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Abstract: Commodity futures markets play an important role, through risk management and price
discovery, in helping firms make sustainable production and marketing decisions. An important
related issue is how pricing signals between futures exchanges impact traders’ risk. We address
this issue by shedding light on risk transmission between the most mature (U.S.) and the fastest
growing (Chinese) commodity futures markets. Gaining greater insight of risk transmission between
these key markets is vitally important to firms engaged in the efficient and sustainable trade of
commodities needed to feed the world. We examine the risk transmission between Chinese and U.S.
agricultural futures markets for soybean, corn, and sugar with a Copula based conditional value at
risk (CoVaR) approach. We find significant upside, and to a lesser extent downside risk transmission,
between Chinese and U.S. markets. We confirm the dominant pricing role of U.S. agricultural futures
markets while acknowledging the increasing price discovery role performed by Chinese markets.
Our results highlight that soybean markets exhibit greater risk transmission than sugar and corn
markets. We argue that our findings may be explained by Chinese government policy intervention,
and by the large role played by U.S. firms in the underlying cash commodity markets–both in terms
of production and trade.

Keywords: risk transmission; agricultural commodity futures markets; CoVaR; China

1. Introduction

Over the last five years trading volume on the two largest Chinese agricultural commodity futures
markets—Dalian Commodity Exchange (DCE) and Zhengzhou Commodity Exchange (ZCE)—has
grown at a remarkable rate. As Figure 1 shows, over the 2013 to 2016 period, annual traded volume
at the DCE increased by 30% on average each year from 700.5 to 1557.5 million contracts. Similarly,
over the same period, annual traded volume at the ZCE increased by 20% from 525.3 to 901.3 million
contracts. In contrast, the more mature U.S. futures markets, which list agricultural commodities,
the Chicago Board of Trade (CBOT) and Inter Continental Exchange (ICE U.S.), have experienced
slower or declining growth respectively in annual trading volume. For example, although annual
trading volume in agricultural commodities at CBOT represented 1.5 and 2.1 times the annual trading
volume at DCE and ZCE respectively in 2013, by 2016 annual trading volume at DCE had actually
exceeded CBOT levels and the comparative difference between CBOT and ZCE had fallen to 1.5.
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What’s more, annual trading volume at ICE decreased from 433.5 million in 2013 to 370.4 million
contracts in 2016.
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Figure 1. Annual volume of futures contracts traded in Chinese and U.S. futures exchanges (2013–
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FIA [1]. 

With these shifts in trading volume in mind one might conjecture that China is playing a more 
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futures markets, a supposition which is consistent with recent volatility spillover research between 
U.S. and China [2–4]. Given these market changes, a related issue—price risk transmission between 
Chinese and U.S. agricultural commodity futures markets—deserves further scrutiny. With this in 
mind the aim of our paper is to provide an empirical analysis of the nature of price risk transmission 
between U.S. and Chinese agricultural commodity futures markets. We explore whether risk 
transmission is bi-directional, and if so, which markets exhibit the higher levels of risk transmission. 
In addition, we investigate which type or risk transmission—upside or downside price shocks—is 
higher. Furthermore, we examine which commodity—corn, soybeans, or sugar—is exposed to the 
highest level of risk transmission. Our paper sheds light on these important issues, which has 
significant risk management and hedging implications for firms engaged in trading agricultural 
commodities. 

First, given that the U.S. plays such a prominent role in world trade in soybean and corn, and 
that U.S. futures markets provide a highly liquid risk management platform with which to hedge 
sales and purchases in these cash markets, one would expect that commodity price discovery and 
risk transmission should primarily emanate in U.S. markets. In 2016, the U.S. ranked first in the world 
in terms of soybean and corn production and exports (FAO [5]). Although, this argument doesn’t 
hold with respect to trade in the U.S. physical cash sugar market, which is highly protected and hence 
isolated from the world market, the U.S. (ICE) sugar futures contract was designed to represent and 
reflect world rather that U.S. prices. ICE contract delivery specifications reflect world cash trade 
needs and ICE is regarded as a benchmark for the world sugar market. In contrast, China is closely 
tied to the world sugar market, importing around 25% of its overall consumption. Thus, given the 
prominent role played by ICE and China’s high dependence on the world sugar market, we would 
expect sugar market price risk to be transmitted from the U.S. to Chinese sugar futures markets. 

Second, with respect to the type of risk transmission, we would expect that upside risk 
transmission from U.S. to China to be significantly greater than downside risk transmission from U.S. 
to China—across commodities—because of Chinese government national stockpiling (NSP) 
agricultural policy. This policy is designed to stabilize domestic commodity prices and ensure that 
Chinese farmers can earn a reasonable level of income. When commodity market prices experience 
large declines—especially during the harvest seasons—the government supplements market demand 
by buying commodities to stabilize prices above private market levels. As a result, Chinese soybean, 
corn, and sugar futures prices reflect this price subsidizing policy and are typically significantly 
higher than U.S. futures prices for these commodities. Thus, Chinese government market 
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Figure 1. Annual volume of futures contracts traded in Chinese and U.S. futures exchanges (2013–2016),
ICE here refers to ICE Futures U.S., which is a member of the Intercontinental Exchange. Source: FIA [1].

With these shifts in trading volume in mind one might conjecture that China is playing a more
prominent role in price discovery and price transmission with respect to agricultural commodity
futures markets, a supposition which is consistent with recent volatility spillover research between U.S.
and China [2–4]. Given these market changes, a related issue—price risk transmission between Chinese
and U.S. agricultural commodity futures markets—deserves further scrutiny. With this in mind the
aim of our paper is to provide an empirical analysis of the nature of price risk transmission between
U.S. and Chinese agricultural commodity futures markets. We explore whether risk transmission is
bi-directional, and if so, which markets exhibit the higher levels of risk transmission. In addition,
we investigate which type or risk transmission—upside or downside price shocks—is higher.
Furthermore, we examine which commodity—corn, soybeans, or sugar—is exposed to the highest
level of risk transmission. Our paper sheds light on these important issues, which has significant risk
management and hedging implications for firms engaged in trading agricultural commodities.

First, given that the U.S. plays such a prominent role in world trade in soybean and corn, and that
U.S. futures markets provide a highly liquid risk management platform with which to hedge sales
and purchases in these cash markets, one would expect that commodity price discovery and risk
transmission should primarily emanate in U.S. markets. In 2016, the U.S. ranked first in the world
in terms of soybean and corn production and exports (FAO [5]). Although, this argument doesn’t
hold with respect to trade in the U.S. physical cash sugar market, which is highly protected and hence
isolated from the world market, the U.S. (ICE) sugar futures contract was designed to represent and
reflect world rather that U.S. prices. ICE contract delivery specifications reflect world cash trade needs
and ICE is regarded as a benchmark for the world sugar market. In contrast, China is closely tied to
the world sugar market, importing around 25% of its overall consumption. Thus, given the prominent
role played by ICE and China’s high dependence on the world sugar market, we would expect sugar
market price risk to be transmitted from the U.S. to Chinese sugar futures markets.

Second, with respect to the type of risk transmission, we would expect that upside risk
transmission from U.S. to China to be significantly greater than downside risk transmission from
U.S. to China—across commodities—because of Chinese government national stockpiling (NSP)
agricultural policy. This policy is designed to stabilize domestic commodity prices and ensure that
Chinese farmers can earn a reasonable level of income. When commodity market prices experience
large declines—especially during the harvest seasons—the government supplements market demand
by buying commodities to stabilize prices above private market levels. As a result, Chinese soybean,
corn, and sugar futures prices reflect this price subsidizing policy and are typically significantly
higher than U.S. futures prices for these commodities. Thus, Chinese government market intervention
likely mitigates to some extent downside price/return risk transmitted from U.S. and world markets.
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Conversely, when Chinese commodity market prices sharply increase, the government releases
inventory to increase market supply and stabilize prices at below market levels. Although this
policy procedure helps to mitigate upside price/return risk transmitted from U.S. and world markets,
less emphasis is placed on upside price protection measures. Taking corn for example, over the 2008
to 2017 period, the government purchased about 516 million tons of corn to supplement price levels
while it released only 114 million tons of corn inventory to reduce price levels (Bric [6]).

Third, we contend that differences between the underlying physical cash markets—in terms of
trade and consumption patterns—likely lead to different levels of risk transmission across commodity
markets. Given that U.S. and Chinese futures markets reflect their respective physical cash markets,
economic reasoning would suggest that the greatest level of risk transmission likely occurs with
respect to the most traded commodity in world cash markets—soybeans. Table 1 shows Chinese
soybean imports from the U.S. alone account for 32.69% of total Chinese soybean consumption.
Thus, it is no accident that trade between the world’s largest soybean exporter, the U.S., and the
world’s largest soybean importer, China, results in the largest levels of commodity futures market risk
transmission. Consistent with this line of reasoning, we would expect sugar risk transmission levels
would exceed corn risk transmission levels. Even though Chinese sugar imports from the U.S. are very
limited, China is still highly dependent on the world market, and ICE discovers the world sugar price.
In comparison, the Chinese corn market is much more self-sufficient and less dependent upon U.S.
and world markets. Table 1 indicates that Chinese corn imports account for only 1.85% of Chinese
corn consumption, and that U.S. corn exports to China are very limited.

Table 1. Chinese commodity imports and consumption from U.S. and the world.

Commodity CON IMP IMPUS IMP/CON IMPUS/CON

Chinese Soybean 88,230 75,613 28,811 85.30 32.69
Chinese Corn 199,450 3631 1758 1.85 0.91
Chinese Sugar 14,480 3603 0.328 24.89 0.002

Note: CON, IMP and IMPUS refer to the average consumption, import from the world and import from U.S. from
2012 to 2017, with all units in 1000 tons. IMP/CON and IMPUS/CON are world and U.S. imports as a percentage
of Chinese consumption. Source: Bric [6].

There is also an extensive literature—which provides the motivation for our research
question—concerning the price transmission or volatility spillover relationship between Chinese
and U.S. agricultural futures markets. The early literature in this body of work supports the notion that
U.S. futures markets play the leading price discovery role and that price transmission occurs in only
one direction, from U.S. to Chinese markets. For example, Fung et al. [7] demonstrate that Chinese
soybean futures market prices co-move with U.S. soybean futures market prices, with U.S. prices
leading Chinese prices. Similarly, Hua and Chen [8] find that Chinese and U.S. soybean futures market
prices are highly integrated with again the U.S. market influencing Chinese prices rather than the
other way around. Using an ARCH (1) and GARCH (1,1) model, a significant asymmetric relationship
between Chinese and U.S. agricultural futures price is also documented by Du [9], showing that CBOT
holds a dominant pricing role over ZCE. In addition, with respect to sugar, Zhang and Tong [10] find
that U.S. sugar market prices lead Chinese sugar market prices irrespective of whether the market is in
a bear or a bull cycle.

However, more recent research tends to acknowledge the increasing importance of Chinese
agricultural futures markets and their growing influence on U.S. prices. Liu et al. [11] conclude there
is a bidirectional influence between DCE and CBOT corn futures prices. Hernandez et al. [3] used a
multivariate GARCH model to estimate volatility transmission across several world agricultural futures
markets. They showed that even though CBOT plays a dominant role in international agricultural
markets, the cross-volatility emanating from Chinese and Japanese markets to U.S. markets is also
very significant. In a similar vein, Jiang et al. [12] and Jiang et al. [4], find that Chinese futures markets
have more and more pricing power as measured by volatility spillovers. Finally, Liu and An [13] find



Sustainability 2019, 11, 239 4 of 18

a bidirectional relationship in term of price and volatility spillovers between Chinese and U.S. markets,
highlighting the important price information transmission role of the Chinese futures market.

We contribute to the extant literature by quantifying the risk transmission effects between Chinese
and U.S. agricultural commodity futures markets using conditional value at risk (CoVaR). This is the
first application of CoVaR to measure price risk spillovers between the world’s preeminent commodity
futures markets. CoVaR was first proposed by Adrian and Brunnermeier [14], and later modified by
Girardi and Ergün [15] to estimate the systemic risk contribution of an individual financial institution
on a financial system as a whole. Specifically, it measures the value at risk (VaR) of a market or industry
conditional on the VaR of an individual institution operating in that market, which is in financial
distress. The difference between CoVaR and unconditional VaR can be used to measure this risk
transmission. We adopt this approach to measure CoVaR based upon the value at risk VaR associated
with the daily long or short return losses of holding a commodity futures contract on one exchange
conditional on the VaR of futures contract return losses on the same commodity held at an alternative
exchange, when futures return losses on that commodity are high at the 5% VaR level. However,
while Adrian and Brunnermeier [14], and Girardi and Ergün [15] compare the risk contribution of
different institutions using the average CoVaR of stock returns—an approach which lacks a formal
comparison test [16] —we follow Abadie [17] and apply a Kolmogorov-Smirnov test based bootstrap
strategy to formally compare different forms of risk transmissions. Specifically, we (1) analyze risk
transmission between three agricultural commodity futures contracts to determine if risk emanates
from U.S. markets or Chinese markets; and (2) we estimate the respective risk transmission levels in
terms of upside and downside price or return risk.

We turn to Copula models to empirically estimate CoVaR measures for our agricultural commodity
futures returns series. Following Karimalis and Nomikos [18], we use AIC criteria to first identify the
best dynamic copula model—from Clayton, Gumbel and BB1 Copula—to estimate CoVaR. Copula
models provide a flexible and convenient means of estimating the relationship between several
variables’ marginal distributions using a copula function to identify a joint probability distribution.
Additionally, Copula models can obtain the tail dependence information, which can also reveal the risk
transmission between jointly distributed variables—in our case commodity futures contracts listed on
U.S. and Chinese futures markets.

First, our empirical results show that price risk transmissions from U.S. agricultural commodity
futures contracts to Chinese agricultural commodity futures contracts are generally greater than the
other way around. This result emphasizes the continuing leading role of U.S. futures markets in
providing price discovery to agricultural commodities markets. Second, we illustrate that the upside
price risk transmissions are greater than the downside price risk transmissions for soybean, sugar,
and corn irrespective of their direction (e.g., China to U.S. or U.S. to China). This result is consistent
with our various estimates of tail dependence. Third, we find soybean price risk transmission is
largest in magnitude followed by sugar and corn price risk transmission. We argue that trade structure
differences and the levels of policy interference across the three commodity markets are the key reasons
for these findings.

The remaining structure of the paper is laid out as follows: Section 2 outlines our methodology
and describes the data. Section 3 presents our price risk transmission empirical results. Section 4
discusses the results. Finally, Section 5 concludes.

2. Methods and Data

2.1. Methods

2.1.1. Estimation of CoVaR

CoVaR is defined by Adrian and Brunnermeier [14] and further generalized by Girardi and
Ergün [15] as:
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pr(Rik
t ≤ CoVaRik|il

t,q

∣∣∣Ril
t ≤ VaRil

t,a ) = q (1)

Rik
t and Ril

t refer to the returns of commodity i in market k and l at time t, while a and q are

probabilities which are set as 0.05. CoVaRik|il
t,q refers to the q-quantile of the distribution of commodity i

futures returns in market k, conditional on the a-quantile distribution of commodity i futures returns
in market l. Therefore, to quantify CoVaR it is necessary to accurately estimate the joint distribution of
Rik

t and Ril
t . Following Sklar [19], we estimate the joint distribution by assuming it is equal to a copula

function of the marginal distributions:

pr(Rik
t ≤ x, Ril

t ≤ y) = FRik
t ,Ril

t
(x, y) = C(FRik

t
(x), FRil

t
(y)) (2)

FRik
t ,Ril

t
is the joint distribution of Rik

t and Ril
t , while x and y denote the specific observed return

for commodity i in market k and l, respectively. FRik
t
(x) and FRil

t
(y) are the marginal distributions

of Rik
t and Ril

t , respectively. C(u,v) is a Copula function, with u being equal to FRik
t
(x) and v being

equivalent to FRil
t
(y). The transformation makes the estimation of joint distribution quite flexible

and convenient. Since the Archimedean copula functions can capture the tail dependence well, they
are frequently employed, such as Patton [20], Reboredo and Ugolini [21] and Reboredo et al. [22].
In this paper, we estimate three frequently employed dynamic copula models, i.e., Clayton, Gumbel,
and BB1 Copulas. As shown in Table 2, the Clayton and Gumbel Copulas are univariate models,
and they can only describe lower and upper tail dependence, respectively. However, BB1 is a bivariate
model which can simultaneously characterize both lower and upper tail dependence. The upper

and lower tail dependence between Rik
t and Ril

t are λu = lim
x→1−

pr
[

Rik
t ≥ F−1

Rik
t
(x)
∣∣∣∣Ril

t ≥ F−1
Ril

t
(x)
]

,

λu = lim
x→1−

pr
[

Rik
t ≥ F−1

Rik
t
(x)
∣∣∣∣Ril

t ≥ F−1
Ril

t
(x)
]

, where F−1
Rik

t
and F−1

Ril
t

are the inverse distributions of Rik
t

and Ril
t .

Table 2. Description of Clayton, Gumbel, and BB1 Copula.

Copula Distribution Function Tail Dependence

Clayton CC(u, v; δ) = (u−δ + v−δ − 1)
−1/δ λl = 2−1/δ, λu = 0

Gumbel CG(u, v; δ) = exp(−((− ln u)δ + (− ln v)δ)
1/δ

) λl = 0, λu = 2− 21/δ

BB1 CBB1(u, v; δ, θ) = (1 +
[
(u−θ − 1)

δ
+ v−θ − 1)δ

]1/δ
)
−1/θ

λl = 2−1/(δθ), λu = 2− 2δ

Note: u is FRik
t
(x) and v is FRil

t
(y), while δ, θ are the parameters of Copula functions. λl and λu are the lower and

upper tail dependence, respectively.

Following Patton [20], Karimalis and Karimalis [18] and Reboredo et al. [22], the evolution
equation for Clayton and Gumbel can be written as:

δt = Λ1(w + β·δt−1 + a· 1
10

10

∑
i=1

∣∣ut−jvt−j
∣∣) (3)

where Λ1(x) is exp(x) for Clayton and exp(x) + 1 for Gumbel to ensure the parameters remain in their
domain. In contrast to Clayton and Gumbel, the BB1 evolution equation is written as Equation (4),
and characterizes dynamic Copula parameters based on the relationship between tail dependence and
the parameters as shown in Table 2. The term Λ2(x) = (1 + exp(−x))−1 ensures that the lower and
upper dependence parameters (λu

t , λl
t) are constrained between 0 and 1.

λu
t = Λ2(wu + βu·λu

t−1 + au· 1
10 ∑10

i=1
∣∣ut−jvt−j

∣∣)
λl

t = Λ2(wl + βl ·λu
t−1 + al · 1

10 ∑10
i=1
∣∣ut−jvt−j

∣∣) (4)
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From Equation (2), the joint probability density function of Rik
t and Ril

t can be shown as Equation
(5). The term c(ut, vt; φC) refers to the density distribution of the Copula function while fRik

t
(x; φik) and

fRil
t
(y; φil) refer to the marginal density distributions of Rik

t and Ril
t respectively. The terms φC, φik and

φil are density function parameters, and the log-likelihood function can be expressed as Equation (6).

fRik
t ,Ril

t
(x, y) = c(ut, vt; φC)· fRik

t
(x; φik)· fRil

t
(y; φil) (5)

L(φC, φik, φil) = ∑ [log c(ut, vt; φC) + log fRik
t
(x; φik) + log fRil

t
(y; φil)] (6)

We follow the typical approach of estimating dynamic Copula functions (Clayton, Gumbel,
and BB1) by maximizing the log-likelihood function in two steps. First, we estimate the parameters
φik and φil of fRik

t
(x; φik) and fRil

t
(y; φil) through an ARMA(g,h)-GARCH(1,1) model with a skew-t

distribution. This model captures fat tails and skewness typically found in daily commodity futures
returns [23]. For simplicity, the values of g and h range from one to four, and are determined using
AIC. The model is estimated using maximum likelihood to obtain the cumulative integral distributions
u and v. Second, we estimate φC by maximizing ∑ log c(ut, vt; φC) using the cumulative integral
distributions u and v, and the standard errors of φC can be computed through the hessian matrix.
All of our models are estimated using the software R. Next, we use AIC (calculated with the estimated
log-likelihood) to determine the best fitting Copula function to measure tail dependencies, and to
derive CoVaR risk transmission, between our jointly distributed returns series. Formally, we use a
Kolmogorov-Smirnov statistic, Tfsd [17], as defined in Equation (7) to compare the upper and lower tail
dependences and determine if one is greater than the other.

T f sd = (
n1n2

n1 + n2
)

1/2
sup
y∈R

(Frt1(y)− Frt2(y)) (7)

Frt1 and Frt2 refer to the empirical distributions of the lower (rt1) and upper tail (rt2) dependencies
of our returns. The null hypothesis is that lower (rt1) tail is larger than upper tail (rt2) dependencies.
Therefore, the relationship between the lower and upper tail dependences can be compared using a
bootstrapped p-value at 0.05 level.

Once the optimal Copula function has been estimated and chosen, downside CoVaR can be
calculated very conveniently, as shown in Equation (8):

pr(Rik
t ≤ CoVaRik|il

t,q

∣∣∣Ril
t ≤ VaRil

t,a) =
pr(Rik

t ≤ CoVaRik|il
t,q , Ril

t ≤ VaRil
t,a)

pr(Ril
t ≤ VaRil

t,a)
=

C(uu, vv)
vv

= q (8)

where uu = FRik
t
(CoVaRik|il

t,q ) and vv = FRil
t
(VaRil

t,a). Given that pr(Ril
t ≤ VaRil

t,a) = vv = a, we can get

Equation (9) and calculate downside CoVaR using Equation (10), where F−1
Rik

t
(x) is the inverse function

of FRik
t

.
C(uu, a) = aq (9)

CoVaRik|il
t,q = F−1

Rik
t
(uu) (10)

For the upside case, CoVaR is defined as Equation (11).

pr(Rik
t ≥ CoVaRik|il

t,1−q

∣∣∣Ril
t ≥ VaRil

t,1−a) = q (11)
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Following Reboredo et al. [22], upside CoVaR is defined as F−1
Rik

t
(uu) in Equation (13),

where uu = FRik
t,1−q

(CoVaRik|il
t,1−q) is the root of Equation (12).

1− uu− (1− a) + C(uu, (1− a)) = aq (12)

CoVaRik|il
t,1−q = F−1

Rik
t
(uu) (13)

2.1.2. Estimation of Risk Transmission

Similarly, we present the definition of the benchmark CoVaR, which is conditional on a benchmark
status ilb at time t as shown in Equations (14) and (15) for downside and upside risk, respectively.
Following Karimalis and Nomikos [18], we set the benchmark, b at 0.5, which represents a moderate
risk level situation—or in other words normal market conditions. Even though CoVaR and the
benchmark CoVaR are very similar concepts, the conditional states are totally different given that
CoVaR is conditional on a very extreme state, while the benchmark CoVaR is conditional on its median,
or normal, state. Naturally, the difference between them can be used to evaluate the risk transmission
from one market to another under extreme market price movements [14].

pr(Rik
t ≤ CoVaRik|ilb

t,q

∣∣∣Ril
t ≤VaRilb

t,b=0.5) = q (14)

pr(Rik
t ≥ CoVaRik|ilb

t,1−q

∣∣∣Ril
t ≥VaRilb

t,b=0.5) = q (15)

Thus, when there is a significant difference between CoVaRik|il
t,q and CoVaRik|ilb

t,q , we can infer that
there is downside risk transmission for commodity i from market l to k at time t. Analogously, upside
risk transmission may be inferred when we find a significant difference between CoVaRik|il

t,1−q and

CoVaRik|ilb

t,1−q. Following Abadie [17], we use a Kolmogorov-Smirnov statistic as defined in Equation
(16) to formally test for downside and upside risk transmission between the two markets using
bootstrapped p-values at the 5% significance level.

Teq = (
n1n2

n1 + n2
)

1/2
sup
y∈R
|F1(z)− F2(z)| (16)

where F1(z) and F2(z) refer to the empirical distributions of CoVaRik|il
t,q and CoVaRik|ilb

t,q , or CoVaRik|il
t,1−q

and CoVaRik|ilb

t,1−q, and n1, n2 are the numbers of observations for the corresponding variables. If the null

hypothesis that CoVaRik|il
t,q (CoVaRik|il

t,1−q) is equal to CoVaRik|ilb

t,q (CoVaRik|ilb

t,1−q) is rejected, we can imply
that there is lower and/or upper tail risk transmission.

We then measure the level of risk transmission as the percentage difference between CoVaR and
the benchmark CoVaR as shown in Equation (17):

rtik,d
t = (CoVaRik,il

t,q − CoVaRik|il
t,q )/CoVaRik|ilb

t,q × 100%

rtik,u
t = (CoVaRik,il

t,1−q − CoVaRik|il
t,1−q)/CoVaRik|ilb

t,1−q × 100%
(17)

where rtik,d
t and rtik,u

t represent the downside and upside risk transmission of commodity i from market
l to k at time t, respectively. This in effect measures the percentage increase in CoVaR futures return
levels for commodity i listed on market k, when an extreme price change occurs for commodity i
listed on market l compared to the CoVaR futures return levels for commodity i listed on market k,
when price changes for commodity i listed on market l are at normal levels.
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Finally, we use the Kolmogorov-Smirnov statistic as defined previously in Equation (7) to formally
test whether risk transmission across exchanges is significantly different between commodities and
determine which type of risk transmission—upside or downside—is larger. In this case, Frt1 and
Frt2 denote the empirical distributions for two different risk transmission series, i.e., rtik,d

t and rtik,u
t .

Again, we use bootstrapped p-values at the 0.05 level to test if one risk transmission series is greater
than another.

2.2. Data

As Table 3 shows, we study the risk transmission between Chinese and U.S. agricultural futures
commodity markets through three of the most actively traded agricultural commodities—soybeans,
corn, and sugar—which are listed on both Chinese and U.S. futures exchanges. We use daily
nearest-to-deliver or front month closing futures prices obtained from the Bric Database (Bric [6]) and
we create a continuous series by “rolling” or replacing prices from one contract month to the next as
each front month contract matures. All U.S. contract values and units are converted to yuan per ton to
make them directly comparable and to eliminate the influence of exchange rate movements.

Table 3. Futures contract sample periods and trading volume rankings.

Commodity Country Futures Contract Exchange Rank

Soybean
(15th March 2002 to 6th June 2018)

China No. 1 Soybean Futures DCE 15
U.S. Soybean Futures CBOT 9

Corn
(22nd September 2004 to 6th June 2018)

China Corn Futures DCE 2
U.S. Corn Futures CBOT 3

Sugar
(6th January 2006 to 6th June 2018)

China White Sugar (SR)
Futures ZCE 7

U.S. Sugar #11 Futures ICE 13

Note: “Rank” in Table 3 refers to the contract ranking in terms of trading volume among all the agricultural futures
contracts traded in futures exchanges around the world. Source of the rank: Mondovisione [24].

Figure 2 charts futures price movements by commodity and exchange (country) over the respective
sample periods. Notably, we observe that Chinese futures prices are almost always higher than their
U.S. counterparts. The only exceptions occur during June 2008 when U.S. corn prices temporarily
exceed Chinese corn prices. Additionally, it is apparent that U.S. and Chinese prices for all three
commodities are correlated with soybean prices experiencing the greatest co-movement.

We transform our price data into daily returns. The return of commodity i at time t in market
k is calculated as Rik

t = 100 ∗ log(pik
t /pik

t−1), where pik
t refers to the price of commodity i in market

k at time t. An important feature of our data is non-synchronization of closing prices between U.S.
and Chinese markets [10]. In other words, trading sessions in Chinese exchange do not overlap the
trading sessions of their U.S. counterparts. Since Chinese time is about 12 h ahead of standard U.S.
time, Chinese futures exchanges are open (closed) when U.S. futures exchanges are closed (open).
Therefore, to account for the non-synchronized trading issue, and given that Chinese markets close
before U.S. markets open, we can assume that risk transmission emanating from Chinese markets to
the U.S. can be estimated by comparing Chinese returns observed on day t, Ri,China

t , with U.S. returns,
Ri,US

t , observed on day t. However, when measuring risk transmission from U.S. to Chinese markets it
is necessary to compare U.S. returns observed on day t, Ri,US

t , with Chinese returns, Ri,China
t+1 observed

on day t + 1.
Table 4 presents descriptive statistics for each of return series. As we can see, all the means

are close to zero. In terms of volatility, sugar has a significantly larger standard deviation than
either soybeans or corn. What is more, all U.S. commodity returns have a higher standard deviation
than Chinese commodity returns, which indicates U.S. markets tend to experience greater levels of
volatility. In addition, the maximum and minimum levels of returns show that both U.S. and Chinese
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soybean futures have traded over a wider price range than U.S. and Chinese corn and sugar futures.
Additionally, almost all returns exhibit negative skewness and a significantly high degree of kurtosis.
Consistent with this finding, Jarque-Bera tests reject normality for each of the returns. On a final
note, we find significant and positive correlations between each of our Chinese and U.S. commodity
futures returns.
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Table 4. Descriptive statistics of returns.

Statistics
Soybean Corn Sugar

China U.S. China U.S. China U.S.

mean 0.015 0.014 0.013 0.011 0.005 −0.016
s.d. 1.253 1.799 0.938 2.089 1.353 2.447
max 7.517 6.819 9.094 12.763 8.454 15.182
min −19.382 −28.054 −16.101 −26.810 −7.779 −19.876

skewness −1.036 *** −2.415 *** −0.861 *** −1.067 *** 0.272 *** −0.284 ***
kurtosis 22.404 *** 33.877 *** 51.068 *** 19.892 *** 7.070 *** 9.992 ***
J.B.test 57182 *** 146670 *** 292370 *** 36635 *** 1856 *** 5419 ***

cor-a 0.248 *** 0.135 *** 0.139 ***
cor-b 0.273 *** 0.129 *** 0.261 ***

Note: s.d. is standard deviation. cor-a and cor-b refer to the Pearson correlations between Ri,China
t and Ri,US

t , Ri,US
t

and Ri,China
t+1 , respectively. *, ** and *** indicate parameter significance at 5%, 1% and 0.1%, respectively.
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3. Empirical Results

3.1. Copula and Tail Dependence

Turning first to our marginal distribution results, Table 5 shows estimates with respect to the
(ARMA(g,h)-GARCH(1,1)) models. The ARCH and GARCH terms illustrate that there is high volatility
persistence for all return series. In addition, our residual diagnostic tests indicate that our models are
well specified and do not suffer from serial correlation. Kolmogorov-Smirnov tests fail to reject the null
hypothesis that the cumulative integral distributions of the standardized residuals follow a uniform
distribution, which is consistent with our skew-t distribution assumption.

Table 5. Marginal Model Estimates.

Parameters or Test
Soybean Corn Sugar

China U.S. China U.S. China U.S.

(g,h) 4,2 3,2 4,3 2,4 4,2 3,2

α 0.064 0.044 0.0.055 0.061 0.088 0.044
β 0.935 0.941 0.944 0.924 0.907 0.947

skew 1.004 0.968 1.022 1.035 1.024 1.028
shape 3.307 4.613 2.716 4.617 3.520 4.369

LB1(1) 9.771
(0.002)

0.927
[0.336]

1.935
[0.164]

0.0001
[0.991]

5.133
[0.023]

0.477
[0.450]

LB2(1) 0.001
[0.979]

0.336
[0.562]

0.073
[0.967]

0.074
[0.785]

0.953
[0.329]

1.296
[0.255]

KS test 0.0028
[0.822]

0.026
[0.659]

0.0179
[0.6359]

0.0024
[0.786]

0.025
[0.913]

0.031
[0.502]

Note: g and h refer to the lag length of the ARMA (g,h) for mean equations, while α and β are the parameters of
ARCH and GARCH terms for variance equations. The terms skew and shape refer to the parameters for skew-t
distribution. LB1(1) and LB2(1) are the Ljung-Box test for standardized residuals and standardized squared residuals.
KS is the Kolmogorov-Smirnov test used to determine whether the cumulative integral distributions follow uniform
distributions, which is required for the Copula functions.

Table 6 shows parameter estimates for three Copula models. Based upon (AIC), we find that BB1
is the best fitting Copula function for all commodities with respect to the joint distributions of both our
(Ri,China

t , Ri,US
t ) and our (Ri,US

t , Ri,China
t+1 ) returns series. Thus, we are able to infer that there are both

significant–positive upper and lower–tail dependence, with respect to all three commodities, between
Chinese and U.S. markets. In other words, Chinese and U.S. commodity futures returns will exhibit
strong co-movement during periods of large price increases and decreases.

Table 6. Copula model estimates.

Panel A: Copula Result for Ri,China
t and Ri,US

t

Soybean

Copula ω β α AIC

Clayton −2.819 ***
(0.264)

−0.383
(0.264)

−0.890 ***
(0.091) −207.464

Gumbel −2.398 ***
(0.196)

−0.381 *
(0.193)

−0.907 ***
(0.055) −264.018

Copula ωu βu αu ωl βl αl AIC

BB1 −1.594 **
(0.650)

−3.884
(2.109)

−0.965 ***
(0.095)

0.338
(0.491)

−2.075
(2.364)

0.955 ***
(0.021) −287.379



Sustainability 2019, 11, 239 11 of 18

Table 6. Cont.

Panel A: Copula Result for Ri,China
t and Ri,US

t

Corn

Copula ω β α AIC

Clayton −2.563 **
(0.693)

0.329
(0.867)

−0.118
(0.211) −60.641

Gumbel −3.378 ***
(0.814)

0.676
(0.945)

−0.398
(0.277) −42.624

Copula ωu βu αu ωl βl αl AIC

BB1 −2.827 **
(0.985)

−3.247
(4.000)

−0.365
(0.322)

−4.250
(4.539)

−3.286
(7.001)

−0.023
(0.323) −63.407

Sugar

Copula ω β α AIC

Clayton −2.624 **
(0.911)

0.598
(0.500)

−0.121
(0.380) −49.198

Gumbel −0.079
(0.162)

−0.030
(0.315)

0.959 ***
(0.041) −55.533

Copula ωu βu αu ωl βl αl AIC

BB1 −0.114
(0.318)

−0.134
(0.564)

0.934 ***
(0.089)

−9.064
(9.384)

−1.819
(92.431)

9.911
(7.395) −62.841

Panel B: Copula Result for Ri,US
t and Ri,China

t+1

Soybean

Copula ω β α AIC

Clayton −2.346 ***
(0.152)

−0.204
(0.072)

−0.995 ***
(0.003) −342.903

Gumbel −2.092 ***
(0.148)

−0.145
(0.087)

−0.996 ***
(0.004) −375.327

Copula ωu βu αu ωl βl αl AIC

BB1 −0.937
(0.502)

−1.627
(1.693)

−0.035
(0.033)

0.214 *
(0.101)

−1.035 *
(0.509)

0.977 ***
(0.014) −438.842

Corn

Copula ω β α AIC

Clayton −3.348 ***
(0.578)

−0.193
(0.410)

−0.657 **
(0.248) −75.361

Gumbel 0.093 *
(0.044)

−0.521 **
(0.194)

0.971 ***
(0.010) −78.738

Copula ωu βu αu ωl βl αl AIC

BB1 0.143
(0.577)

−0.833
(2.073)

0.959 ***
(0.032)

1.483
(10.837)

−10
(102.288)

0.765 ***
(2.426) −101.683

Sugar

Copula ω β α AIC

Clayton 0.047 *
(0.020)

−0.313 **
(0.091)

0.973 ***
(0.008) −213.927

Gumbel 0.021
(0.017)

−0.172 *
(0.080)

0.979 ***
(0.012) −212.239

Copula ωu βu αu ωl βl αl AIC

BB1 −1.329
(1.178)

−3.089
(2.573)

−0.447
(0.685)

0.251 *
(0.11)

−1.231 *
(0.523)

0.974 ***
(0.011) −251.488

Note: ω, β and α are parameters for the evolution function of Clayton or Gumbel Copula shown in Equation (3),
while ωu, βu, αu, ωl , βl and αl are parameters for the evolution functions of BB1 Copula shown in Equation (4).
The standard errors are in the brackets, *, ** and *** indicate parameter significance at 5%, 1% and 0.1%, respectively.
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Given our preference for the BB1 copula function, all the subsequent tail dependence risk and
transmission results that we now present pertain to our BB1 models. Figure 3 shows the upper and
lower tail dependence between Chinese and U.S. agricultural futures returns by commodity. It is
immediately apparent that in most cases the upper tail dependencies are higher than the lower tail
dependencies, for all three commodities. Table 7 presents the relationship between upper and lower
tail dependence of the return series, again by commodity, based upon the Kolmogorov-Smirnov test
statistic, T f sd, outlined in Equation (7) of Section 3. Consistent with Figure 3, the p-values in Table 7
indicate that all the upper tail dependences are generally higher than the lower tail dependences.
These results indicate that commodity futures prices tend to have higher co-movement for large price
increases, compared with large price decreases, between U.S. and Chinese exchanges.
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Table 7. Relationship between upper tail and lower tail dependence with KS test.

Data Commodity Null Hypothesis Tfsd p-Value

Ri,China
t and Ri,US

t

Soybean lower tail > upper tail 41.449 0
Corn lower tail > upper tail 38.929 0
Sugar lower tail > upper tail 36.325 0

Ri,US
t and Ri,China

t+1

Soybean lower tail > upper tail 32.290 0
Corn lower tail > upper tail 31.564 0
Sugar lower tail > upper tail 27.445 0
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3.2. CoVaR and Risk Transmission

3.2.1. Estimation of Risk Transmission

We use our BB1 copula model to calculate CoVaR and benchmark CoVaR at the 0.05 and 0.95
confidence levels to measure downside and upside risk transmission, by commodity and between
exchanges, respectively. Our results are presented in Figure 4 with charts on the left-hand side
depicting Chinese CoVaR levels by commodity, and the right-hand side showing U.S. CoVaR levels
by commodity. We can see that CoVaR and benchmark CoVaR levels for all three commodities vary
significantly over time. Notable spikes in U.S. soybeans and corn CoVaR levels, and to a lesser extent
in Chinese soybean CoVaR levels, occur during the 2008–2009 commodity price boom, which was a
period of extremely high price volatility. Our results highlight two interesting facts. First, we observe
that the soybean CoVaR and benchmark CoVaR estimates are notably higher than the comparable
estimates with respect to corn and sugar. This reflects the fact that holding soybean futures positions is
associated with the greatest risk levels. Second, it is worth noting that U.S. commodity futures markets
have higher CoVaR and benchmark CoVaR levels than their Chinese counterparts. This illustrates the
fact that U.S. commodity futures markets are faced with a greater level of inherent risk and are subject
to more extreme daily price movements.
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We now turn to the question of whether risk transmission takes place between U.S. and Chinese
futures markets. Table 8 presents our risk transmission existence test results based upon the Teq

Kolmogorov-Smirnov statistic presented in Equation (16). We find the CoVaR and benchmark CoVaR
measures for the exchanges, and by each commodity, are significantly different with respect to the
downside and upside risk levels. Thus, we can conclude that the downside and upside price (return)
risk transmission takes place between the exchanges and with respect to all three commodities.
Importantly, risk transmission is bi-directional, with price shocks emanating from both countries being
transferred to each other’s markets.

Table 8. Risk transmission tests between Chinese and U.S. agricultural futures markets.

Country Confidence Level
Soybean Corn Sugar

Teq p-Value Teq p-Value Teq p-Value

China 0.05 (downside) 26.482 0 14.434 0 21.474 0
U.S. 0.05 (downside) 25.512 0 16.910 0 15.817 0

China 0.95 (upside) 27.495 0 12.585 0 22.795 0
U.S. 0.95 (upside) 31.048 0 13.764 0 19.517 0

Note: For example, the first row presents risk transmission test results of whether there is a significant difference in
downside CoVaR and benchmark CoVaR risk levels for Chinese soybean, corn, and sugar markets.

3.2.2. Quantifying Risk Transmission

The risk transmission between Chinese and U.S. agricultural futures markets are next quantified
using Equation (17), which calculates the percentage difference between CoVaR and benchmark CoVaR
for both upside and downside, across exchanges, and by commodities. The results shown in Table 9
indicate that the average risk transmission from U.S. to Chinese markets are larger than the other
way around, for both upside and downside risk. In addition, it is of particular interest to note that
in general, the average upside risk transmission is larger than downside risk transmission across
commodities. In addition, we find that soybean risk transmissions are on average larger than sugar
and corn risk transmissions for both upside and downside risk levels.

Table 9. Descriptive statistics of risk transmissions.

Commodity Risk Transmissions Downside or Upside Average Standard Deviation

Soybean

China to U.S. downside 44.447 8.631
China to U.S. upside 61.167 5.754
U.S. to China downside 75.549 16.894
U.S. to China upside 79.668 5.450

Corn

China to U.S. downside 34.598 2.087
China to U.S. upside 26.981 4.088
U.S. to China downside 50.876 18.194
U.S. to China upside 44.578 26.007

Sugar

China to U.S. downside 29.814 2.200
China to U.S. upside 40.351 4.855
U.S. to China downside 65.834 17.163
U.S. to China upside 71.711 5.882

Note: Units of measurement are the percentage change in CoVaR to benchmark CoVaR in terms of daily returns.

Table 10 presents a further comparison result of risk transmissions from the perspective of different
commodities (soybean, corn, and sugar). Panel A results show that with respect to both upside and
downside risk transmission from U.S. to China, soybean risk transmission is greater than corn and
sugar, while sugar risk transmission is larger than corn. In panel B, results show that with respect to
downside risk transmission from China to U.S., soybean risk transmission is again greater than corn
and sugar, but that corn risk transmission is higher than sugar. Regarding upside risk transmission
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from China to U.S., soybean risk transmission is again greater than corn and sugar, while sugar risk
transmission is higher than corn. Without a doubt, soybean markets experience the greatest levels of
risk transmission, irrespective of where the price shock initially occurs.

Table 10. Comparison of risk transmission for soybean, corn, and sugar markets.

Panel A Risk Transmission from U.S. to China

Risk transmission Null hypothesis T f sd p-value
Downside corn > soybean 27.112 0

corn > sugar 17.916 0
sugar > soybean 23.098 0

Upside corn > soybean 32.831 0
corn > sugar 27.856 0

sugar > soybean 20.489 0

Panel B risk transmission from China to U.S.

Risk transmission Null hypothesis T f sd p-value
Downside corn > soybean 29.955 0

corn > sugar 0.103 0.963
sugar > soybean 38.292 0

Upside corn > soybean 40.340 0
corn > sugar 36.076 0

sugar > soybean 38.007 0

Results presented in Table 11 compare the relative magnitude of upside and downside risk
transmission by commodity and across exchanges. First with respect to both soybeans and sugar,
it is evident that upside risk transmission is greater than downside risk transmission irrespective
of where the risk emanates—the U.S. or China. Turning to our corn results, we again find that
upside risk transmission form U.S. to China is larger than downside risk, but that the reverse is true
when analyzing risk transmissions from China to the U.S. Generally, our risk transmission results are
consistent with our tail dependence results, which show that all the upper tail dependencies are larger
than the lower tail dependencies.

Table 11. Comparison of upside and downside risk transmission.

Commodity Risk Transmission Null Hypothesis Tfsd p-Value

Soybean U.S. to China downside > upside 17.856 0
China to U.S. downside > upside 33.816 0

Corn U.S. to China downside > upside 1.541 0.003
China to U.S. downside > upside 0 1

Sugar U.S. to China downside > upside 14.868 0
China to U.S. downside > upside 35.899 0

Finally, Table 12 shows results with respect to which country’s exchanges transmit the larger risk
levels by commodity and risk type. Importantly, irrespective of commodity and risk type—upside and
downside risk—we find that U.S. exchanges transmit more risk than Chinese exchanges. This result,
again highlights the fact that U.S. exchanges—in comparison to Chinese exchanges—are still playing
the leading price discovery role for world agricultural commodity markets.
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Table 12. Comparison of risk transmission from U.S. to China and from China to U.S.

Commodity Risk Transmission Null Hypothesis Tfsd p-Value

Soybean Downside China to U.S. > U.S. to China 33.698 0
Upside China to U.S. > U.S. to China 39.576 0

Corn Downside China to U.S. > U.S. to China 31.418 0
Upside China to U.S. > U.S. to China 19.991 0

Sugar Downside China to U.S. > U.S. to China 36.091 0
Upside China to U.S. > U.S. to China 35.857 0

4. Discussion

In summary, our empirical analysis reveals three interesting findings. First, risk transmission from
U.S. to China is higher than the other way around, although we find evidence that risk transmission
is bi-directional with respect to all three commodities; second, upside risk transmission from U.S. to
China is significantly greater than downside risk transmission from U.S. to China with respect to all
three commodities; and third, soybean risk transmission is significantly larger than sugar and corn risk
transmission, and sugar risk transmission is generally greater than corn risk transmission.

We argue that our empirical results can largely be explained by economic reasoning. First, with
respect to our finding that risk transmission is higher from U.S. to Chinese markets we contend that
this demonstrates that U.S. commodity futures markets retain their world benchmark pricing role.
Underpinning this price discovery role is the relatively large U.S. share of the world physical cash
market—both in terms of production and trade—in soybeans and corn, along with the fact that the U.S.
(ICE) sugar futures contract was specifically designed to reflect world prices. Indeed, our results are
consistent with recent research in world wheat markets, where Janzen and Adjemian [25] emphasize
that price discovery is determined where informed futures trading takes place, and that this is in turn
a function of futures market liquidity, and hedging effectiveness (price correlation between futures
and most actively traded world cash markets). Second, with respect to our finding that upside risk
transmission from U.S. to China is significantly greater than downside risk transmission from U.S. to
China—across commodities—we argue that this result is consistent with Chinese government national
stockpiling (NSP) agricultural policy. Third, our finding that risk transmission levels differ across
commodity markets is consistent with different levels of trade and Chinese self-sufficiency in the
underlying physical cash markets. China is highly dependent on U.S. soybeans and hence soybean
markets exhibit the greatest levels of risk transmission. Similarly, because China relies heavily on
world sugar markets, whereas it is relatively self-sufficient in corn, we observe relatively higher levels
of sugar price risk transmission compared to corn price risk transmission.

5. Conclusions

In summary, over the last ten years we have witnessed unprecedented levels of growth in the
Chinese agricultural commodity futures markets. This growth has stimulated researchers to investigate
whether volatility spillovers still emanate primarily in U.S. futures markets or if Chinese futures
markets now also play an important price discovery role in world commodity markets. We extend this
body of research by examining risk transmission between the most actively traded commodity futures
contracts listed on Chinese and U.S. exchanges. Using a novel Copula based CoVaR approach we
uncover three interesting risk transmission results. First, we are able to confirm that U.S. commodity
futures markets still play the dominant pricing role, although we also find evidence that China plays a
contributing pricing role, as risk transmission is bi-directional. Second, we find that the upside risk
transmission from U.S. to Chinese commodity markets is significantly greater than the downside risk
transmission from U.S. to Chinese commodity markets. Third, we are able to rank the relative levels of
risk transmission across our three commodities with soybeans exhibiting the greatest levels of risk
transmission followed by sugar and then corn.
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From a practical standpoint our results have important implications for firms engaged in
world commodity trading. We show that price risk transmission occurs between U.S. and Chinese
commodity markets, and as such any firms involved in the sustainable production, procurement,
storage, transportation, sale, and purchase of these commodities are exposed to this risk. In particular,
and given that our results show that upside price risk transmission from U.S. to Chinese commodity
markets is greatest, China as a large importer of soybeans and sugar, is most exposed to this form of
price risk, and should actively hedge this risk in forward and futures markets.

On a final note, we suggest potentially fruitful directions for future research. First, an important
avenue to explore will be the risk management implications of our results. Specifically, to what extent
could Chinese and U.S. commodity futures and options markets be used to hedge the risk transmission
between commodity exchanges? Second, given the current climate of growing agricultural trade
tensions between the U.S. and China, it would be informative to simulate the price risk transmission
impact between U.S. and Chinese futures exchanges of potential tariffs placed on U.S. commodity
exports to China.
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