies have designed the objective function to minimize the passenger’s travel time for skip-stop
optimization, but have limitations in not considering the passenger’s traffic behavior. The proposed
model reflects the passengers’ travel behavior, which is not taken into account in other previous studies
and is derived as a more beneficial strategy in terms of passengers. Although the proposed model
considers the behavior of the passenger, it is necessary to consider other factors such as operating costs
and environmental costs. Table 7 shows the comparison results between PBS and other strategies of
previous studies.
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Table 7. Performance of optimal skip-stop strategy comparing to the previous studies. (Unit:
Minute/person, %).

Author
(year)

Current Travel
Time
(A)

Proposed
Travel Time

(B)

Saved
In-Vehicle

Time

Saved Waiting
Time

Saved Travel Time
Ratio

[(A − B)/A*100]

Suh et al. (2002) 16.9 14.9 2.7 −0.7 12.9%
Lee et al. (2014) 21.8 18.1 4.1 −0.3 17.1%

Zhang et al.
(2017) 16.5 15.7 0.9 0.1 4.8%

Luo et al.
(2018) 12.3 10.3 - - 16.2%

This study
(2019) 22.5 18.7 4.2 −0.4 17.9%

5. Conclusions

The skip-stop strategy allows for the simultaneous operation of both express and local trains
on the same railway line in the urban railway network. The main idea of the skip-stop approach is
to reduce the total travel time by allowing express trains to skip the local stations which have low
ridership along a railway line

In this study, we proposed an optimal skip-stop strategy that considers four types of travel
behaviors. We analyzed the optimal solution to derive the stations of the skip-stop, applying a genetic
algorithm. The mixed travel time distribution of O-D pairs from the smartcard data was decomposed
by two distributions for express trains and local trains based on the GMM. The performance of the
passenger travel behavior-based strategy which is proposed in this study was evaluated by comparing
the two empirical strategies. Results indicated the travel time of the transfer-based strategy and the
high ridership-based strategy were estimated to be 21.2 and 19.7 min/person respectively. It was shown
to save as much as 5.8% and 12.2% of the travel time compared to the current system. In the travel
behavior-based strategy, the express stations were designated based on minimizing the passengers’
total travel time. The choice probabilities of the local and the express train were calculated based on
the utility parameters estimated by GMM and MNL. The average travel time of 664,571 passengers
was estimated to be 18.7 min, and the ratio of saved travel time was analyzed as 17.9% compared to
the current system. It showed that the passenger travel behavior-based strategy had the most notable
performance among the proposed strategies. A statistical test was also performed to determine the
significance of the saved travel time produced by the passenger-based strategy against those of the
current system. We performed the t-test to analyze the statistical significance for mean differences
of riding and waiting time. The results showed that the average in-vehicle time was decreased by
4.2 min, while the average waiting was slightly increased by 0.4 min for the passengers. Based on
the test of statistical difference, we confirmed that the trade-off relationship between in-vehicle time
and waiting time was established in the skip-stop strategy. In terms of sustainability, the PBS also
saved the energy consumption and GHG about 12.7%, compared to the current system. Although our
optimal strategy accomplished what others have not done before, such as reflecting travel behaviors in
optimizing the skip-stop strategy, there were still many considerations that were not taken into account.
Those include the capacities of the trains, time-dependent operation, individual passenger’s waiting
time, transfer time, toll gate-to-platform access time, and so on. Future work is on-going to include
train/time conditions and more specific components of the travel behaviors to the skip-stop strategy.
Regarding sustainability, it is also possible to optimize the skip-stop strategy which minimizes the
energy consumption and GHG emissions.
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