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Abstract: Land use and land cover change is a critical factor of ecosystem services, while water
yield plays a vital role in sustainable development. The impact of urban expansion on water yield
has long been discussed, but water yield change resulting from cropland protection is seldom
concerned. Therefore, this paper aims to investigate the impacts of cropland protection on water yield
by comparing the water yield in two cropland protection scenarios (i.e., Strict Cropland Protection
scenario and No Cropland Protection scenario). Specifically, the LAND System Cellular Automata for
Potential Effects (LANDSCAPE) model was employed to simulate land use maps in the two scenarios,
while Water Yield module in the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)
model was used to calculate water yield. The results show water yield would increase by 8.7 × 107 m3

in the No Cropland Protection scenario and 9.4 × 107 m3 in the Strict Cropland Protection scenario.
We conclude that implementation of strict cropland protection in rapid urbanizing areas may cause
more water yield, which is also a prerequisite of potential urban flooding risk. This study throws that
it is not wise to implement strict cropland protection policy in an area of rapid urbanization.
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1. Introduction

Globally, ecosystem services are closely related to socioeconomic development and human
wellbeing, but economic development is based on ecosystem services degradation [1,2]. Heightened
awareness nowadays attracts much attention to the importance of ecosystem services [3,4]. Valuing
ecosystem services for making decisions has been a hot issue [5–7]. The United Nations also put
forward the Sustainable Development Goals to balance the conflicts between social development and
ecosystem services [8].

Water yield, as one of vital ecosystem services, plays an important role in agriculture, industry,
and other sectors [9,10]. Water yield is crucial for the sustainable development of society [11]. On the
one hand, the supply of water is an essential factor for human survival. Human demands for water
are driven by the need to eat [12]. To meet a balanced diet, an annual 1300 m3 of water per capita is
needed [13]. On the other hand, water supply is strongly connected to economic development [14].
Setlhogile et al. [15] found the total water consumption for households and mines (80.2 Mm3) is higher
than that of agricultural sector (70.2 Mm3) in Botswana.

In contrast, anthropogenic activities also affect the water yield [16]. Studies have been conducted
to focus on impacts of land use changes caused by urbanization on water yield and concluded
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that urbanization has a significant effect on water yield [17,18]. The water supply may change
due to human-induced land use [19,20]. Studies have proved urbanization to be an important
contributor for the increase of water yield [21,22]. The erosion of wetlands, forests and other ecological
lands by industrialization and urbanization should be mainly responsible for frequent occurrence
of urban waterlogging recent years [23]. Urbanization is inevitably accompanied with the increase
of impervious surfaces. The spread of the impervious surfaces influences the water yield mainly
through accelerated surface runoff and evapotranspiration reduction [24,25]. It has been demonstrated
that the impervious surface projected from 2011 to 2051 in Hinkson Creek Watershed in central
Missouri, Midwestern US, would make the surface runoff increase by 9.3% and the evapotranspiration
reduce by 2.4% [26]. Moreover, these changes have been addressed by hydrologic models, such as
Hydrological Simulation Program Fortran [27], the Integrated Valuation of Ecosystem Services and
Tradeoffs (InVEST) model [28] and the Soil and Water Assessment Tool (SWAT) [22].

Impacts of both anthropogenic and climate change on natural resources are commonly known as
factors of water yield. However, the influences of strict cropland protection on water yield was seldom
taken into consideration, although cropland protection may cause dramatic land use change [29,30].
Strict cropland protection policies are implemented in many countries to guarantee food security. As a
country with the largest population in the world, China has implemented lots of cropland protection
policies in recent years (e.g., Cropland Balance Policy and Primary Cropland Protection Policy) [31] and
established a cropland protection policy system to maintain quantity of cropland by land reclamation,
land consolidation and land rehabilitation [32]. Therefore, land exploitation has become the most
common way to meet the policy in view of its being cost-effective even at the cost of large amount
of ecological lands loss [33]. Consequently, strict cropland protection would affect water yield in a
primitive and profound way.

This study explored the impacts of strict cropland protection on the water yield in Wuhan,
a rapidly urbanizing city in central China, by the LANDSCAPE (LAND System Cellular Automata for
Potential Effects) model and the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs)
model. We developed two land use scenarios during 2013–2030 in Wuhan: (1) No Cropland Protection
scenario (NCP), without cropland protection policy; (2) Strict Cropland Protection scenario (SCP), with
strict cropland protection, which requires zero loss of cropland in quantity. Then we simulated land
use maps in 2030 in scenarios of both NCP and SCP by the LANDSCAPE model. Thirdly, water yield
in the two scenarios in 2030 were calculated by Water Yield module in InVEST model. Finally, the
impacts of strict cropland protection on water yield was figured out by comparing water yield maps in
the two scenarios.

2. Methods and Materials

There are five steps in this research to reveal the impacts of strict cropland protection on water
yield (Figure 1): (1) calibrate LANDSCAPE model with observed land use maps, accessibility data, soil
data, meteorological data, and terrain data; (2) develop future land use scenarios with two different
cropland protection policies; (3) use the calibrated LANDSCAPE model to simulate the future land use
maps in the two scenarios; (4) evaluate the water yield with the Water Yield module in the InVEST
model in the two scenarios; and (5) reveal the impacts of strict cropland protection on water yield in
the study area.

2.1. Study Area

Wuhan, the provincial capital of Hubei province, is located in the middle of China. It covers an
area of 8494 km2 and resides by about 10.8 million population according to 2017 statistical bulletin for
national economic and social development in Wuhan (Figure 2). The Yangtze River and Han River
meet in the center of Wuhan, which makes it a distinct area with fertile soil. The cropland of Wuhan
accounts for 55% of the total area. Wuhan also has a high proportion of ecological lands, and more
than 160 lakes. Since 1978, Wuhan has experienced rapid urbanization which resulted excessive loss of
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lakes and ecological areas. Under these circumstances, most lakes in Wuhan have been shrunk [34],
which leads to frequent urban waterlogging. As a result, land competition among urban expansion,
cropland protection and ecosystem conservation turn out to be serious in Wuhan. Thus, we selected
Wuhan as our study area to explore impacts of strict cropland protection on water yield.
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2.2. Development of Future Land Use Scenarios

Since 1996, the Chinese government has implemented a series of strict cropland protection policies,
such as Cropland Balance Policy, to mitigate cropland loss and guarantee food security [35,36]. These
policies focus on the balance of cropland loss occupied by construction and cropland compensation,
which requires that if cropland was occupied by constructive land, the developer must reclaim the
same area of cropland in other places. Thus, to investigate the impacts of strict cropland protection on
water yield, we developed two land use scenarios, differing in the implementation of strict cropland
protection. One is a No Cropland Protection scenario (NCP), which assumes the land use change trend will
be continued in the future without strict cropland protection policy. The other one is a Strict Cropland
Protection scenario (SCP), which implements the strict cropland protection policy during urbanization.
Each of them has the same quantities of urban land and rural settlements to ensure the comparability.
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The only difference between the two scenarios is the demand of cropland (Table 1). In this research,
cropland may be occupied by urban land and rural settlements under all scenarios. In the SCP scenario,
ecological lands can be converted to cropland, while in the NCP scenario they cannot. In the SCP
scenario, the demand of cropland is exactly the same as its quantity in 2013 because of cropland loss in
quantity would not happen under the SCP scenario. While in the NCP scenario, there is no cropland
demand for compensation.

Table 1. Cropland demands in different land use scenarios (ha).

Observed in 2013 NCP SCP

Cropland demand (ha) 460,716 - 460,716

NCP: No Cropland Protection scenario; SCP: Strict Cropland Protection scenario.

2.3. Land Use Simulation in Different Scenarios

The cellular automata (CA) model has been proved as one of the most powerful tools to simulate
land use changes due to its good performance and flexibility [37–39]. As one of the CA-based models,
LANDSCAPE model has its own superiority apart from the advantages of CA-based models [40]. It can
perform accurately changes of multiple land uses with a hierarchical allocation strategy, transition
probability and transition intervals [40]. For this reason, we employed the LANDSCAPE model to
simulate land use in 2030 for both scenarios.

In the hierarchical allocation strategy, the land use types are divided into active and passive ones
by following White and Engelen [41]. Active land use change is driven by the demand of human and
social development, such as urban land and cropland. Comparatively, change of passive land use
types is resulted from the changes of the active ones (the losses of forest and wetland caused by urban
expansion, for example).

The transition probability, which indicates the probability of a cell to be transformed to a target
land use type, is determined by suitability and resistance. Suitability is the parameter that represents
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the attractiveness of a cell to be transformed to a land use type. Resistance is the transition difficulty
for a cell to change its current state. The transition probability is determined by the following formula:

TTPi,t =
Si,t

Ri,c
(1)

where TTPi,c is the total transition probability for cell i to be transformed to land use type t; Si,t is the
suitability of cell i for the land use type t; Ri,c represents the resistance of cell i to be transformed from
its current land use type to another. The higher value of TTPi,t means the higher probability of cell i to
be converted to the target land use type t.

The suitability Si,t is calculated by the equation as follows:

Si,t =
(
1 + (− ln γ)α)× PGi,t × Con(Ci,t)× Ωi,t (2)

where γ is a random number changing from 0 to 1, and α is a dispersion number to control the
stochastic number; PGi,t represents the impacts of environmental parameters in cell i, such as soil and
accessible conditions, which is calculated by C5.0 decision tree algorithm in this research; Con(Ci,t)

is the constraint of the transition in cell i with 1 for changeable and 0 for unchangeable; Ωi,t is the
neighborhood effect for target land use type t.

Resistance represents the difficulty of a cell to change to another land use type. The higher value
of resistance means the higher transition difficulty. It can be calculated from the observed land use
maps and we adopted the same resistances used by Zheng et al. because these have been proved
suitable for simulating land use change in Wuhan [29].

As a CA-based model, LANDSCAPE model also needs transition intervals as the parameters.
Transition interval represents the evolving rate for cells. We calculated the transition intervals by
following Ke et al. [42].

The LANDSCAPE model should be calibrated before being applied to simulate land use
changes [30]. Specifically, six steps are needed to calibrate the LANDSCAPE model: (1) define
active and passive land use types and get the demands of active land use types in the observed land
use map; (2) calculate the transition possibility for each land use type with C5.0 decision tree algorithm;
(3) figure out the asynchronous transition intervals based on the changed cells in two observed land
use maps at different time point; (4) calculate the resistances of land use types; (5) simulate land use
change from 2000 to 2013 with the parameters mentioned above; and (6) assess the accuracy of the
model by Kappa Simulation with the Map Comparison Kit, which was developed by the Netherlands
Environmental Assessment Agency (PBL) [40,43].

2.4. Calculation of Water Yield in Different Land Use Scenarios

Water Yield module in the InVEST model was employed to calculate water yield in different
land use scenarios. As one of the models for evaluation of ecosystem services, the performance of the
InVEST model has been proved by many researches, including carbon storage, phosphorous reduction,
water yield and biodiversity [44–46].

In the Water Yield module of the InVEST model, water yield can be calculated based on the
Budyko curve and annual average precipitation [47]. According to the theory of water balance, water
yield in each cell in the Water Yield module is calculated in accordance with the difference between
precipitation and evapotranspiration, which can be represented by the following formula:

Yij =

(
1 −

Eij

Pij

)
× Pij (3)
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where Yij is the water yield of land use type i on cell j; Pij is the annual average rainfall of land use

type i on cell j; Eij is the actual evapotranspiration of land use type i on cell j;
Eij
Pij

is calculated by the
Budyko curve proposed by Zhang et al. [48]:

Eij

Pij
= 1 +

PEij

Pij
−
[

1 + (
PEij

Pij
)

αi j
]1/αij

(4)

where PEij is the potential evapotranspiration of land use type i on cell j; αij is the non-physical factor
that characterizes soil properties in natural climate. PEij is defined by the Formula (5) as follows:

PEij = Cij × ETij (5)

where Cij is the vegetation evapotranspiration coefficient of land use type i on cell j, which is
largely decided by the vegetative characteristics of the land use in the pixel; ETij is the reference
evapotranspiration of land use type i on cell j.

αij is defined by Formula (6):

αij = Z ×
AWij

Pij
+ 1.25 (6)

where AWij is the volumetric plant-available water content, decided by the soil texture and effective
rooting depth. Z is an empirical constant for seasonality factor.

2.5. Data Sources

2.5.1. Datasets for Land Use Simulation

Five categories of datasets are needed for land use simulation by using the LANDSCAPE model:
land use datasets, accessibility datasets, soil datasets, terrain datasets, and meteorological datasets
(Table 2). Observed land use maps in 2000 and 2013 needed for the LANDSCAPE model plays four
roles in land use simulation: (1) to calculate the transition possibilities and asynchronous transition
intervals; (2) to figure out the demands for active land uses; (3) to calibrate the LANDSCAPE model;
and (4) to be as the initial land use map for simulation.

Land use datasets required for this research were obtained from the Data Centre of Resources
and Environment, Chinese Academy of Science (http://www.resdc.cn/). Eight types of land use
viz. cropland, forest, grassland, river, wetland, urban land, rural settlements, and unused land, were
referred in the land use maps [49]. Because the maximum size of the input data allowed in the current
LANDSCAPE model is 4000 × 4000 cells, the spatial resolution of land use maps was resampled from
30 m to 100 m through the ArcGIS10.2 “Resample” function.

Accessibility is proxied with the nearest distance to the target destination. Accessibility datasets
for the study are: highway, railway, state roads, provincial roads, county roads, main roads and
other roads in a city. All datasets of those roads were extracted from the Traffic Atlas of Wuhan with
the following steps: (1) scan the traffic map into a digital map; (2) correct the digital map to the
spatial reference of land use datasets; and (3) translate the digital map into shapefile. Then, we used
“Euclidean Distance” tool in ArcGIS 10.2 to generate the raster datasets of the distance to the nearest
road networks for each cell.

The soil datasets were collected to calculate the suitability map in land use simulation in this
research, and mainly refer to three parameters: soil phosphorus content, soil PH, and soil organic matter
content. All the soil datasets were obtained from the China Soil Database (http://gis.soil.csdb.cn/) in
shapefile format. We converted the shapefile soil datasets into raster formats with a spatial resolution
of 100 m, to keep consistence with the land use datasets.

http://www.resdc.cn/
http://gis.soil.csdb.cn/
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Table 2. Datasets for the LANDSCAPE model.

Datasets Data Name Meaning and Data Extraction Method

Land use datasets

Land use map in 2000

Land use map in 2000 based on land use
database of resources and environment data

center of Chinese Academy of Sciences
(http://www.resdc.cn/)

Land use map in 2013

Land use map in 2013 based on land use
database of resources and environment data

center of Chinese Academy of Sciences
(http://www.resdc.cn/)

Accessibility datasets

Distance to highway Euclidean distance to the nearest highway

Distance to railway Euclidean distance to the nearest railway

Distance to state road Euclidean distance to the nearest state road

Distance to provincial road Euclidean distance to the nearest provincial road

Distance to county road Euclidean distance to the nearest county road

Distance to main road Euclidean distance to the nearest main road

Distance to other road Euclidean distance to the nearest other road

Soil datasets

Soil_p Soil phosphorus content

Soil_ph Soil PH

Soil_organic_matter Soil organic matter content

Terrain datasets
Digital elevation model (DEM) Digital Elevation Model

Slope Slope extracted from DEM dataset

Meteorological datasets
Temperature Annual average accumulated temperature

Precipitation Annul precipitation

Two categories of terrain datasets, digital elevation model (DEM) and slope, were used to calculate
the suitability map in this research. The DEM dataset was acquired from the Shuttle Radar Topography
Mission (SRTM), which is conducted by the National Aeronautics and Space Administration of USA
(NASA) and USA National Geospatial-Intelligence Agency (NGA) [50]. The spatial resolution of the
DEM dataset from SRTM in the study area is 90 m originally, but we resampled it to 100 m to consist
with the resolution of land use datasets. Then, the slope raster was generated by the DEM data by
using the “Slope” tool in ArcGIS10.2.

Two meteorological datasets were used to calculate the suitability map in the LANDSCAPE model:
annual average accumulated temperature and annul precipitation. Both of the two meteorological
datasets were obtained from the ground meteorological observatory in Hubei Province, China (http://
data.cma.cn/). Then, Kriging tool in ArcGIS 10.2 was used to generate raster datasets of meteorological
data from the observatory.

2.5.2. Datasets for Water Yield Calculation

Seven categories of datasets are needed for water yield calculation by using the Water Yield
module in the InVEST model, including root restricting layer depth, land use maps, precipitation,
evapotranspiration, plant available water content, watersheds, and biophysical table.

The root restricting layer depth data is from the Second National Soil Survey (http://gis.soil.csdb.
cn/) and Kriging tool of ArcGIS10.2 was used to generate raster dataset of it with spatial resolution of
100 m. Land use maps comprise historical and simulated datasets used in Water Yield module in which
historical land use maps from the Data Centre of Resources and Environment, Chinese Academy of
Science and simulated land use maps were generated by the LANDSCAPE model. The precipitation
data is from the ground meteorological observatory in Hubei Province (http://data.cma.cn/) and
we employed the “Kriging” tool in ArcGIS10.2 to translate the data into raster data with a spatial
resolution of 100 m. The evapotranspiration data was calculated by Formula (5) and then Kriging
spatial interpolation method was used to generate a raster of evapotranspiration. The plant available

http://www.resdc.cn/
http://www.resdc.cn/
http://data.cma.cn/
http://data.cma.cn/
http://gis.soil.csdb.cn/
http://gis.soil.csdb.cn/
http://data.cma.cn/
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water content is important for agricultural production and green plants growth, which can be calculated
by soil texture and effective rooting depth with Formula (7):

AWij = Min
(
ldij, rdij

)
× PAWC (7)

where ldij is root restricting layer depth of land use type i on cell j; rdij is vegetation rooting depth of
land use type i on cell j; PAWC is the plant available water capacity, which is the difference between
field capacity and wilting point.

The watershed data is a shapefile data, which is generated with hydrological tools in ArcGIS10.2
with DEM data. The biophysical table contains parameters such as land use codes, name of each land
use type, the equation used to calculate the actual evapotranspiration, the maximum vegetated root
depth of land use types, and the evapotranspiration coefficient of each land use type. The land use
codes and name of each land use type are defined by the authors while the others are obtained from
the sample that given by the InVEST user guide (http://data.naturalcapitalproject.org/nightly-build/
invest-users-guide/html/).

3. Results

3.1. Calibration of LAND System Cellular Automata for Potential Effects (LANDSCAPE) Model

To calibrate LANDSCAPE model, land use map in 2013 (Figure 3c) was simulated based on land
use map in 2000 (Figure 3a). The Kappa Simulation index instead of Kappa coefficient was employed
to assess the accuracy of the LANDSCAPE model by comparing the simulated land use map in 2013
and the observed one (Figure 3b) [51]. Kappa Simulation can distinguish the changed and unchanged
cells, and only calculates the accuracy of the changed cells. Since most cells in the simulation period
remain unchanged, the Kappa coefficient may result in an overestimation in accuracy while Kappa
Simulation score can avoid the overestimation well. The value of Kappa Simulation score ranges from
−1 to 1, where 1 represents a perfect match between the simulation result and the observed land use
map, 0 indicates a random distribution of the simulation results and −1 shows no agreement between
the simulation result and the observed target land use map.

Table 3 shows the Kappa Simulation score of each land use type. As we can see, the Kappa
simulation scores of each land use type are all greater than 0, which means that LANDSCAPE model
is accurate enough to simulate land use change in Wuhan. Specifically, the Kappa Simulation scores
of urban land and cropland are 0.438 and 0.227 respectively, indicating that the simulation results
of these land uses types are higher and reliable. The Kappa Simulation score of rural settlements is
close to 0. That is because rural settlements in China are highly dispersed [52], which is really hard to
simulate. But the KTransition score of rural settlements is 0.316, indicating the high accuracy of land
use type transition [51].

Table 3. Kappa Simulation scores of each land use type in the simulated result.

Land Use Type Cropland Forest Grassland Wetland Urban
Land

Rural
Settlements

Unused
Land

Kappa Simulation 0.227 0.109 0.074 0.115 0.438 0.058 0.181
KTransLoc 0.430 0.302 0.153 0.462 0.469 0.183 0.364
KTransition 0.529 0.359 0.484 0.248 0.934 0.316 0.499

3.2. Land Use Change in Different Scenarios

Figure 4 illustrates simulated land use maps of Wuhan in 2030 in two different scenarios: NCP
(a) and SCP (b). The changes of urban land and rural settlements are similar in both NCP and SCP
scenarios during 2013 and 2030, while the changes of other land use types, such as forest, wetland, and
grassland, show more differences.

http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/
http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/
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(b) observed land use map in 2013; and (c) simulated land use map in 2013.

Figure 5 shows loss of individual land use types in different scenarios in Wuhan in 2030. The land
use change pattern is quite different in the two scenarios, making the different loss of cropland and
other lands. There is no loss of cropland in quantity in the SCP scenario that is because we gave a
certain demand of cropland in the LANDSCAPE model, while 8192 ha of cropland would be taken
up by built-up area expansion in the NCP scenario. To other land use types, loss of forest is 2309 ha
in NCP scenario and 7144 ha in SCP scenario separately. The loss of wetland is 5446 ha in the NCP
scenario and 8037 ha in the SCP scenario. Strict cropland protection makes more forest (4835 ha) and
wetland (2591 ha) convert to cropland in the SCP scenario.
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3.3. Water Yield in Different Scenarios

Table 4 demonstrates the total water yield in 2030 and the changes of water yield during 2013–2030
in scenarios of NCP and SCP. The total water yields in 2030 in the NCP and SCP scenarios are
659.36 × 107 m3 and 660.08 × 107 m3, respectively. Compared with quantity of water yield in 2013
(650.64 × 107 m3), water yield in 2030 in both scenarios would increase. However, the quantity of
water yield increase in two different scenarios would be different. Specifically, water yield would
increase 8.72 × 107 m3 in the NCP scenario during 2013–2030, while it would increase 9.44 × 107 m3 in
the SCP scenario. The difference is 0.72 × 107 m3.

Table 4. Water yield in the two scenarios in Wuhan (107 m3).

Scenario Total Water Yield The Changes of Water Yield

NCP 659.36 8.72
SCP 660.08 9.44

NCP: No Cropland Protection scenario; SCP: Strict Cropland Protection scenario.
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Figure 6 shows the spatial differences of water yield between the NCP and SCP scenarios. Increase
in water yield from the NCP scenario to the SCP scenario would happen dominantly in regions with a
total of 9301 ha while decrease would appear in regions with a total of 2700 ha. Specifically, regions
with increase of water yield are distributed around the city separately, but mainly located in the
southeast (Figure 6c), north (Figure 6b) and northwest (Figure 6a) of Wuhan where these are the main
areas of forest loss.
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Figure 6. Spatial differences of water yield between No Cropland Protection scenario (NCP) and Strict
Cropland Protection scenario (SCP): (a) in the northwest, (b) north, (c) southeast, and (d) the whole area.
Decrease of water yield indicates water yield in the SCP scenario is lower than that in the NCP scenario;
Unchanged represents that water yield in the SCP scenario is equal to that in the NCP scenario; Increase
of water yield demonstrates that water yield in SCP scenario is higher than that in the NCP scenario.
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The land use change patterns of regions with increase and decrease of water yield in the scenarios
of NCP and SCP are quite different (Table 5). In regions with a decrease of water yield, land use is
mainly composed of urban land, rural settlements and unused land in NCP scenario, which contribute
30.3%, 40.7% and 22.8% respectively; while cropland seizes the largest part of 88.9% in the SCP scenario.
As for regions with an increase of water yield, land use mainly consisted of ecological lands in the
NCP scenario, such as forest (4939 ha, 47.2%) and wetland (2527 ha, 27.2%); while cropland and rural
settlements contribute 78.8% and 12.2% in the SCP scenario.

Table 5. The quantities of each land use type in regions with decrease and increase of water yield from
No Cropland Protection scenario to Strict Cropland Protection scenario (ha).

Region Decrease of Water Yield Increase of Water Yield

Scenario NCP SCP NCP SCP

Cropland 14 2400 1731 7331
Forest 0 69 4939 30

Grassland 23 60 14 0
Wetland 132 86 2527 0

Urban land 818 53 14 803
Rural settlements 1098 32 58 1137

Unused land 615 0 18 0
Total 2700 2700 9301 9301

NCP: No Cropland Protection scenario; SCP: Strict Cropland Protection scenario.

4. Discussion

Rapid urbanization which causes significant land use change has been considered as an important
factor for changes of water yield and ecosystem services [21,22,38,53]. However, as an incident effect
of urban expansion, impact of land use changes initiated by cropland protection usually has been
overlooked by most studies. Trying to explore this issue, we simulated future land use changes under
two different scenarios, with strict or without cropland protection (SCP and NCP) at the same level of
urbanization with by using the LANDSCAPE model and calculated the water yield with the Water
Yield module in the InVEST model. To guarantee the relative accuracy of the land use change model in
this research, we used the observed land use maps of the study region in 2000 and 2013 to calibrate the
model [40]. The calibration results showed that the simulated land use map in 2013 has relative high
Kappa Simulation scores, which means the model is trustworthy [51]. We also compared our water
yield results with similar research in karst mountain areas of China [54] and in South Korea [55]. The
average water yield in the observed land use map 2013 in our study is 759 mm, lower than that in karst
mountain areas of China and South Korea. That is because the former has a relative lower latitude and
the latter is surrounded by sea, which makes their precipitation higher than our study area.

The simulation results show that build-up area expansion definitely leads to vast loss of cropland
and ecological land, and to maintain the strict cropland protection, the ecological land will lose more,
which is similar to the results of Zheng et al. [29]. Furthermore, we calculated the water yield in
different scenarios showing that urbanization will increase the water yield and the strict cropland
protection will aggravate this phenomenon. The results show that the total water yield would increase
8.72 × 107 m3 in the NCP scenario and 9.44 × 107 m3 in the SCP scenario. The difference between
the two scenarios is 0.72 × 107 m3, which is almost equal to the water capacity of a small reservoir
according to the Classification and Design Standard of Water Conservancy and Hydropower Project in
China. That is because built-up area takes up lots of cropland and ecological lands, resulting in an
increase of the impervious surface. The impervious surface leads the increase of surface runoff and
the reduce of evapotranspiration [24,25]. So, if the precipitation remains unchanged, the total water
yield will increase. To ensure food security, the Chinese government has put forward the strictest
cropland protection policy in the world, which keeps the cropland balance in quantity [35]. Studies
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have demonstrated that the water retention capacity of ecological land such as forest and wetland is
more powerful than cropland [56] and the decreasing sequence of water yield of different land use
types mainly conform with urban land, rural settlements, unused land, grassland, cropland, forest
and wetland [57]. In the SCP scenario, due to the strict cropland protection, wetland and forest are
converted to cropland, leading the indirect losses of ecological lands (Figure 5). Therefore, the water
retention capacity is becoming relatively lower compared to that with no cropland protection due to
the indirect loss of ecological land caused by strict cropland protection. That is the reason why the
water yield in the SCP scenario is higher than that in NCP scenario.

As one of the most important ecosystem services, water yield plays a vital role for sustainable
development. Previous studies have demonstrated that water supply is a basic condition for human
life [9–11] and it is important at the basin scale [58,59]. Is the increased water yield really a good
thing for a rapid urbanizing city like Wuhan? Maybe it is not. There is no doubt that the impervious
surface will increase in the future since urbanization is still the trend of future development and it
will definitely take up lots of cropland, forest and wetland. Meanwhile, the rivers, lakes and urban
drainage system are facing the pressure of increased surface runoff. It has been proved that forest and
wetland are the most important land use types that can conserve water and reduce the probability of
floods [60]. However, the indirect losses of forest and wetland caused by strict cropland protection
leads the water yield and surface runoff to increase. It will also bring environmental problems, such as
soil erosion. Thus, if a rapid urbanization city implements the strict cropland protection policy, the
possibility of floods occurring is higher.

Also, there are some limitations of our study. Firstly, we developed the land use scenarios
only based on the cropland protection policies that implemented in China. As we all know, policies
will change among countries. So, the methodology can be applied in different research areas but
the parameters in the scenarios should be changed to meet local policies. Secondly, to ensure the
comparability we did not consider the effect of climate change, although studies have shown it
influences the water yield [17,26]. Thus, future studies could combine climate change models with the
models we use.

5. Conclusions

This study focuses on the impacts of strict cropland protection on water yield by combining
the LANDSCAPE model and the Water Yield module in the InVEST model in two different land
use scenarios (NCP and SCP). The results show that implementation of strict cropland protection
would lead to an increase of water yield from 2013 to 2030 (0.72 × 107 m3), compared to that
without strict cropland protection. Considering the double pressure of urbanization and cropland
compensation on water yield, it is not wise to implement strict cropland protection in an area
undergoing rapid urbanization.
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