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Abstract: Relatively low travel costs and abundant opportunities for research funding in Switzerland
and other developed countries allow researchers large amounts of international travel and
collaborations, leading to a substantial carbon footprint. Increasing willingness to tackle this issue,
in combination with the desire of many academic institutions to become carbon-neutral, calls for an
in-depth understanding of academic air travel. In this study, we quantified and analyzed the carbon
footprint of air travel by researchers from the École Polytechnique Fédérale de Lausanne (EPFL)
from 2014 to 2016, which is responsible for about one third of EPFL’s total CO2 emissions. We find
that the air travel impact of individual researchers is highly unequally distributed, with 10% of the
EPFL researchers causing almost 60% of the total emissions from EPFL air travel. The travel footprint
increases drastically with researcher seniority, increasing 10-fold from PhD students to professors.
We found that simple measures such as restricting to economy class, replacing short trips by train
and avoiding layovers already have the potential to reduce emissions by 36%. These findings can
help academic institutions to implement travel policies which can mitigate the climate impact of their
air travel.
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1. Introduction

Aviation is one of the fastest growing sources of greenhouse gas (GHG) emissions. Over the
last four decades, the number of passenger-kilometers in worldwide civil aviation increased at an
average rate of 5% per year, while the corresponding carbon dioxide (CO2) emissions have increased
by 2% per year on average [1]. The emissions are increasing at a slower rate than the number of
passenger-kilometers due to improvements in fuel efficiency. This continuous increase has brought
global annual civil aviation CO2 emissions up to 900 Mt in 2016, which is 2.8% of the world’s total
CO2 emissions [2]. Besides the global warming effect through the emission of greenhouse gasses
such as CO2 and NOx, airplanes cause additional radiative forcing (RF) through the generation of
condensation trails (contrails), which eventually form cirrus or altocumulus clouds, and the formation
of tropospheric ozone by NOx. At the same time, NOx facilitates the destruction of methane, lowering
the RF. The total RF from aviation is therefore estimated to be two to four times higher than that
induced by GHG emission alone [3]. In 2005, aviation was responsible for 4.9% of anthropogenic
global warming [4]. A three- to four-fold increase in aviation RF is expected by 2050, compared to the
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year 2000 [4]. Despite the ever-increasing environmental impact of air travel, these emissions, together
with international shipping, are not regulated under the 2015 Paris climate agreement.

Globally, only a small fraction of people participate in air travel. It was estimated that only
about 2% to 3% of the world population take an international flight over the course of a year [5].
This illustrates that air travel is very unequally distributed with a small number of high-footprint
hypermobile travelers. One group of people with a particularly high air travel footprint are academics.
Indeed, many researchers are frequent travelers due to the importance of conferences, workshops,
international collaborations, visiting positions, etc., for their career advancement. At the École
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, air travel accounts for one third of
the institute’s total CO2 emissions (corresponding to at least half of the total RF), similar to the CO2

emissions of electricity and heating, and daily commuting.
In many academic institutions worldwide, awareness of these issues has increased, but a detailed

quantitative analysis of academic air travel behavior is challenging due to the lack of comprehensive
datasets. Therefore, in this study we retrospectively quantify the air travel habits of EPFL researchers
and we identify carbon footprint reduction opportunities. This work is limited to air travel performed
by EPFL academic staff in the period of 2014 to 2016.

2. Materials and Methods

In order to describe the professional travel habits of EPFL’s academic staff, flight data from
2014 to 2016 was retrospectively collected from Carlson Wagonlit Travel (CWT), the official EPFL
travel agency [6]. This dataset comprises approximately 80% of all travel made by EPFL researchers
during the specified time period. The remaining 20% of air travel was booked directly by the
researchers. For the latter category, only ticket price and airline company are known, and these
air travels are therefore excluded from the present analysis. A coverage of 80% is sufficiently large to
draw representative quantitative conclusions from this data. The dataset was anonymized and includes
GHG emissions, distance, price, exact flight route, and service class for every trip. GHG emissions
were calculated using the yearly DEFRA metrics [7] and include CO2 and NOx. These annual metrics
provide average emissions of the aviation industry. This allows us to make a good estimate of a flight’s
GHG emissions, without knowing the technical details of the airplane, which are not provided upon
booking. Here, we only consider the direct GHG emissions from the airplane, which are well-known.
The additional RF related to the formation of contrails, which eventually form cirrus or altocumulus
clouds, the generation of ozone by NOx, and the negative RF from the destruction of methane by NOx

are not included since the exact magnitudes of these impacts are still under debate. The overall RF
generated by the air travel discussed here will therefore be two to four times larger than the GHG
emissions quoted in this work [3]. The GHG emissions are expressed in kg of CO2 with an equivalent
global warming power, which is noted CO2e. The CO2e emission of a flight is calculated as

Emission (CO2e) = distance × uplift × CO2e intensity, (1)

where the distance is determined as the great circle distance between the airport locations, i.e.,
the shortest path between two points on the surface of a sphere. The distance flown is multiplied with
the uplift parameter, to account for takeoff, circling and non-direct routes and it represents 1.09. The
year and service class of the flight determines the CO2e intensity. Note that business and first class
flights cause two to four times more emissions per person, compared to economy class due to the
increased floorspace requirements, as can be seen in Supplementary Table S1. Note also that the CO2e
intensity of a flight in a given year is determined by flights from the previous year. The quantitative
analysis was performed using the Python language and the NumPy package. The data was loaded
from a .csv file.
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3. Results

3.1. General Aspects of the Data

During the examined time period, 3334 members of academic staff (of which 46% PhD
students, 29% postdocs, 1.7% senior scientists and 8.3% professors) took 14,949 flights over a total of
100 million km. This led to 14.6 kt CO2e emitted, which represents 27% of EPFL’s total GHG emissions.
More detailed statistics can be found in Table 1. Supplementary Figure S1 shows the distribution of
trips as a function of distance. We see that most trips are continental, with a second intercontinental
peak. Continental travel is mostly direct, whereas intercontinental travel is mostly indirect.

Table 1. Overview of the travel impact for intra- and inter-continental travel in economy, business and
first class.

Travel Type Number
of Flights

CO2e
Emitted

(t)

Distance
Travelled

(Mm)
CHF/km

Avg.
CO2e

kg/CHF

Avg.
CO2e
kg/km

Total
Cost

(kCHF)

Total 14,949 14,603 98,975 0.120 1.235 0.148 11,809

Intra-
continental

Economy 9030 2300 14,004 0.184 0.893 0.164 2577
Business
and First 324 100 600 0.296 0.562 0.167 178

Inter-
continental

Economy 4690 7958 69,356 0.075 1.524 0.115 5220
Business
and First 905 4245 15,015 0.255 1.107 0.287 3834

Figure 1 shows the relationship between CO2e emission and distance travelled. We can clearly
see the increased emission from higher service classes. In Figure 2, we observe a higher correlation
between the amount of money spent and CO2e emitted (correlation coefficient of 0.89) than between
distance travelled and CO2e emitted (correlation coefficient of 0.64).
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Figure 1. CO2 emission as a function of the distance travelled for all trips in the dataset. Economy
class trips are marked in green, while business and first class flights are marked in purple. This figure
visually illustrates the increased greenhouse gas (GHG) emissions of higher service class.
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Figure 2. (a) Ticket price as a function of distance travelled for the entire dataset; (b) ticket price as a
function of CO2 emission, again for the entire dataset. We observe a much stronger correlation in (b);
compared to (a). The correlation coefficients are 0.89 and 0.64, respectively.

3.2. Travel Behavior of EPFL Researchers

Upon investigation of the travel habits of the different groups of researchers, which are shown in
Figure 3, we observe that carbon footprint increases dramatically with seniority (Figure 3a). Professors
emit on average 10 and 5 times more GHGs compared to PhD students and postdocs, respectively.
Moreover, professors—and to a smaller extent senior scientists—are the main users of business and
first class travel, which is negligible for PhD students and postdocs. A similar increase with seniority
can be observed for the distance travelled and money spent, as is shown in Supplementary Figure S2.

Sustainability 2018, 10, x FOR PEER REVIEW  4 of 8 

 
Figure 2. (a) Ticket price as a function of distance travelled for the entire dataset; (b) ticket price as a 
function of CO2 emission, again for the entire dataset. We observe a much stronger correlation in (b); 
compared to (a). The correlation coefficients are 0.89 and 0.64, respectively. 

3.2. Travel Behavior of EPFL Researchers 

Upon investigation of the travel habits of the different groups of researchers, which are shown 
in Figure 3, we observe that carbon footprint increases dramatically with seniority (Figure 3a). 
Professors emit on average 10 and 5 times more GHGs compared to PhD students and postdocs, 
respectively. Moreover, professors—and to a smaller extent senior scientists—are the main users of 
business and first class travel, which is negligible for PhD students and postdocs. A similar increase 
with seniority can be observed for the distance travelled and money spent, as is shown in 
Supplementary Figure S2. 

 
Figure 3. (a) Average annual air travel carbon footprint of a PhD student, Postdoc, senior scientist and 
professor at École Polytechnique Fédérale de Lausanne (EPFL); (b) annual number of trips in 
economy and business class for the same categories. We clearly see the increase of travel footprint 
with seniority. 

Figure 4 shows the inequality in footprint between individual travelers and research units or 
labs. We observe very high levels of inequality in terms of GHG emissions, money spent, and distance 
travelled, with a small number of individuals traveling over an order of magnitude more than the 
median, and a small number of labs traveling almost an order of magnitude more than the median. 
Table 2 shows two quantities that represent inequality for the three types of footprints discussed here, 
namely the share of the top 10% biggest travelers, and the Gini coefficient, both for individual 
researchers and for laboratories. We observe that the 10% of most traveling individuals are 
responsible for 58.3% of EPFL’s GHG emissions from air travel, while the 10% of most traveling labs 
emit 40.2% of EPFL’s air travel GHGs. Looking at the Gini coefficient, a measure of statistical 
dispersion most commonly used measurement of inequality, we observe a larger inequality in 

Figure 3. (a) Average annual air travel carbon footprint of a PhD student, Postdoc, senior scientist and
professor at École Polytechnique Fédérale de Lausanne (EPFL); (b) annual number of trips in economy
and business class for the same categories. We clearly see the increase of travel footprint with seniority.

Figure 4 shows the inequality in footprint between individual travelers and research units or
labs. We observe very high levels of inequality in terms of GHG emissions, money spent, and
distance travelled, with a small number of individuals traveling over an order of magnitude more
than the median, and a small number of labs traveling almost an order of magnitude more than
the median. Table 2 shows two quantities that represent inequality for the three types of footprints
discussed here, namely the share of the top 10% biggest travelers, and the Gini coefficient, both for
individual researchers and for laboratories. We observe that the 10% of most traveling individuals are
responsible for 58.3% of EPFL’s GHG emissions from air travel, while the 10% of most traveling labs
emit 40.2% of EPFL’s air travel GHGs. Looking at the Gini coefficient, a measure of statistical dispersion
most commonly used measurement of inequality, we observe a larger inequality in individual
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carbon footprint (0.722) than for worldwide income (0.65, World bank [8,9]). The Gini coefficient
for CO2e emission per lab (0.607) is slightly lower than that of the worldwide income. We observe a
systematically lower inequality for the distance travelled, compared to CO2e emissions and money
spent. This observation is due to increased business and first class travel among the largest consumers.
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Figure 4. Total travel footprint from 2014 to 2016 of individual researchers (solid line, corresponding
to the left-hand vertical axis) and laboratories (dashed line, corresponding to the right-hand vertical
axis). Individuals and laboratories are ranked from low to high on a scale from 0 to 100. The footprint
is expressed in money spent (green), distance travelled (orange), and CO2 emitted (red) and the data
are ranked in increasing order. All quantities show a large inequality with a spread over more than
two orders of magnitude.

Table 2. Inequality quantifiers for GHG emissions, distance traveled and money spent, both per person
and per lab.

Share of the Top 10% Biggest Travelers Gini Coefficient

Per Person Per Lab Per Person Per Lab

CO2e emission 58.3% 40.2% 0.722 0.607
Distance travelled 49.8% 39.0% 0.678 0.588

Money spent 64.0% 42.3% 0.749 0.622

3.3. Reduction Opportunities

Based on the relationships that emerged from the data analyses, we were able to identify and
quantify three pathways to reduce GHG emissions without compromising travel.

First, due to the difference in CO2 intensity between service classes, a reduction of 17% in EPFL’s
air travel GHG emissions, amounting to 840 t CO2e per year could be obtained by replacing all business
and first class trips by economy class.

A second pathway would consist of replacing short flights by rail travel. In order to quantify this
reduction, one should observe the cumulative CO2e emissions as a function of distance travelled in
Figure 5a. We see that approximately 15% of EPFL’s air travel GHG emissions are coming from
continental travel. Zooming in on the short trips below 1000 km, as well as short connection
flights during indirect trips, allows us to determine the reduction potential of this replacement.
The cumulative impacts of short direct trips and short flights during indirect trips are shown in
Figure 5b. Replacing both of them over distances below 800 km could reduce EPFL’s air travel GHG
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emissions by up to 15% or 730 t CO2e per year. We assumed that the replacing train trip would emit
0.02 kg of CO2e per km.
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Figure 5. (a) Cumulative CO2 emission as a function of distance between departure and arrival airports
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show the distance that can be covered by train in the indicated amount of time.

Third, we considered replacing all indirect trips by direct ones. Two effects are influencing the
GHG impact of this substitution. On one hand, indirect trips always cover more distance than a direct
equivalent, causing increased emissions. On the other hand, typical flights are most efficient (in terms
of fuel consumption per unit of distance) over distances of around 5000 km [10]. For shorter distances,
taxiing and takeoff is proportionally more important, while for longer distances, the increased weight
of the fuel leads to increased energy expenditure. This implies that, e.g., the emissions of a single
10,000 km flight could be reduced by splitting it up in two 5000 km flights, but only if the extra distance
which is covered as a result of the intermediate touch-down is negligible. If we look at the flights in
our database, we see that only 1.7% of the indirect trips have lower emissions than an equivalent direct
trip would have. In these cases, the difference is in the order of a few percent. The vast majority of
indirect trips in our database (98.3%) has much higher emissions than an equivalent direct trip, as can
be seen in Supplementary Figure S3. Here, we supposed that all flights were flown in economy class to
avoid the influence of service class, which we already discussed above. We can therefore conclude
that the extra distance covered by indirect trips is much more important than the potential small gains
in fuel efficiency in almost all cases. In total, we found a potential 9% reduction in EPFL’s air travel
GHG emissions, corresponding to 440 t CO2e per year by replacing all indirect travels with direct
flights. Note that it is likely not all of the direct flights required for this replacement are available on
the commercial market.

4. Discussion

The observation that GHG emissions are more closely correlated to ticket price than to distance
travelled, leads to the interesting phenomenon that a reduction in carbon footprint could lead to a
cost reduction and vice versa. This means that a travel budget restriction could be used as a simple
but effective measure to reduce carbon footprint of an institution. Additionally, reducing the carbon
footprint of air travel could be a net negative cost measure, contrary to other sustainability measures.

The large inequality in travel footprint between individuals and laboratories raises the question
whether all travel by the researchers with the largest footprint is useful and contributing positively to
the institution and to their career. The time and energy spent traveling, in addition to fatigue from
jetlags, could jeopardize the overall professional performance and quality of life. Future work should
aim to answer the question whether increased traveling leads to improved academic performance.
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Adding up the potential reductions in GHG emissions that could be achieved by replacing
business and first class trips by economy class, short flights by train trips, and indirect journeys
with direct flights, we find that the carbon footprint could be reduced by up to 36%. This significant
amount shows that substantial reductions are possible by making the appropriate choices. This figure
represents a theoretical upper boundary for the reduction in emissions that could be achieved for the
present dataset without any reduction in travel. It does not take the reductions in GHG emissions into
account that could result from avoided travel, e.g., by replacing it with videoconferencing. This is
outside the scope of this work. In practice, there are several challenges in achieving the reduction
figures presented here. Economy class travel can be less comfortable for long journeys, and train
connections or direct flights are not always available and are in some cases more expensive. However,
additional measures, such as the promotion of videoconferencing to replace physical travel, could
lead to reductions not taken into account in this study. These results show which choices should be
preferentially made when choosing a travel itinerary, and can be the basis for travel guidelines or
policies within institutions, academic or otherwise.

Even though the present work focuses exclusively on researchers from EPFL, the results
and conclusions are likely relevant for other academic institutions as well. Given the relatively
large amounts of funds available for research and development in Switzerland (3.374% of GDP
in 2015) [11], researchers might have less restrictions to travel compared to other countries.
Nevertheless, qualitatively similar trends to the ones reported here could be expected elsewhere
in academia. Moreover, most of the points raised in this work are also relevant for other communities.
The high correlation between a flight’s GHG emissions and its ticket price can be used by anyone as a
tool to limit air travel GHG emissions. The highly unequal distribution of air travel is a general trend
throughout the human population [5]. Any individual or organization wishing to reduce their air
travel GHG emission should, in cases where physical travel is absolutely required, favor economy
class, train travel, and direct flights where comfort and/or availability allow to do so.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/1/80/s1.
Supplementary Figure S1: Number of direct (brown) and indirect trips (coral) as a function of distance between the
departure and destination airport. Supplementary Figure S2: (a) Average per capita annual distance travelled by a
PhD student, Postdoc, senior scientist and professor at EPFL. (b) Annual amount of money spent per capita on air
travel for the same categories. Supplementary Figure S3: Carbon footprint of direct (brown) and indirect (coral)
trips. Supplementary Table S1: Used DEFRA metrics to calculate CO2e emission over the studied time period.
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