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Abstract: The present study examines bi-directional contemporaneous and lead–lag relationships
between investor sentiment and market returns in the emerging market of Pakistan over the period of
2006 to 2016. To measure investor sentiment, the study employs a direct proxy namely Google search
volume index (GSVI) and nine other indirect proxies. Besides conventional regression and VAR model,
the study applies Geweke’s (1982) tests to investigate the nature of relationships between sentiment
and returns. Thus, the study adds to existing literature by providing latest and thorough statistical
evidence on the role of investor sentiment in influencing market returns. The study finds sufficient
evidence regarding irrational behavior of investors in the thin market of Pakistan. In particular,
the results indicate substantive role of sentiment in dragging stock market away from its sustainable
path as implied by economic fundamentals.
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1. Introduction

For decades, academicians, economists, and researchers have been focusing on the role of financial
markets in promoting sustainable economic growth and development by channelizing capital mobility,
risk sharing, etc. However, when stock markets strongly react to sentiments, it would mean that
they deviate from their ideal role of conveying credible signals regarding health of the economy and
rather provide opportunity for unproductive speculative and rent-seeking activities. In extreme cases,
sentiments may drag financial markets too far away from their fundamental paths to create financial
crises and thereby make real economic progress unsustainable.

It is not surprising, therefore, that the effect of investor sentiment on stock returns has been the
focus of increased theoretical and empirical investigation in behavioral finance literature focusing
on three elementary units, namely limits to arbitrage (e.g., [1]), investors’ behavioral preferences
(see, [2]), and their sentiment [3–6]. Investor sentiment is defined as the conception that depicts in
what ways investors develop their preferences and beliefs using moods, emotions, psychological bias,
and cognitive bias; and afterward forecast future asset prices. Sentiment is the result of emotional
responses instead of stock market’s fundamental changes and it impacts the expectations of stock
returns [7]. Barberis et al. [8] defined sentiment as communal judgment fallacy made up by a group
of stakeholders that are noise traders as opposed to a chain of uncorrelated errors. According to
De Long et al., Brown and Cliff, Lemmon and Portniaguina, Baker and Wurgler, and Berger and
Turtle [9–14], market sentiment is optimistic or pessimistic convictions of investors on stocks, which are
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not guaranteed by fundamentals. Bergman and Roychowdhury, Han, and Hribar and McInnis [15–17]
interpreted sentiment as prejudices and errors in beliefs of investors regarding prospects of future
performance of a company.

Sentiment can be measured by direct or indirect approaches. Direct measures rely on information
gained through surveys, seeking information from individuals regarding their feelings about the stock
market and economic conditions, and electronic sources like internet and social media. On the other
hand, indirect measures are based on financial and economic variables that depict investors’ mindset.

Both the direct and indirect measures have been used extensively in empirical literature.
For example, Lemmon and Portniaguina, Brown and Cliff, Zhang, Lux, and Ali et al. [11,18–21]
used surveys to measure sentiment. Da et al. [22] constructed an index named as Financial and
Economic Attitudes Revealed by Search (FEARS) index by using daily internet search volume from
millions of households as a measure of sentiment. Bollen et al. [23] used Twitter feeds, while Edmans
et al., Palomino et al., and Kaplanski and Levy [24–28] used websites to access comments/views on
the results of various World Cup games to measure investor sentiment. It is pertinent to note here that
recent literature (e.g., [29–33]) has also interpreted information based on internet search, especially
Google trends as an indicator of uncertainty rather than just a measure of sentiment. Sentiment
could also be interpreted as fear. For example, Ghosh et al. [34] have used the volatility index (VIX)
constructed by Chicago Board of Options Exchange based on 30-day volatility and market expectations
and interpreted it as a measure of fear rather than sentiment or uncertainty.

Some of the popular indirect measures used in empirical literature include number of IPOs,
first-day returns on IPOs and closed-end fund discount [10,12,35], ratio of the number of advancing
issues to the number of declining issues [10,36], mutual fund flows [10,37], turnover [38], dividend
premium, trading volume and equity share in new issues [12], and bull-bear indicator of financial
markets which includes relative strength index [36,39].

Any single indicator of sentiment cannot capture the broad concept of sentiment but provides
information on certain characteristics of firms such as performance, liquidity, activity level, etc.
Therefore, the dominant opinion in the literature proposes to construct sentiment index using various
individual indicators.

Literature reveals a high correlation between investor sentiment and market returns. In the course
of great optimism (pessimism) or high (low) sentiment, the investors as a group overrate (underrate)
assets and, hence, market valuation becomes greater (lower) than the intrinsic value. Thus, it is
suggested that besides traditional theory, the role of investor sentiment should be considered for
asset-pricing models. Kaplanski and Levy [40] revealed that bad mood and anxiety provoked due
to media coverage of aviation disaster create negative sentiment and affect stock prices. Curatola et
al. [41] used sport sentiment and found that it has a significant impact on returns of financial sector.
Bijl et al. [42] found that stock returns can be predicted using Google search volume, with a negative
mutual relationship. According to Kim et al. [43], search volume has insignificant relationship with
returns but significant positive relationship with trading volume.

A bulk of literature has shown validations of the relationship between market returns and investor
sentiment in developed markets, for instance, De Long et al., Brown and Cliff, Berger and Turtle,
Brown and Cliff, Zhang, Lee et al., Brown, Kumar and Lee, Yu and Yuan, Da et al., Zouaoui et al.,
Chung et al., Dergiades, Vozlyublennaia, etc. [9,10,14,18,19,44–52].

As noted in Nisha [53], academic interest recently shifted towards emerging economies
to investigate the movement in stock prices. For example, according to Anusakumar et al.,
Kaplanski et al., and Jansen and Nahuis [54–56], investor sentiment has a significant positive
relationship with returns. Barber et al. [57], however, showed that at longer horizons there is a negative
relationship between stock returns and investor sentiment. Lao et al. [58] observed a positive effect of
returns shocks on sentiment and a negative impact of sentiment shocks on market returns. Pakistan
was recently re-awarded the status of emerging market by Morgan Stanley Capital International
(MSCI) in May 2017 after nine years. However, in second half of 2017, it lost 15% total return
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KSE-100 index (as compared to 24% average return during the past 10 years). This underperformance
was experienced during the period when healthy gains were exhibited by peer countries like India,
Bangladesh, Malaysia, etc. [59]. This indicates that like most other markets, Pakistani stock market
has substantial noise component, which needs to be analyzed. Although a number of studies have
attempted to explore the role of investors’ sentiment in this regard, the recently proposed measures of
sentiment, such as Google search volume index, have not yet been used for Pakistan. Besides using a
broad index of invertors’ sentiment, the present study also employs comprehensive statistical tools to
measure the relationship between sentiment and returns.

In Pakistani context, various studies have focused on the behavioral factor of investor
sentiment. The recent study of Rehman et al. [60] has found a positive relationship between
returns and the sentiment index. Similarly, Ahmed and Ullah, Ahmad et al., Awan et al., Rehman,
and Sarwar et al. [61–65] have also found significant relationship of future trading with the investor
sentiment. Khan and Rahman [66] explored the influence of sentiment on industry returns and found
a significant relationship. Chughtai et al. [67] have revealed a negative relationship of sentiment
with current and future returns. Sadaqat and Butt [68] concluded that sentiment has positive
contemporaneous and negative lagged effect on excess returns.

The present study quantifies a new and more comprehensive measure of investor sentiment
for Pakistan in comparison to previous studies. Only few empirical studies have used both direct
and indirect indicators of sentiment. In particular, no study can be found for Pakistan that makes
use of sentiment data derived from internet search trends. Specifically, the study includes both
direct and indirect proxies to construct a composite sentiment index for Pakistani stock market
using principal component analysis. For the first time, Google search volume index is used as a
direct measure of sentiment for Pakistani market. In addition, nine indirect measures including
the number of initial public offerings, closed-end fund discount, advance–decline ratio, dividend
premium, interest rate, price–earnings ratio, turnover, money-flow index, and relative strength index
are used. The composite index is a broad representation of sentiment measures from different
categories/perspectives, for instance, stock prices, turnover, mutual funds, Initial public offerings,
interest rate, and especially Google search volume.

Therefore, the study adds to existing literature by providing latest evidence on the role of investor
sentiment in influencing market returns in the emerging market of Pakistan, considering a broader
measure of sentiment.

The possible bi-directional contemporaneous and lead–lag relationships between returns and
investor sentiment for the Pakistani market are also investigated in the study, which is new to the
literature. Another novel feature of the study is that besides conventional regression and VAR model,
the approach proposed in and Geweke [69] is also applied. Thus, in addition to analyzing the lead–lag
feedback responses between sentiment and returns, the study also investigates contemporaneous
feedback between the two variables, which has not yet been done for Pakistan Stock Exchange (PSX).
The remaining part of this article is organized as follows. Section 2 presents methodology and data
followed by Section 3, which provides empirical results. Section 4 concludes the paper.

2. Methodology and Data

2.1. Measurement of Sentiment

The first task of this study is to calculate investor sentiment of Pakistani stock market using direct
and indirect proxies for the time period of 2006 to 2016. Direct measures are developed through surveys
of investor and business studies [10,11,44]. Nowadays, a bulk of information is available on different
search engines and social media that provide a more efficient and less costly alternative to field surveys.
According to Mondria et al. and Choi and Varian [70,71], Google search volumes of certain terms are
correlated with investment. Therefore, a change in search volume provides information about the
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investors’ buying and selling pattern, which eventually shows an optimistic or pessimistic trend in the
market [72].

The indirect approach measures investor sentiment using financial market variables on the basis
of financial theories. Brown and Cliff [10] classified indirect sentiment indicators into four categories
representing performance, types of trading activity, derivatives trading activity, and ‘market weather
vanes’. According to Simon and Wiggins [73], every single proxy comes under one of the three
categories: performance, liquidity, and financing activities of firms. Based on such classifications quite
a few indirect indicators of investor sentiment have been proposed and used in literature, which include
relative strength index (RSI) and money flow index (MFI), dividend premiums, closed-end funds
discount, put–call ratio, and buy–sell imbalance (see, for instance, [9,10,36,39,46,74,75]).

The main advantage of direct measure of sentiment is that it provides direct information about
psychological mindset of people (pessimism, optimism, etc.), which does not need to be endorsed by
financial theory [76,77]. The main disadvantages of survey measures are errors in questionnaire or
interviews, prestige bias, and most importantly low frequency of sampling time period. The indicators
of the indirect method have the advantage that these rely on financial theories and are generated by
using financial data, which are mostly measured with reliability and are available in higher frequencies
of time as well. However, financial data may capture expectations of the investor about price changes
only and no other elements of attitudes of the investor [78]. Compared to survey-based direct measures
and indirect measures, the measure derived from financial and economic attitudes based on daily
internet search volume has various advantages. For instance, it tells about attitudes instead of inquiring
about them, is obtainable at a high frequency, and discloses more personal information as compared to
surveys where response rate and motivation for truth-telling is low [22].

In the light of above observations, the present study uses nine indirect measures and one direct
measure, the Google search volume index (GSVI). This choice is based on two considerations. First,
the selected indirect measures have been used by some of the important studies, for instance, Brown
and Cliff, Baker and Wurgler, Chen et al., Fisher and Statman, and Gao et al. [10,12,13,39,79,80]. Second,
GSVI is a unique direct measure of sentiment on which time series can be constructed and combined
with data on indirect measures.

It may be noted here that the ability of sentiment proxies popularly used in literature to represent
sentiment can be questioned because some of these proxies indicate performance and other such
attributes of financial market. One possible way-out that this study also follows is to remove the
non-sentiment component from the proxies by orthogonalizing them to fundamental macroeconomic
variables at some stage of computation.

The details of nine indirect proxies used in the present study and the methods to calculate them
are as follows:

1. Number of Initial Public Offerings (NIPO): When a company first time issues stock to the public,
it is known as initial public offering (IPO). During optimism in the market, most companies go
public, so, higher the number of IPOs higher will be the positive (bullish) sentiment [81].

2. Closed-End Fund Discount (CEFD): A pooled investment fund which uses IPO to raise a fixed
amount of capital is called closed end fund. It is traded like a stock having a price set by the
market and the average difference between the net asset values of closed-end stock fund shares
and their market prices is the CEFD. It is inversely related to investor sentiment, i.e., when the
discount increases as a result of decrease in share price, the investor will have a bearish sentiment.
Only three closed-end funds are left in the sector of mutual funds of Pakistan and their data are
available from February 2006 onwards. The value-weighted discount of Lee et al. [44] is applied
for the computation, i.e.,

CEFDt =
n

∑
i=1

WitDISCit (1)
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where DISCit = 100× (NAVit − SPit)/NAVit and Wit = NAVit/
n
∑

i=1
NAVit are the discount

and associated weight of fund i at end of period t and n is the number of funds, while NAVit and
SPit denote net asset value and stock price of fund i at end of period t.

3. Advance–Decline Ratio (AVDC): AVDC is an indicator of market breadth. It is calculated as the
ratio between numbers of advancing and declining issues

AVDCt =
Number o f Advancing stocks
Number o f Declining stocks

(2)

This ratio indicates direction of the market on net basis. If the ratio is equal to one, it would mean
that on average the market is neither bullish, nor bearish, whereas a value greater (less) than
one indicates bullish (bearish) sentiment. Furthermore, increase (decrease) in the ratio indicates
movement of the market in bullish (bearish) direction.

4. Dividend Premium (DP): DP is the log difference of the average market-to-book ratios (M/B) of
payers and nonpayers.

DPt = ln(M/B)payers− ln(M/B)nonpayers (3)

This indicator is inversely related to sentiment because optimistic investors are more interested
in stocks that have more investment opportunities rather than dividends attraction.

5. Interest Rate (IR): The cost of investments is shown by inter-bank offer rate (IBOR). When it
becomes high, cost of capital increases and profits decline and as a result some investors leave
stock market. Therefore, increase in IBOR is supposed to be a bearish signal.

6. Price–Earnings Ratio (PE): This is a valuation ratio that measures how much investors are willing
to pay per unit of current earnings and reveals expectation of the market about a company’s
growth. Usually a high PE ratio indicates relative degree of overvaluation in asset prices and,
therefore, a high sentiment level. The PE ratio is calculated as

Weighted PEt =
n

∑
i=1

(PEit ∗WEPSit) (4)

where PEit = MPit/EPSit is the ratio between market price and earning per share of company i

in period t and WEPSit = EPSit/
n
∑

i=1
EPSit is the weight attached to the price-earnings ratio of

company i in period t.
7. Turnover (TO): TO indicates about the liquidity of the market. It is the ratio of number of shares

traded daily (turnover) to the number of shares outstanding. When turnover increases, investor
sentiment also increases. TO is calculated using the formula

TOt =
n

∑
i=1

TOit ∗WOSit (5)

where TOit = Turnover o f companyi/Outstanding shares o f companyi and WOSit =

OSit/
n
∑

i=1
OSit represents the associated weights based on outstanding shares.

8. Money Flow Index (MFI): This indicator measures buying and selling pressures in the market.
The MFI holds both price and turnover information and ranges from 0 to 100. An exceptionally
high value (80 or above) indicates that an equity is overbought while an exceptionally low value
(20 or below) indicates that the equity is oversold [39]. To compute this index, first one has to
compute money flow for each company as

Money Flowit = Typical Priceit × Turnoverit (6)
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where Typical Priceit = Price_Highit + Price_Lowit + Price_Closeit/3.

If the typical price today is greater (less) than that of yesterday, then today’s money flow is
considered as positive (negative) money flow. The sum of all positive (negative) money in the
previous seven days is defined as the positive (negative) money flow. The next step is to calculate
MFI for each company as follows.

MFIit = 100× positive Money Flowit/(positive or negative Money Flowit) (7)

MFI for the market is estimated by taking simple average of all the MFIs, that is,

MFIt =
∑n

i=1 MFIit

n
(8)

9. Relative Strength Index (RSI): It is a market indicator that shows whether the market is oversold
or overbought. An RSI of 80 indicates that the market is overbought, while an RSI of 20 indicates
that the market is oversold. The seven-day RSI is used and defined as

RSI(7)it = 100× ∑7
i=1(Pt−i − Pt−i−1)+

∑7
i=1|Pt−i − Pt−i−1|

(9)

where (Pt−i − Pt−i−1)+ = Pt−i − Pt−i−1 i f Pt−i − Pt−i−1 > 0 and = 0 otherwise

RSI for the market is estimated by taking simple average of all the RSIs, that is,

RSIt =
∑n

i=1 RSIit

n
(10)

10. Google Search Volume Index (GSVI): The direct proxy used here is GSVI, which is based on
households’ Google search behavior through Google trends. Daily search volumes of search
terms in English language that relate to finance and economics are downloaded to measure
the sentiment concerning economic conditions. The Harvard IV-4 Dictionary and the Lasswell
Value Dictionary are used for developing the set of finance and economic related search terms.
Following Gao et al. [80], the steps given below are performed for developing Google search
volume index (GSVI):

a. Using markers like “Econ@”, “ECON”, and “EXCH”, a set of words is created. The study
focuses on words that show positive or negative sentiment (marked with positive or
negative tags). This approach provides search words like cost, profit, bankruptcy, etc.

b. The words are fed into the Google Trends and the first top ten phrases related to each word
are extracted. For instance, the top expressions related to gold are “gold rate”, “Pakistan
gold rate”, etc.

c. Only the search terms having at least 100 weekly SVI observations are considered and the
terms that turn out to be not evidently associated with finance and economics are discarded.

d. The daily SVI of search terms is downloaded for the period 2006–2016, then the daily change
in SVI for each term is calculated. To make them comparable, all data are deseasonalized
and standardized to obtain adjusted daily change in SVI (∆ASVI) for all search terms.

e. We let the data speak for itself to tag search terms with positive/negative sentiment and
identify which of them are most significant for returns. In this regard, the expanding
backward regressions of ∆ASVI on Pakistan’s market returns are used. With total number
of observations 3213 the study uses the windows of 21 days (the average number of trading
days per month) for expanding backward regression. This daily data provides number of
search terms with significant positive and negative t-statistics of slope coefficients.
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f. To construct sentiment index, the ∆ASVI of positive and negative terms are consolidated
with t-statistic weighted averages and the difference between them is calculated as a
measure of sentiment, that is;

GSVIt =
n

∑
i=1

Ri
+(∆ASVIi)−

n

∑
i=1

Ri
−(∆ASVIi) (11)

where
n
∑

i=1
Ri
±(∆ASVIi) is the t-statistic weighted average of positive (negative)

search items.

To obtain a composite investor sentiment index based on the above-calculated sentiment measures,
principal component analysis (PCA) is employed. The first principal component (PC), which provides
maximum common variation is data, is used as a single measure of sentiment. The main reason for
combining all the direct and indirect sentiment proxies into a single composite index is that for the
forthcoming econometric analysis, sample will consist of 131 months, which will not be sufficient to
include more than one sentiment measures along with their lags simultaneously in the same model.

All the 10 sentiment proxies are standardized before applying PCA. The investor sentiment index,
denoted by SENTt, is given by

SENTt = α + β1NIPOt − β2CEFDt + β3 AVDCt − β4DPt − β5 IRt + β6PEt + β7TOt

+β8MFIt + β9RSIt + β10GSVIt + εt
(12)

The sentiment proxies used here also contain non-sentiment components, which is removed by
orthogonalizing the sentiment index to a set of fundamental macroeconomic variables. Following
Brown and Cliff, Baker and Wurgler, and Hudson and Green [10,12,36], this set of variables includes
growth rates of industrial production and household consumption expenditure (calculated by taking
first difference of the natural logs of variables), investment–output ratio, inflation rate (log first
difference of CPI), and term spread (log difference of yield on 10-year government bonds from yield
on three-month T-bills).

The sentiment index (SENTt) is regressed on macroeconomic variables as follows and the
resultant residuals, standardized to the range zero to 100, are used as the orthogonalized measure of
investor sentiment.

SENTt = α + β1 INFt + β2 IPt + β3HCt + β4 IOt + β5TSt + εt (13)

where SENTt, INFt, IPt, HCt, IOt and TSt denote sentiment index, inflation rate, growth rate of
industrial production, growth rate of household consumption expenditure, investment to output ratio
and the term spread, while εt represents a random error term.

The above calculations for the sentiment proxies are applied on daily data but the maximum
frequency for the macroeconomic variables is monthly. To match frequency of the index with that of
macroeconomic variables, averages of sentiment proxies for the whole calendar months are calculated
and monthly sentiment index is obtained.

2.2. Modeling Sentiment–Return Relationship

Theory of traditional finance is not sufficient to explain stock market returns and behavioral theory
affirms that irrational investor sentiment may possibly have an effect on the markets for a considerable
period of time and arbitrage could be delayed and limited. The noise trader model proposes that
a class of investors do not make decisions on investment on the basis of market fundamentals but
their sentiment may affect asset prices [9]. According to Black and Kahneman and Riepe [82,83],
noise traders are the investors who trade on unrelated information or digress from the standard
models of decision making. According to Black [82], in the market having so many noise traders, it
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pays to those who have information to invest, whereas noise traders on average tend to lose money.
However, the presence of noise creates confusion for the information traders because they cannot be
sure whether the information they have is already revealed in the prices. Since trading on information is
like trading on noise, the distinction between noise and informed traders gets diluted. Thus, investors
seldom have full market information and tend to trade on the basis of intuition or easily available
noisy information, especially in weak efficient markets.

To begin with, this study proposes the following model of regression of return on sentiment in
which lagged response and inertia in returns are also allowed.

RMt = α + βSENTt +
p

∑
i=1

αiSENTt−i +
q

∑
i=1

βiRMt−i + εt (14)

where the lag lengths p and q are to be determined using selection criteria like AIC and SBC and
RM stands for return orthogonalized to the same set of macroeconomic variables that are used in
orthogonalizing sentiment. Note that according to Frisch–Waugh Theorem, OLS estimate of the simple
regression coefficient based on two orthogonaled variables is identical to partial regression coefficient
relating the corresponding unorthogonalized variables in an equation in which orthogonalizing
variables are also present [84].

It is not always the case that causal relationship runs one way from sentiment to returns. A close
look at the sentiment indicators used here would suggest that most of these are also directly or
indirectly triggered by recent events in stock prices as reflected in stock returns. It appears, therefore,
that market returns and investor sentiment are most likely to respond to each other instantaneously or
with some time lags. This possibility calls for VAR modeling in order to let the data speak itself for
better understanding of the relationship between the two variables.

The general form of VAR model is given as[
RMt

SENTt

]
=

[
α10

α20

]
+

p

∑
i=1

[
α11(i) α12(i)
α21(i) α22(i)

][
RMt−i

SENTt−i

]
+

[
ε1t
ε2t

]
(15)

Although this model could be extended to include other variables, especially macroeconomic
indicators like output, interest rate, etc. to generate rich dynamics, this possibility is not considered here
because the extended model will require estimation of too many parameters and will cause substantial
loss in degrees of freedom with the given sample of 131 months. Besides, the effect of macroeconomic
variables has already been netted out while orthogonalizing the sentiments and returns series.

As is well known, individual parameter estimates of a VAR model are not much reliable. Granger
causality tests provide a simple procedure to determine the presence or absence of causal relationship
between two variables. It is further to be noted that Granger causality tests only allow for lag responses
with no provision of instantaneous relationships. Geweke [69] has proposed a more general procedure
of causality testing that also allows for instantaneous responses between variables. Since Granger tests
are well known, here we explain Geweke’s [69] procedure according to which linear dependence is the
sum of three measures, i.e., a measure of linear feedback from variable X to variable Y, a measure of
linear feedback from Y to X, and instantaneous linear feedback measure. Mathematically, f X,Y = f X→Y
+ f Y→X + f X·Y

The test is based on the following six equations.
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RMt = ∑
p
i=1 e1iRMt−i + µ1t var(µ1t) = S1 (16)

RMt = ∑
p
i=1 e2iRMt−i + ∑

p
i=1 f2iSENTt−i + µ2t var(µ2t) = S2 (17)

RMt = ∑
p
i=1 e3iRMt−i + ∑

p
i=0 f3iSENTt−i + µ3t var(µ3t) = S3 (18)

SENTt = ∑
p
i=1 g1iSENTt−i + ν1t var(ν1t) = T1 (19)

SENTt = ∑
p
i=1 g2iSENTt−i + ∑

p
i=1 h2iRMt−i + ν2t var(ν2t) = T2 (20)

SENTt = ∑
p
i=1 g3iSENTt−i + ∑

p
i=0 h3iRMt−i + ν3t var(ν3t) = T3 (21)

The tests involve the following null hypotheses and the corresponding Chi-square test statistics.

Hypothesis 1: RM does not lead SENT: n.ƒRM→SENT = n.ln(T1/T2) v χ2
p

Hypothesis 2: SENT does not lead RM: n.ƒSENT→RM = n.ln(S1/S2) v χ2
p

Hypothesis 3: No contemporaneous relationship between RM and SENT:

n.ƒRM.SENT = n.ln(T2/T3) v χ2
1

Hypothesis 4: No lagged or contemporaneous relation between RM and SENT:

n.ƒRM,SENT = n.ln[S1(
T1

|Υ| )] v χ2
(2p+1)

In the last equation, |Υ| is the determinant of covariance matrix

[
S2 C
C T2

]
where S2 and T2 are

variance of the two error terms (µ2t and ν2t), while C is the covariance between them.
For impulse response and variance decomposition analyses, we need to identify the underlying

structural VAR model from the estimated (reduced form) VAR model. We follow the standard practice
of Cholesky ordering. Since literature mostly focuses on the role of sentiment in driving stock market
returns, we set the instantaneous effect of returns on sentiment equal to zero [10]. Needless to say that
this restriction does not deny the possible effects of market returns on sentiment with some lag of time.

2.3. Data

The sample consists of 102 companies including all those companies (90) from the list of 2016
KSE-100 for which data are available since 2006. The remaining 12 companies are those which made
initial public offerings during the sample period 2006–2016 but are not included in the KSE-100.
Data sources for the sentiment indicators include DataStream, Business Recorder, balance sheets of the
companies, and websites of the Pakistan Stock Exchange (PSX), Mutual Fund Association of Pakistan
(MUFAP), and State Bank of Pakistan (SBP). The monthly data on CPI, yields on 3-month T-bills and
10-year government bonds are taken from the website of State Bank of Pakistan and the monthly
data of industrial production are taken from the Bulletin of Statistics. The quarterly data on GDP,
investment, and household expenditure from 2006 to 2013 are taken from the Kemal and Arby and
Hanif et al. [85,86] and the data for the years up to 2016 are extrapolated by using the past three-year
averages of the quarterly proportions in annual GDP. Finally, quarterly data are temporally split into
monthly values by imposing continuity and exponential growth between months.
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3. Results

3.1. Sentiment Index

Descriptive statistics of the ten standardized proxies of sentiment index are presented in Table 1.
Out of these, four indicators; dividend premium (DP), interest rate (IR), money flow index (MFI),
and relative strength index (RSI) have mean values greater than 0.5, while the remaining six indicators;
number of initial public offerings (NIPO), closed-end fund discount (CEFD), advance–decline ratio
(AVDC), price–earnings ratio (PE), turnover (TO), and Google search volume index (GSVI) have
mean values less than 0.5. It shows that 60 percent of the indicators are concentrated towards lower
side showing low sentiment. The table also shows that AVDC has lowest standard deviation value
indicating the lowest variation in the series of AVDC on daily basis, whereas, PE shows highest
variation over the period of data.

Table 1. Descriptive Statistics; Principal Component Analysis.

Variable Mean Std. Dev

Number of Initial Public Offerings (NIPO) 0.3717 0.2813
Closed-End Fund Discount (CEFD) 0.4705 0.2456
Advance–Decline Ratio (AVDC) 0.2452 0.1038
Dividend Premium (DP) 0.5546 0.2626
Interest Rate (IR) 0.6322 0.2343
Price–Earnings Ratio (PE) 0.3533 0.2873
Turnover (TO) 0.1538 0.1650
Money Flow Index (MFI) 0.8053 0.1556
Relative Strength Index (RSI) 0.6423 0.1846
Google Search Volume Index (GSVI) 0.4753 0.1678

Table 2 shows that the sentiment indicators are highly correlated with one another with 22 of
the 36 pairs forming statistically significant relationship, which justifies the construction of a single
index to represent sentiment. The results further reveal that the highest correlation is present between
MFI and RSI, which means that they are measuring the same phenomenon, i.e., whether the market is
overbought or oversold. The second highest correlation is found between CEFD and IR both of which
indicate the cost of future earnings (bearish signal).

Table 2. Correlation Matrix for Individual Sentiment Indicators.

NIPO CEFD AVDC DP IR PE TO MFI RSI GSVI

NIPO 1
CEFD −0.212 * 1
AVDC −0.103 −0.074 1
DP −0.473 ** 0.345 ** −0.113 1
IR 0.071 0.635 ** −0.018 0.317 1
PE −0.050 −0.441 ** −0.068 0.057 −0.634 ** 1
TO 0.185 * −0.528 ** 0.167 * −0.532 ** −0.259 ** −0.084 1
MFI −0.255 ** −0.083 0.207 * 0.136 −0.207 * 0.234 ** 0.207 * 1
RSI −0.247 ** −0.071 0.137 0.179 * −0.220 ** 0.253 ** 0.211 ** 0.865 * 1

GSVI −0.027 −0.166 * 0.059 −0.124 −0.071 −0.004 0.123 0.01 0.027 1

Note: The t-statistics significant at 5% and 1% levels are indicated by * and ** respectively.

The significance level of Bartlett’s test of sphericity is less than 0.05 which shows that this PCA
has an acceptable degree of common variance. First principal component is selected with the highest
eigenvalue and its component loadings are presented in the following equation, which depicts that
all indicators have signs as expected according to the theory. The second component has eigenvalue
greater than 2 but it has opposite signs for some indicators. Therefore, it is improbable that this
component will capture sentiment and is not used in the analysis.
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It is shown that four indicators (NIPO, AVDC, DP, and GSVI) have component loadings less
than 0.3.

PCA_10t = 0.035NIPO− 0.471CEFD + 0.126AVDC− 0.251DP− 0.478IR
+0.346PE + 0.372TO + 0.314MFI + 0.311RSI + 0.117GSVI

(22)

In the next step, another sentiment index (PCA_6) is constructed by eliminating the above
mentioned four variables which have component loadings less than 0.3. The component loadings of
this index are

PCA6t = −0.436CEFD− 0.484IR + 0.411PE + 0.3006TO + 0.394MFI + 0.399RSI (23)

This equation shows that all indicators have the same signs and almost same coefficients as in the
initially calculated index (PCA_10). The correlation between PCA_10 and PCA_6 is also extremely
high, i.e., 0.963, showing that eliminating four sentiment indicators did not cause any significant
change, which can also be seen from Figure 1. Therefore, the present study uses the sentiment index
based on the initially selected 10 indicators in order to retain maximum number of sentiment proxies
for the final analysis.
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The correlation vector of 10 individual sentiment indicators and the sentiment index (based on
Principal Component 1, PCA_10) is presented in Table 3. The results show that only one indicator has
low and insignificant correlation with sentiment index (p-value = 0.50).

Table 3. Correlation Vector of Individual Sentiment Indicators with the First Principal Component
Index (PCA_10).

NIPO CEFD AVDC DP IR PE TO MFI RSI GSVI

SENT 0.059
(0.50)

−0.781
(0.00)

0.210
(0.01)

−0.417
(0.00)

−0.793
(0.00)

0.575
(0.00)

0.617
(0.00)

0.521
(0.00)

0.516
(0.00)

0.195
(0.02)

Note: Values in parentheses are probabilities of t-statistics of the corresponding correlation coefficient.

Out of these 10 indicators, seven proxies namely NIPO, AVDC, PE, TO, MFI, RSI, and GSVI
are found to be directly related to sentiment. When the companies perform well, they increase
investment capital by issuing stock to the public through IPOs, market has more advancing issues,
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high PE ratio and turnover, more buying pressures, and investors search about the market more
frequently. All these circumstances show sound health of the market and optimistic behavior of the
investors. The remaining three proxies found to be inversely related to sentiment are CEFD, DP, and
IR. The closed-end funds are traded at a discount when the market price of funds drops below its
NAV, and it may be an indication that the fund’s future earnings are risky and its assets may not be in
favorable condition, so closed-end fund discount is a bearish signal. Similarly, dividend premium has
an inverse relationship with sentiment because the stocks of dividend-paying firms show that they are
retaining less in investment opportunities and more like bonds having a stable income as a sign of
safety (bearish signal). The interest rate also has negative relationship with sentiment because when the
cost of investment is high, profit margins are reduced and as a result, the investors become pessimistic.

Figure 1 shows that the sentiment index followed a downward trend during the initial years
till 2008 when it nose-dived to its lowest level in the periods of global financial crisis of 2008 and
2009. Since global financial crisis could not have been caused by sentiments in Pakistan, it must be
the case that pessimistic sentiments were triggered by the financial crisis. After quick recovery the
index remained fluctuating still at low level until the year 2011. Thereafter, the index followed upward
secular trend with fluctuations on the way. Until the last year of analysis, that is 2016, the sentiment
index reverted back almost completely to its initial level in 2006.

3.2. Regression Analysis

As mentioned in methodology, to remove the effect of macroeconomic fundamentals, returns,
and sentiment index are regressed on a set of macroeconomic variables. Before this, stationarity of all
the series involved is tested. Table 4 shows that the null hypothesis of unit root stands rejected for all
the variables. Therefore, all the variables are stationary and ready for further analysis.

Table 5 reports parameter estimates of the regression of returns on sentiment along with lagged
variables. F-Statistic is highly significant, which indicates significant contribution of the sentiment
along with lagged variables in explaining variance in the returns. Furthermore, the value of adjusted
R2 is 31 percent, which supports the application of this model. The value of Durbin–Watson indicates
that there is no significant autocorrelation left in errors, which justifies the selected lag length on the
basis of AIC and SBC criteria.

Table 4. Augmented Dickey–Fuller Test.

Variable t-Statistics Probability

RM −10.81 0.00
SENT −3.96 0.00
INF −2.79 0.00
IP −3.38 0.01
IO −11.02 0.00
TS −2.41 0.01
HC −4.49 0.00

Table 5. Regression Analysis for Market Returns.

Explanatory Variable Coefficient t-Statistic

SENTt 0.004 7.65 *
SENTt-1 −0.003 −5.98 *
RMt-1 0.219 2.63 *
Adjusted R2 0.306
F-Statistic 19.70 *
Durbin–Watson Stat 2.03

Note: The statistics significant at 1% level are indicated by *.
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Market rate of return has significant positive relationship with current investor sentiment and
significant negative relationship with lagged sentiment. The estimated coefficient values show that
one percent point increase in sentiment results in 0.4 percentage point increase in return in the current
month and 0.3 percentage point decrease in return after one month, indicating that most of the effect
of sentiment on return is wiped out after one month. This result is consistent with Anusakumar
et al., Kaplanski et al., and Jansen and Nahuis [54–56]. The results also show that returns have
positive relationship with one period lagged return, that is, one percentage point increase in previous
return increases the current returns by 22 percentage points. This result indicates rally effect and
inefficiency of the market. The compounding effect shows that increase in return is related to its
previous increasing trend.

Figure 2 shows time paths of returns and sentiment, which support the above mentioned results.
It is clearly seen that the returns of Pakistani market are affected by the sentiment of the investors.
When Pakistani investor considers that the previous returns are high (low), they overvalue (undervalue)
the market and develops the positive (negative) sentiment, consequently current returns tend to be
high (low) showing irrationality of the market. Results show that in the period of 2008, the sentiment
of Pakistani investors is dropped below 10 percent and returns followed the same pattern by reaching
to minimum level.
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3.3. VAR Analysis

To investigate the possibility of bidirectional relationship between orthogonalized returns and
orthogonalized investor sentiment index, we now turn our attention to VAR analysis. The parameter
estimates of VAR model are not focused here because of the expected high degree of multicolinearity.
Thus, following standard practice, conclusions regarding the bidirectional relationship between
returns and sentiment are drawn on the basis of causality tests and impulse response and variance
decompositions analyses. Lag length selection is a pre-requisite in the estimation of a VAR model.
Application of the performance criteria like AIC, SBC, HQ, etc. indicates that all the criteria favor
selection of lag order one except LR, which selects lag order six. In addition, lag exclusion Wald
tests are also applied starting with 12 lags and following stepwise backward elimination technique.
The final model left has lags 1, 2 and 6. The lag exclusion test produces different results than those of
lag selection criteria except for LR criterion. However, to benefit from the rich dynamics in the presence
of higher lags, we prefer to rely on the results based on lag exclusion tests and LR criterion, given that
the sample size is reasonably large. The finally estimated model is given by the following equations.

RMt = 0.000065SENTt−1 + 0.00112SENTt−2 − 0.00180SENTt−6 − 0.063RMt−1

−0.3025RMt−2 + 0.3102RMt−6 + 0.0257
(24)
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SENTt = 0.6344SENTt−1 + 0.2368SENTt−2 − 0.0952SENTt−6 − 42.040RMt−1

−30.082RMt−2 + 23.294RMt−6 + 8.7076
(25)

As mentioned earlier, the parameter estimates of the above VAR model are not interpreted directly.
Rather, we rely on other analytical tools to which we now turn our attention.

3.3.1. Causality Analysis

The results of Granger causality test presented in Table 6 indicate the presence of significant
two-way causality between returns and sentiment even though the causality from sentiment to returns
is more pronounced. The existing literature provides support for this bidirectional relationship in the
studies of Waleed and Alrabadi for Jordan and Thanou and Tserkezos for Greece [87,88].

Table 6. VAR–Granger Causality Test.

Null Hypothesis Chi-Square Statistics Prob.

Sentiment does not Cause Returns 16.13 0.00
Returns do not Cause Sentiment 10.60 0.01

For causality tests based on Geweke’s [69] procedure, we compute various Chi-square statistics as
mentioned in Section 2.2. The results are presented below.

Linear feedback from RM to SENT: n.ƒRM→SENT = n.ln(T1/T2) = 10.43

Linear feedback from SENT to RM: n.ƒSENT→RM = n.ln
(

S1
S2

)
= 28.56

Instantaneous linear feedback between RM and SENT: n.ƒRM.SENT = n.ln(T2/T3) = 49.50

Total feedback between RM and SENT: n.ƒRM,SENT = n.ln[S1(
T1
|Υ| )] = 103.42

Since the critical χ2 value at 5% level of significance is 3.84, all the calculated values of χ2 statistic
fall in the rejection range. This is a strong result indicating that sentiment and returns not only affect
each other with lags, as found in Granger causality results, but the instantaneous relationship between
them is also statistically significant. The results further show, obviously, that the total feedback between
returns and sentiment is also statistically significant. Thus, our results point towards a strong two-way
relationship between returns and sentiment, which is established instantaneously and persists with
passage of time.

3.3.2. Impulse Response Analysis

Impulse response functions trace time paths of the effects of structural shocks on variables present
in a VAR model. Structural shocks are extracted from the SVAR model retrieved from the estimated
(reduced form) VAR model. For identification of SVAR model, we use Cholesky ordering setting the
instantaneous effect of returns on sentiment equal to zero.

The four impulse response functions with lags of 12 months are shown in Figure 3. These graphs
show how returns and sentiment react to each other over a horizon of 12 months. The first graph
shows response of market return to shocks originating from stock market itself as measured by one
standard deviation of return. The resultant impact is positive for two period lags, negative for third
lag, and positive again from the lag 4 until lag 8. Initially, it is significantly positive for one lag but the
response cools down and turns insignificant in the next months.

The second graph shows that when a positive shock of one standard deviation is given to
sentiment, market returns respond insignificantly in positive direction for the first two lags but become
significant for third and fourth lags. However, later on, the response starts moving downwards but
remains positive and almost significant for the fifth and sixth lag. Later on the response becomes
significantly negative in the seventh month and remains so in the eighth month as well. This negative
impact of sentiment shocks on returns moves towards zero and tends to wipe out. This impulse
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response profile points toward substantive role of sentiment in driving stock market outcomes.
In particular, the impact of sentiment on returns cannot be regarded as an instantaneous reaction of
temporary nature. Rather this impact is realized with a lag of three months and then persists for up to
six months after which the market seems to adjust back following a short period of technical correction.
This finding is consistent with the results of many previous studies. For example, Berger and Turtle,
Fisher and Statman, Schmeling, Baker et al., and Zheng [14,89–92] show that investor sentiment
has a negative relationship with subsequent market returns, that is, when investors are optimistic
(pessimistic), return shows downward (upward) trend ultimately to move towards equilibrium.Sustainability 2018, 10, x FOR PEER REVIEW    15  of  20 
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The third graph indicates that due to positive shock of one standard deviation in market returns,
sentiment is positively and significantly affected with a lag of one month. Afterward, the sentiment
response turns insignificant in the future months. It means that when there is an increase in returns
shock, the sentiment becomes positive indicating optimism. This result is consistent with the studies
of Verma et al., Väljamets and Sekkat, and Anusakumar et al. [54,93,94]. The last graph reveals the
response of sentiment to sentiment shock which is significantly positive during the course of the first
seven lag months. Later on, the impact of sentiment shock remains positive but turns insignificant.

3.3.3. Variance Decomposition Analysis

We now present the results of forecast error decomposition in order to determine what proportions
of variation returns and sentiment are accounted for by returns and sentiment shocks. Table 7 shows
the results of variance decomposition for a horizon of twelve months. The first part of the table reveals
that in the short run (i.e., month 3), return shocks account for 97.67 percent variation in returns while
sentiment accounts for only 2.33 percent of the latter. Although the contribution of sentiment shocks
to variation in return increases over time, it remains quite low, a little more than 7 percent even after
10 months. In contrast, return shocks contribute a substantial portion of variation in sentiment, starting
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at about 33 percent in period 1 and decreasing to 18 percent after 10 months. At first, this result seems
somewhat surprising because based on the existing literature, one would expect that it is the sentiment
that mainly influences market returns (see, for example, [51]). In any case, the variance decomposition
results are consistent with impulse response results. The second and third graphs in Figure 3 show
that the impulse response of sentiment to returns starts with a large magnitude and then it dies down
to small values. On the other hand, the response of returns to sentiment starts with small magnitude
and remains small at higher lags. This explains the magnitudes and trends in the proportions of cross
effects in variance decomposition analysis.

Table 7. VAR–Forecast Error Decomposition.

Period
Variance Decomposition of Returns Variance Decomposition of Sentiment

Contribution of RM Contribution of SENT Contribution of RM Contribution of SENT

1 100.00 0.00 32.07 67.92
2 99.99 0.01 25.81 74.19
3 97.67 2.33 21.30 78.70
4 96.94 3.06 19.69 80.31
5 96.74 3.25 18.90 81.10
6 96.52 3.48 18.28 81.72
7 93.32 6.68 18.82 81.18
8 92.51 7.49 18.67 81.33
9 92.55 7.45 18.41 81.59

10 92.47 7.53 18.32 81.67
11 92.30 7.70 18.29 81.71
12 92.24 7.76 18.23 81.77

4. Conclusions

Objective of the present study has been to develop composite sentiment index for Pakistan and
to investigate its relationship with returns over the time period of 2006 to 2016. Various direct and
indirect indicators related to sentiment are used to construct this monthly index through principal
component analysis (PCA). These indicators include number of IPO’s, closed-end fund discount,
advance–decline ratio, dividend premium, interest rate, price earnings ratio, turnover, money flow
index, relative strength index, and Google search index. This composite index is a broad representation
of sentiment measures from different categories/perspectives, for instance, stock prices, turnover,
mutual funds, initial public offerings, interest rate, and especially Google search volume. The last
indicator i.e., Google search volume index which is a unique direct measure of sentiment on which
time series data can be generated, is used first time for Pakistan.

The results of PCA show that out of ten, seven proxies are directly related to sentiment, while the
remaining three proxies are inversely related to sentiment. To eliminate non-sentiment component
from this index and getting returns generated purely due to sentiment, the study orthogonalizes these
two series to key macroeconomic variables namely industrial production, inflation, investment–output
ratio, term spread, and household expenditure.

The results show positive relationship of returns with current sentiment and lagged returns
but negative relation with lagged sentiment. Therefore, the presence of rally effect and irrationality
in the Pakistani market is corroborated. Causality tests of Granger and Geweke [69] show strong
bidirectional causal relationship between market returns and investor sentiment. These results support
the proposition that in the absence of full information, investors become irrational; they use gut feeling,
experience, intuition, emotion or mood and influence the process of stock price formation. As a result,
stock prices deviate from their fundamental values. Results also provide evidence that sentiment is
caused by previous returns. Thus, market outcomes influence investor sentiment, which in turn again
affect their decision-making and, hence market outcomes. The study also reports contemporaneous
association between investor sentiment and market returns using Geweke measure. The results show
that current sentiment immediately affects current returns and vice versa.
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The impulse responses between sentiment and returns point towards substantive role of sentiment
in driving stock market outcomes. In particular, the impact of sentiment on returns cannot be regarded
as an instantaneous reaction of temporary nature. Rather, this impact is realized with a lag of three
months and then persists for up to six months after which the market seems to adjust back following a
short period of technical correction. The impulse response of sentiment to returns is also substantial
but it is short lived. These results indicate the presence of noise traders that drive stock market prices
based on sentiments in the thin stock market of Pakistan. Since the Pakistani market is found to be
inefficient and the adjustment process following any shocks is delayed, overreaction (high returns)
caused by optimism is followed by decrease in returns in the future time periods.
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