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Abstract: In this paper, we developed an integrated methodology for assessing asset damage,
production capacity loss, and inter-sector ripple loss using the depth-damage curve, Cobb-Douglas
production function and Input-Output model. We applied this methodology to the detailed individual
manufacturing firms in Shanghai under an extreme storm floods scenario to simulate the disaster
impact propagation from local individual firms to the entire industrial system and comprehensively
estimate the resulting economic losses and their spatial distribution. Our results show that given no
floodwall protection, a 1000-year storm flood scenario would cause direct asset damage of US $21
billion to the Shanghai manufacturing industry, including fixed asset damage of US $12 billion and
inventory damage of US $9 billion. Due to the shortage of input productive factors of asset and labor,
it would further lead to production capacity loss of US $24 billion. In addition, affected manufacturing
industry would indirectly result in ripple loss of US $60 billion among dependent sectors, which
has a significant amplifier effect. Our results have important implications for reasonable cost-benefit
analysis of structural flood control measures in coastal areas, as well as for manufacturing firm
location planning and resilience strategy decision-making.

Keywords: Shanghai; storm flooding; manufacturing industry; asset damage; production capacity
loss; ripple loss

1. Introduction

In recent years, many cities have been severely affected by extreme floods, such as the river
flooding in Thailand in 2011 [1], the storm flooding in New York and New Jersey in 2012 caused by
Hurricane Sandy [2], the flooding along the Elbe in Germany in 2013 [3], and the storm flooding in
Houston in 2017 by Harvey [4]. The enormous deaths, injuries, and economic loss caused by extreme
floods have gained much attention worldwide. Shanghai, located at the estuary of the Yangtze River
and low-lying coastal zones, is considered to be the most vulnerable city to coastal floods among the
world’s 9 deltaic coastal cities [5] and ranks as one of the top 20 cities in the world in terms of population
exposure and property exposure to floods [6]. In the future, more frequent extreme storm floods are
expected to occur in this city due to the combined effects of increased tropical cyclone intensities with
global warming and the acceleration of sea level rises [7,8], severe land subsidence resulting from
rapid urbanization, and the drastic transformation of the underwater terrain in the Yangtze River
estuary attributed to large-scale construction projects [9–11]. Particularly, the consequences would
be more devastating in the case of compound flood events of extreme rainstorms, astronomical high
tides, storm surge, and upstream floods. Shanghai is one of the most important manufacturing hubs
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in China and in the world. Many manufacturing plants and facilities are distributed in riverine and
coastal lowlands, and are prone to coastal floods. Because of the strong linkage of the manufacturing
industry, if affected by extreme storm floods, the damaged firms in Shanghai would trigger serious
system-wide indirect losses and impacts in the local region, the entirety of China, and the world.
Therefore, effectively assessing the manufacturing industry’s potential economic losses/risk and then
to improving its adaptability/resilience to extreme storm floods are becoming urgent issues in the
context of global climate change.

The industrial system is a complex network composed of inter-linked firms/sectors. From the
perspective of disaster impact propagation in the industrial system, the physical damage, production
capacity loss (or business interruption loss), and ripple loss would be induced successively [12].
Floods may initially cause physical damage to industrial facilities such as buildings, equipment, and
inventories. Afterwards, the asset damage and labor shortages may lead to production capacity losses
in the affected areas, which can be regarded as the inoperable part of normal production capacity.
If stagnation and recovery time are considered, production capacity loss can be deduced to business
interruption loss. Finally, due to the inter-linkage of firms/sectors, it may further trigger system-wide
indirect ripple losses. Physical damage is usually categorized as a direct loss, while production capacity
loss and ripple loss are categorized as an indirect loss [13]. Traditionally, physical damage assessment
originates from the engineering community [14] and is mainly used for the design of structural
defense measures and the calculation of insurance premiums. The most frequently adopted approach
for physical damage assessment is to apply vulnerability functions developed either with intensive
post-disaster surveys of affected individual elements at a micro scale, or with detailed scenario-based
hazards and resulting damage simulations. Production capacity loss assessment is often sponsored by
private stakeholders and generally applied for business continuity planning (BCP). The system-wide
indirect ripple loss is a key issue of concern for governments and the public. In contrast to physical
damage assessment, most econometric models for indirect ripple loss assessment such as Input-Output
(IO) and Computable General Equilibrium (CGE) are often performed at an aggregated and macro
scale, in which input parameters at sector scales are needed [15,16]. Owing to the differences in
domains, objectives, methods and scales, the research of physical damage assessment, production
capacity loss assessment and ripple loss assessment are isolated from one another to some extent.

The gaps make it difficult to sufficiently understand how the damage to individual elements of
single nodes (hubs or critical infrastructure) may influence the industrial system as a whole [16,17], and
to completely estimate the potential economic loss. Currently, the affected-sector losses used as inputs
to IO and CGE models are mostly derived from ex-post surveys, which constrains their utilization for
indirect ripple loss assessment at the post-disaster recovery and reconstruction phase. Thus, from the
perspective of ex-ant risk analysis, it is necessary to develop an integrated assessment methodology
that combines hazard scenario simulation, exposure analysis of industrial system, physical damage and
production capacity loss assessment at local nodes, and indirect system-wide ripple loss estimation.
Such a methodology will help to comprehensively simulate the amplification effect of disaster impacts
in industrial systems, and better understand the interactions between intrinsic economic dynamics
and external shocks [16].

Economic loss assessment is an essential part of disaster risk management and can provide
crucial information for risk analysis, risk mapping, and optimal decisions on mitigation measures.
A number of previous studies [18–21] focus on the estimation of the flood-induced physical damage
using depth-damage curves. However, the direct physical damage only accounts for a small proportion
of the total economic loss in catastrophic events [12,22], and cannot provide sufficient information
for decision-making. Other studies [23–25] have developed integrated systems to assess the direct
loss and indirect loss with coupled hydro-economic models, but the following issues in these models
need to be addressed. First, the manufacturing industry is taken as a whole for depth–damage curves
without considering the differences of asset exposure and vulnerability within various sectors. Second,
the exposure mapping and physical damage estimation are often based on land use types with an
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assumption that asset values are evenly distributed for a certain land use type. This method does not
take into account the density distribution of industrial activities. Third, direct physical damage (i.e.,
stock loss) rather than production capacity loss (i.e., flow loss) is used as input to IO and CGE models,
which does not consider the marginal productivity of input factors and the production process from
input factors to final products.

In comparison with other sectors such as private households and agriculture, assessing economic
loss of floods in manufacturing industry is more challenging. First, due to the high variability and
scarcity of data available in the manufacturing industry, the transfer of asset values and physical
damage functions within sectors is problematic [26]. Second, the diverse production process from
input to final output in different industrial sectors makes it difficult to model the transformation from
physical damage of input factors to output loss. Third, because of the complex inter-linkage, it is
hard to identify, define and estimate the indirect ripple loss. In metropolitan areas where industrial
activities are highly concentrated, insufficient economic loss estimation may lead to an incomplete
understanding of potential disaster risk and biased decision-making.

In view of the above problems, we develop an integrated methodology for assessing physical
damage, production capacity loss, and inter-sector ripple loss using the depth-damage curve,
Cobb-Douglas production function and IO model. This methodology is then applied to detailed
individual manufacturing firms in the Shanghai metropolitan area to simulate the disaster impact
propagation from local individual firms to the entire industrial system and comprehensively estimate
the resulting direct and indirect economic losses and their spatial distribution. The results may provide
a reasonable basis for cost-benefit analysis of structural measures, insurance premium, BCP, and public
financial appraisals.

2. Data and Methods

2.1. Study Area

The Shanghai metropolitan area, with a total area of 6340.5 km2, is located in the eastern edge
of the Yangtze River Delta and is close to the midpoint of the east coastline of China (Figure 1). It is
surrounded by water on three sides, with the estuary of the Yangtze River to the north, the East China
Sea to the east, and the Hangzhou Bay to the south. The Huangpu River flows through the metropolitan
area from west to east in the up-stream and from south to north in the middle- and down-stream.
It borders Jiangsu province in northwest and Zhejiang province in southwest, respectively.

Shanghai lies in a flat and low-lying region with an average elevation of 4.0 m, and is frequently
threatened by storm surge, storm floods, torrential rainfall and wind brought by typhoon. Since 1949,
it has been hit by typhoons around 1.5 times per year and the induced annual flood frequency has
increased significantly [27]. In 1905, extreme storm floods led to nearly 30 thousand deaths and injuries
in Shanghai [28]. In 1962, extreme storm floods caused 1/6 loss of total GDP in Shanghai. Water level
at the Huangpu Park station rose up to 4.76 m and half of the downtown city was inundated for nearly
10 days due to 46 failures (breach and overflowing) points along floodwalls of the Huangpu River and
its branches [19,20]. In 1997, Typhoon Winnie led to the direct economic loss of US $100 million in
Shanghai. The water level in Huangpu Park rose to 5.72 m, which was equivalent to the water level of
the 200 years return period [29]. In 2005, Typhoon Matsa resulted in the accumulative rainfall intensity
of 138~350 mm, which caused 238 roads to be under 20~30 cm of inundation and direct economic
damage of over US $216 million [20]. In the future, global and local changes are expected to further
accelerate the coastal flood risk in Shanghai [11].
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Shanghai is one of the most important economic and industrial centers in China. In the past
40 years, the GDP of Shanghai has increased by 108 times. By the end of 2017, its GDP has increased to
US $434 billion, accounting for 3.6% of China’s total GDP. GDP density also reaches US $70 million per
square kilometer. The manufacturing industry plays an important role in Shanghai, with more than
9000 manufacturing firms above the designated size, 4.1 million employees, an annual added value
of US $120 billion, and an annual gross output value of US $490 billion [30]. Many manufacturing
firms concentrate in several major industrial development zones that are situated in the riverine and
lowland along the Huangpu River (Figure 1). Low-lying terrain as well as dense asset exposure may
increase flood risk in these zones. Table 1 lists the leading sectors, fixed asset, inventory, and annual
output of firms in the major industrial development zones in 2013.

Table 1. Characteristics of major industrial development zone in Shanghai.

Industrial Zones Leading Sectors Area Fixed Asset Inventory Annual Output

(Sq km) (billion USD)

Songjiang
Industrial Zone

Communication and computers
equipment, Fine chemicals; 39.7 4.18 2.43 30.73

Jinqiao Export
Processing Zone

Automotive manufacturing, Electronic
information, Chemical feedstock and

chemical manufacturing;
15.6 3.76 2.59 26.41

Zhangjiang
Hi-Tech Park Bio-medicine, Electronic information; 13.7 3.97 1.98 14.43

Waigaoqiao Free
Trade Zone

Electronic information, Automotive parts
manufacturing; 9.1 0.23 0.34 2.38

Baoshan Iron &
Steel Base Ferrous metal smelting and extrusion; 39.5 9.45 3.90 14.94

Baoshan City
Industrial Park

Automobile parts manufacturing,
Metalwork industry 5.6 0.44 0.39 1.49
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2.2. Data

This study takes manufacturing firms in Shanghai metropolitan area as subjects, covering the
section C of the manufacturing industry and subordinate two-digit divisions of C13~C43 (Table 2)
in Chinese Standard Industrial Classification (GB/T 4754-2011). The data is collected from China
Industrial Enterprises Database in 2013 published by National Bureau of Statistics [31], which includes
all state-owned firms as well as non-state-owned firms with annual revenue above 20 million CNY in
China. The database matches the industrial section of the China Statistical Yearbook and the China
Industrial Statistics Yearbook, and provides comprehensive and authoritative firm-level data for the
study. 8970 manufacturing firms in Shanghai are extracted from the database, including the data items
of firm name, address, two-digit code, total asset, fixed asset, inventory, employees, annual output,
profit, etc. Fixed assets mainly consist of buildings, equipment and furniture for production. Inventory
mainly consists of raw materials, semi-finished and finished goods. The individual firms with
two-digit code are subsequently divided into IND1~IND5 classes according to industrial classification
in HAZUS-MH system [32], in which the flood depth-damage curves can be utilized for the physical
damage assessment. In addition, based on the Input-Output Table of Shanghai in 2012, the individual
firms with two-digit code are aggregated into S06~S24 sectors for the ripple loss assessment using
IO model.

Table 2. Classification of manufacturing firms with two-digit code.

IND Classes Two-Digit Manufacturing Divisions Sector Codes in I-O Table

IND1 Heavy

C30 Non-metallic minerals product industry S13

C33 Metalwork industry S15

C34 General-purpose equipment manufacturing industry S16

C35 Specialized facility manufacturing industry S17

C36 Automotive Manufacturing; C37 Railway, marine, aerospace
and other transportation equipment manufacturing S18

C42 Processing of discarded resources, and waste and scrap
recovery S23

C43 Metal products, machinery and equipment repair industry S24

IND2 Light

C17 Textile industry S07

C18 Manufacturing industry of textile costumes, shoes, and caps;
C19 Manufacturing industry of leather, fur, feather (cloth with soft
nap) and their products

S08

C20 Wood processing and manufacturing industry of wood,
bamboo, rattan, palm, and straw-made articles; C21 Cabinetmaking
industry

S09

C22 Papermaking and paper product industry; C23 Printing
industry and reproduction of record media; C24 Manufacturing
industry for culture, education and sports goods

S10

C38 Electric machinery and equipment manufacturing industry S19

C41 Other manufacturing industries S22

IND3
Food/Drugs/Chemicals

C13 Manufacturing of agricultural and non-staple foodstuff; C14
Foodstuff manufacturing industry; C15 Beverage manufacturing
industry; C16 Tobacco industry

S06

C25 Petroleum processing, coking and nuclear fuel manufacture S11

C26 Chemical feedstock and chemical manufacturing industry; C27
Medicine manufacturing industry; C28 Chemical fiber
manufacturing industry; C29 Rubber and plastic production
industry

S12

IND4
Metals/Minerals/Processing

C31 Ferrous metal smelting and extrusion; C32 Non-ferrous
smelting and extrusion S14

IND5 High Technology
C39 Manufacturing industry of communication equipment,
computers and other electronic equipment S20

C40 Manufacturing industry of instruments and meters S21
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2.3. Integrated Assessment Framework

From the perspective of disaster impact propagation in industrial system, this study aims to
establish a bottom-up integrated modeling framework to sequentially evaluate the physical damage to
industrial facilities of individual firms, the production capacity loss (or business interruption loss) to
affected firms/sectors, and the indirect ripple loss in dependent sectors and the entire system (Figure 2).
Based on this framework, we can reveal the transfer and amplification effects of economic loss from
the local individual firms to the entire industrial system, and identify the most vulnerable/critical
nodes for disaster risk prevention.
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2.4. Methods

2.4.1. Flood Hazard Scenario

Currently, the DINAS-COAST Extreme Sea Levels (DCESL) dataset [33] and the Global Tide
and Surge Reanalysis (GTSR) dataset [34] roughly estimated the extreme sea levels and inundation
scenarios of several return periods at a global scale, which covers the coastal areas of Shanghai.
In contrast, some other studies simulated the inundation scenarios of storm floods in Shanghai at a
precise scale [20,29]. In Ke’s study [20], annual maximum water levels under different return periods
(50 year, 100 year, 200 year, 500 year, 1000 year and 10,000 year) at the Wusongkou, Huangpu Park
and Mishidu hydrological stations were first calculated using the generalized extreme value (GEV)
distribution in hydrological frequency analysis. Then, with the datasets of 30 m resolution DEM and
river networks and the boundary conditions of extreme water level, the potential inundation depth
and extent along the Huangpu River were simulated using 1D/2D hydrodynamic models embedded
in the SOBEK software, including 26 scenarios of no floodwall protection, overtopping, breaching, and
failure of floodgates along the river. Considering the spatial scale and the accuracy of the results, we
adopt an inundation scenario of a 1000-year flood without floodwall protection simulated by Ke [20].
China’s State Council requires that the main stream of the Huangpu River through the downtown of
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Shanghai should satisfy the protection standard of a 1000-year flood. However, until now, some parts
of the floodwall along the river still have not reached the specific protection standard [35]. Hence, it is
of practical significance to discuss the potential impacts of the adopted flood scenario.

The inundation map of a 1000-year flood is directly derived from the simulated results of Ke [20]
rather than by running the hydrodynamic models (Figure 3). The map excludes Chongming district
(consisting of Chongming island, Changxing island and Hengsha island) due to the lack of boundary
conditions of the water level at different return periods. Figure 3 shows that the potential inundation
area generally covers the Songjiang and Qingpu districts along the upper reaches of the Huangpu
River and Pudong, as well as the Baoshan and Yangpu districts along the lower reaches, with an
inundation depth of 0–3.0 m and an area of 606.4 km2.

Sustainability 2017, 9, x FOR PEER REVIEW  7 of 19 

2.4. Methods 

2.4.1. Flood Hazard Scenario 

Currently, the DINAS-COAST Extreme Sea Levels (DCESL) dataset [33] and the Global Tide and 

Surge Reanalysis (GTSR) dataset [34] roughly estimated the extreme sea levels and inundation 

scenarios of several return periods at a global scale, which covers the coastal areas of Shanghai. In 

contrast, some other studies simulated the inundation scenarios of storm floods in Shanghai at a 

precise scale [20,29]. In Ke’s study [20], annual maximum water levels under different return periods 

(50yr, 100yr, 200yr, 500yr, 1000yr and 10,000 yr) at the Wusongkou, Huangpu Park and Mishidu 

hydrological stations were first calculated using the generalized extreme value (GEV) distribution in 

hydrological frequency analysis. Then, with the datasets of 30 m resolution DEM and river networks 

and the boundary conditions of extreme water level, the potential inundation depth and extent along 

the Huangpu River were simulated using 1D/2D hydrodynamic models embedded in the SOBEK 

software, including 26 scenarios of no floodwall protection, overtopping, breaching, and failure of 

floodgates along the river. Considering the spatial scale and the accuracy of the results, we adopt an 

inundation scenario of a 1000-year flood without floodwall protection simulated by Ke [20]. China’s 

State Council requires that the main stream of the Huangpu River through the downtown of 

Shanghai should satisfy the protection standard of a 1000-year flood. However, until now, some parts 

of the floodwall along the river still have not reached the specific protection standard [35]. Hence, it 

is of practical significance to discuss the potential impacts of the adopted flood scenario. 

The inundation map of a 1000-year flood is directly derived from the simulated results of Ke [20] 

rather than by running the hydrodynamic models (Figure 3). The map excludes Chongming district 

(consisting of Chongming island, Changxing island and Hengsha island) due to the lack of boundary 

conditions of the water level at different return periods. Figure 3 shows that the potential inundation 

area generally covers the Songjiang and Qingpu districts along the upper reaches of the Huangpu 

River and Pudong, as well as the Baoshan and Yangpu districts along the lower reaches, with an 

inundation depth of 0–3.0 m and an area of 606.4 km2.  

 

Figure 3. Flood inundation scenario (from Ke [20]) and distribution of manufacturing firms. Figure 3. Flood inundation scenario (from Ke [20]) and distribution of manufacturing firms.

2.4.2. Exposure Analysis of the Manufacturing Industry

Exposure analysis identifies elements that are potentially affected by a certain flood scenario [26].
Flood exposure maps can be multi-scale [14]. For example, administrative units and aggregated
statistical datasets are mostly used at country levels. In contrast, land-use or element-based datasets
are often desirable at city levels. In this study, firm-level dataset is applied for exposure mapping,
which can avoid the possible uncertainty caused by spatial data aggregation. Individual firms are
first geocoded with Google API based on their address information and saved as points in an ArcGIS
geodatabase (Figure 3). Spatial distribution of fixed asset, inventory and employees are then mapped
using ArcGIS.

2.4.3. Assessment of Physical Damage and Employee Casualties

Extreme floods may cause physical damage to industrial facilities such as buildings, equipment,
and inventories. One of the main methods for assessing physical damage is the depth-damage curve
that describes the relationship between hazard parameters and resulting relative/absolute damage
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of elements of a certain type or use. HAZUS-MH [36], FLEMO [37], Multicolored Manual [38] and
other disaster risk assessment systems all have developed their own flood depth-damage curves for
manufacturing industry. However, these functions differ in hazard intensity parameters, classification
of elements, resilience factors, spatial scales of application, and loss expression. Unlike FLEMO and
Multicolored Manual which take manufacturing industry as a whole, HAZUS-MH classifies industrial
facilities into IND1 (Heavy), IND2 (Light), IND3 (Food/Drugs/Chemicals), IND4 (Metals/Minerals
Processing), IND5 (High Technology) and IND6 (Construction). This detailed industry classification
gives more consideration to the differences of asset exposure and vulnerability in various sectors.
In addition, damage in HAZUS-MH system is distinguished as Structure (i.e., building damage),
Contents (i.e., equipment damage) and Inventory. Because the post-flood damage data is scarce in
the study area, we extract damage data from the latest HAZUS-MH4.0 and fit the depth-damage
curves of fixed asset (including buildings and equipment) and inventory. The depth-damage curves
are then preliminary calibrated using previous research conducted in Shanghai [19,20]. Next, the
damage ratios of fixed asset and inventory for each affected firm are derived from depth-damage
curves given inundation depth and manufacturing class. Finally, since the single story buildings
are popular in manufacturing sectors, the fixed asset and inventory damage of each firm can be
calculated by multiplying its exposed monetary value with damage ratio, respectively. According to
the GB/T 4754-2011 of China, the construction industry belongs to section E rather than to section C
(the manufacturing industry). Therefore, the damage curve of IND6 is not included in this study.

Extreme floods would also cause employee casualties and labor shortages. Jonkman, et al. [23]
developed an empirical exponential function between casualty probability and inundation depth
utilizing post-flood survey data in the Netherlands, the UK, the USA and Japan, which can be used to
assess the potential employee casualties (Equation (1)).

F(h) = e
h−5.58

0.82 0 ≤ h ≤ 5.58 (1)

where h is inundation depth (unit: m), e is the natural constant, F(h) is casualty probability.

2.4.4. Production Capacity Loss Assessment

Asset damage and labor shortage would further lead to stagnation of production activities and
drop of production capacity. Owing to the marginal productivity of input asset and labor, physical
damage does not necessarily equal to resulting output loss. Kajitani and Tatano [39], and Yang, et al. [40]
developed the empirical production capacity loss ratio (PCLR) models or functional fragility curves
for several industrial sectors using firm-level survey data after a certain disaster event. However,
these models need to be further verified with large sample size. Koks, et al. [14] established the
relationships between output (i.e., value added), capital (i.e., depreciation of fixed asset) and labor
(i.e., payment of employees) of different industrial sectors from I-O table by assuming a Cobb-Douglas
function with constant returns-to-scale. In this study, in view of the returns-to-scale of individual
firms, Cobb-Douglas production functions [41] of IND1~IND5 classes are first developed using a
firm-level dataset to simulate the production process that transforms asset and labor factors into the
final products (Equation (2)).

Q = CKαLβ (2)

where Q is the annual output value of individual firms (unit: ten thousand CNY), K is the asset value
of individual firms including fixed asset value and inventory value (unit: ten thousand CNY), L is the
number of employees of individual firms (unit: person), C is the comprehensive technical coefficient,
and α and β are the output elastic coefficients.

Then, using the following Cobb-Douglas function (Equation (3)), we transform the direct damage
of asset and labor to output loss for each firm according to IND1~IND5 classes.

∆Q = C∆Kα∆Lβ (3)
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where ∆Q is the annual output loss of individual firms (unit: ten thousand CNY), ∆K and ∆L are
damages of asset (unit: ten thousand CNY) and labor (unit: person), and ∆K consists of fixed asset and
inventory damages. For individual firms, annual output loss is the inoperable part of normal annual
output, i.e., production capacity loss. Given it needs T years to recover to normal output level, the
business interruption loss can be simply expressed as ∆Q × T.

Finally, the annual output losses of affected individual firms are aggregated according to
IND1~IND5 manufacturing classes and S06~S24 sectors, respectively.

2.4.5. Ripple Loss Assessment

The drop of production capacity in the manufacturing industry would indirectly trigger ripple
loss among dependent industries. The main methods to estimate ripple loss include the IO model [42],
CGE model [43,44], Social accounting matrix model (SAM) [45] and Adaptive regional input-output
model (ARIO) [22,46]. The IO model is widely used for its simplicity. The CGE model overcomes the
limitations of the IO model such as linearity assumption, rigid structure with respect to input and
import substitutions, lack of explicit resource constraints, and lack of responses to price changes [13,47].
The SAM model is similar to the IO model, while is rarely applied for the availability of SAM tables [48].
ARIO is a hybrid IO model with CGE characteristics, which allows for production bottlenecks and
rationing. In this study, considering the availability of input parameters and the simplicity of its
implementation, the IO model is performed to calculate the system-wide ripple loss with the above
estimated annual output losses of S06~S24 as input (Table 3).

Table 3. General structure of I-O table.

Input Sectors Output Sectors
Final Demand Total Output

Sector 1 . . . Sector j . . . Sector n

Sector 1 X11 X1j X1n Y1 Q1
. . .

Sector i Xi1 Xij Xin Yi Qi
Sector j Xj1 Xjj Xjn Yj Qj

. . .
Sector n Xn1 Xnj Xnn Yn Qn

Value added Z1 Zj Zn
Total outlays Q1 Qj Qn

According to Table 3, direct consumption coefficient (i.e., input coefficient) aij is defined as the
input required from the ith sector to produce one unit of production in the jth sector, and is expressed
as Equation (4). aijs constitute matrix A.

aij = Xij/Qj (i, j = 1, 2, . . . , n) (4)

The full demand coefficient (i.e., inverse matrix coefficient) bij indicates how much production
will be directly and indirectly induced in the ith sector by increasing one unit of final demand in the
jth sector. bijs forms matrix B. The relationship between B and A is shown in Equation (5).

B = (I − A)−1 (5)

where I is an identity matrix.
Given the output loss in the jth sector is ∆Qj, the decrease of final demand in the jth sector (∆Yj)

is expressed in Equation (6).

∆Yj = ∆Qj/bjj (6)
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The output reduction in the ith sector (∆Qij) triggered by the decrease of final demand in the jth
sector (∆Yj) is expressed as Equation (7).

∆Qij = bij × ∆Yj (7)

Extreme floods may directly affect j (j = 1, 2, . . . n) manufacturing sectors and indirectly trigger
ripple loss to other i (I = 1, 2, . . . m) industrial sectors. From the column orientation of I-O table, the
indirect ripple loss triggered by the jth manufacturing sector (∆Q0j) is calculated with Equation (8).

∆Q0j =
m

∑
i=1

∆Qij (8)

From the row orientation of I-O table, the indirect ripple loss to the ith sector (∆Qi0) is expressed
as Equation (9).

∆Qi0 =
n

∑
j=1

∆Qij (9)

The indirect ripple loss to the entire industrial system (∆Q0) is obtained from Equation (10).

∆Q0 =
n

∑
j=1

∆Q0j =
m

∑
i=1

∆Qi0 (10)

3. Results

3.1. Exposure of the Manufacturing Industry

It is calculated that the total asset value of the 8970 firms in Shanghai is about US $424 billion
(including fixed asset of US $88 billion and inventory of US $61 billion), the total number of employees
is around 4.2 million, and the annual gross output is approximate US $435 billion. The spatial
distribution of fixed asset, inventory, and employees are thematically mapped at the aggregated town
level (Figure 4).Sustainability 2017, 9, x FOR PEER REVIEW  11 of 19 
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Figure 4 shows that assets and employees are mostly concentrated in the suburban districts of
Pudong, Songjiang, Minhang, Baoshan, Jiading, Fengxian, Qingpu, and Jinshan. The coefficients of
variation (CV) of fixed asset, inventory, employee at town level are calculated as 2.35, 1.94 and 1.58,
respectively. This means that fixed assets are the most spatially clustered, while employees tend to
be relative evenly distributed. Furthermore, annual gross output, fixed asset, inventory and number
of employees in the towns where major industrial development zones lie are computed to be about
78.7%, 67.4%, 62.8% and 48.9% of the total manufacturing industry, respectively. These percentages
imply that industrial zones play a key role in the regional manufacturing industry, and fixed assets
and inventories are more highly concentrated in these major industrial zones than employees.

Sectoral distribution of fixed asset, inventory and employees are then calculated for the top 10
sectors in terms of annual gross output. Table 4 shows that theses 10 sectors account for a large share
of annual gross output, fixed asset, inventory and employees in the entire manufacturing industry.
However, individual sectors exhibit different compositions of these shares. For example, C39 has high
percentages for all the three input factors while C25 has low shares for all the three. C36, C26 and
C31 are characterized with a high percentage of fixed assets, and medium percentages of inventory
and employees.

Table 4. Sectoral distribution of gross annual output, asset and employees (unit: %).

Two-Digit
Divisions

Percentage of Annual
Gross Output

Percentage of
Fixed Asset

Percentage of
Inventory

Percentage of
Employee

C39 18.03 12.44 11.05 11.79
C36 16.01 11.54 7.24 7.32
C26 8.67 13.10 6.91 6.26
C34 8.28 9.17 14.82 11.28
C38 7.22 5.61 7.72 9.68
C25 5.84 3.97 3.78 0.69
C31 5.20 11.71 6.39 1.35
C35 3.57 3.73 7.12 5.81
C33 3.17 3.38 3.58 7.17
C29 2.97 3.74 2.97 6.80
Sum 78.96 78.39 71.59 68.13

3.2. Physical Damage and Employee Casualties

Based on the data extracted from HAZUS-MH, the depth-damage curves of fixed asset
(including buildings and equipment) and inventory for IND1~IND5 are first developed and calibrated,
respectively (Figure 5). From Figure 5a, the damage curves of fixed assets for all manufacturing classes
present a trend of sharp rises in the inundation depth of 0~1.5m and then a gentle deceleration with
further increases of inundation depth. When inundation depth rises to 1.5m, the damage ratio of fixed
asset would reach 0.66 for IND3 and IND5, 0.5 for IND2, 0.47 for IND1, and 0.4 for IND4. This means
that IND3 and IND5 are more vulnerable to floods than other classes in terms of fixed assets. Figure 5b
shows similar trends to Figure 5a except for its much higher damage ratios in the inundation depth of
0~1.5m. At the inundation depth of 1.5 m, the damage ratio of inventory would reach 0.8 for IND3
and IND5, 0.62 for IND2, 0.55 for IND1, and 0.5 for IND4, respectively. It indicates that inventory is
more likely to get damaged than fixed assets in this depth range.
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Figure 5. Flood depth-damage curves for IND1~IND5 classes.

By combining the flood inundation map, the exposure maps of asset and employees,
the depth-damage curves of fixed asset and inventory and the depth-casualty function, the potential
direct asset damage and employee casualties of individual firms are estimated and mapped using
kernel density function in ArcGIS (Figure 6). Figure 6a,b show that extreme floods cause serious
damage to manufacturing firms in the Songjiang, Pudong and Baoshan districts, as well as some
minor damage in the Jiading, Minhang and Qingpu districts. Several damage hotspots are found
in and around key industrial development zones such as Songjiang Industrial Zone, Jinqiao Export
Processing Zone, Zhangjiang Hi-Tech Park, Waigaoqiao Free Trade Zone, Baoshan Iron & Steel Base,
and Baoshan City Industrial Park. High levels of inundation depth, high density of asset exposure,
and water-susceptible industrial structures would jointly contribute to the potential serious damage
in these industrial zones. For example, in Songjiang Industrial Zone, fixed asset and inventory per
unit are calculated to be US $0.11 billion/km2 and US $0.06 billion/km2, and the simulated average
inundation depth is up to 1.26m. In addition, hardware manufacturing firms of computers, smart
phones and communication equipment are extensively located in the zone, which are very susceptible
to floods according to Figure 5. Figure 6c indicates that potential employee casualties also concentrate
in the industrial development zones mentioned above. However, the spatial pattern of employee
casualties presents a lower level of divergence than that of asset damage, which is mainly related to
the relative balanced-distribution of employees among sectors and regions.Sustainability 2017, 9, x FOR PEER REVIEW  13 of 19 
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Finally, the direct damage of affected individual firms is aggregated based on IND1~IND5 classes
(Table 5). As a whole, extreme floods would directly affect 2166 manufacturing firms and cause about
fixed asset damage of US $12 billion, inventory damage of US $9 billion, and 8,513 employee casualties,
accounting for 24.2%, 13.6%, 14.8% and 0.2% of the total, respectively. The fixed asset damage and
inventory damage can be collectively called asset damage (∆K in Table 5).

Table 5. Estimation of asset damages and employee casualties of IND1~IND5 classes.

IND Classes Affected Firms
Fixed Asset Damage

(billion USD)
Inventory Damage

(billion USD)
Employee
Casualties

∆K ∆L

IND1 724 2.84 1.80 2676
IND2 515 0.77 0.75 1808
IND3 314 1.85 2.40 1003
IND4 420 4.68 2.39 1437
IND5 193 1.85 1.54 1589
Total 2166 11.99 8.88 8513

3.3. Production Capacity Loss

With Equation (2), the Cobb-Douglas functions between annual output (Q), asset (K), and
employees (L) of IND1~IND5 manufacturing classes are constructed after eliminating the abnormal
firm samples. Afterwards, the asset damage (∆K) and employee casualties (∆L) are taken as input to
the Cobb-Douglas functions to calculate the annual output loss (∆Q) for each affected individual firm.
The estimated annual output losses (i.e., production capacity loss) of individual firms are then mapped
using kernel density function in ArcGIS (Figure 7) and aggregated into IND1~IND5 classes (Table 6).
Table 6 lists the coefficients (C, α, and β) and R2 of developed Cobb-Douglas functions, as well as the
estimated production capacity loss (∆Q) of IND1~IND5 classes.

From Table 6, the production capacity loss of affected manufacturing firms adds up to about US
$23 billion, accounting for 5.3% of the annual industrial gross output of US $435 billion in Shanghai.
If excluding labor input, the ratio of ∆Q and ∆K of IND1~IND5 classes is further calculated to reveal
the amplification effect from physical damage of input factors to production capacity loss (see Table 6).
The ∆Q/∆K ratio is less than 1 for IND1 and IND4, meaning these two manufacturing classes do not
have the amplification effect. The ratio is greater than 1 for IND3 and IND5, indicating the amplification
effect of the two manufacturing classes is significant. The main reason is that different manufacturing
classes have different asset productivity ratios (the ratio of annual output to total asset). The average
asset productivity ratios of IND1~IND5 classes in Shanghai are calculated to be 0.83, 1.11, 1.19, 0.87
and 1.45, respectively.

Table 6. Coefficients and R2 of Cobb-Douglas functions and estimated production capacity loss of
IND1~IND5 classes.

IND Classes C α β R2 ∆Q (billion USD) ∆Q/∆K

IND1 0.619 0.921 0.184 0.808 3.73 0.80
IND2 0.621 0.882 0.298 0.716 1.63 1.07
IND3 0.636 0.947 0.229 0.723 5.94 1.40
IND4 0.488 0.896 0.276 0.816 5.11 0.72
IND5 0.645 1.037 0.079 0.897 6.65 1.96

Figure 7 shows that the hot spots of severe production capacity loss still lie in the key industrial
development zones mentioned above. However, the ∆Q/∆K ratios are quite different from each other
due to each zone’s specific industrial structure. The ratios of Songjiang Industrial Zone, Zhangjiang
Hi-Tech Park, Jinqiao Export Processing Zone, Baoshan Urban Industrial Park, and Baoshan Iron &
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Steel Base are calculated as 2.24, 1.92, 1.25, 0.95 and 0.89, respectively. Taking Songjiang Industrial
Zone as an example, asset value and annual output value of C39 account for 63.79% and 77.05% of the
total. Its industrial structure dominated by IND5 would lead to a significant amplification effect from
asset damage to annual output loss.
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3.4. Ripple Loss Among Dependent Industrial Sectors

The aggregated annual output losses of S06~S24 are also derived from the estimated annual
output losses of individual firms and used as input (∆Q) to IO model.

Using equation (8), the indirect ripple loss triggered by each damaged manufacturing sector
is estimated (Table 7). In Table 7, b0j is the column total of inverse matrix coefficients related to
the jth manufacturing sector, representing the output increment of the entire industrial system with
one unit of final demand in the jth manufacturing sector. b0j varies from 2.50 to 5.09 in the study
area, indicating that manufacturing sectors have strong linkage effects in regional industrial system.
The manufacturing sectors with high b0j such as S20 (Communication equipment, computers and
other electronic equipment), S19 (Electric machinery and equipment manufacturing industry), S18
(Transportation equipment industry), S16 (General-purpose equipment manufacturing industry) and
S17 (Specialized facility manufacturing industry) are not only the leading and driving forces of regional
economic growth, but also the most vulnerable and critical nodes for disaster risk prevention. Much
more attention should be paid to the system-wide ripple loss triggered by direct damage of these
critical manufacturing sectors. Table 7 also implies that the ripple losses triggered by S20, S14 (Metal
smelting and calendaring products), S12 (Chemical products), S11 (Petroleum, coking and nuclear
fuel processing products), S18, S19, S16, S17, and S06 (Food and tobacco) are the largest owing to their
greater annual output losses (∆Q) and higher b0j values.
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Table 7. Estimation of ripple loss triggered by damaged manufacturing sectors. (unit: billion USD).

Sector Codes ∆Q ∆Y boj Ripple Loss Sector Codes ∆Q ∆Y boj Ripple Loss

S06 0.99 0.74 2.50 1.85 S16 0.88 0.75 3.86 2.90
S07 0.07 0.06 3.77 0.23 S17 0.68 0.65 3.70 2.41
S08 0.24 0.21 3.36 0.71 S18 1.86 1.31 3.92 5.14
S09 0.13 0.12 3.60 0.43 S19 0.97 0.84 4.00 3.36
S10 0.27 0.25 3.72 0.93 S20 6.26 3.63 5.09 18.48
S11 1.87 1.40 3.11 4.35 S21 0.38 0.36 3.49 1.26
S12 3.46 1.98 3.68 7.29 S22 0.02 0.01 3.31 0.03
S13 0.37 0.33 2.97 0.98 S23 0.06 0.03 4.03 0.12
S14 3.93 2.19 3.45 7.56 S24 0.03 0.02 3.36 0.07
S15 0.59 0.49 3.54 1.73 Total 23.06 15.37 59.80

The ripple loss to each related industry is also estimated with equation (9) (Table 8). In Table 8,
bi0 is the row total of inverse matrix coefficients associated with the ith industry and stands for its
output increment when all related manufacturing sectors simultaneously increase one unit of final
demand. From Table 8, bi0 of the manufacturing industry (C) is up to 49.42 because sectors within the
manufacturing industry are highly dependent, and are then followed sequentially by the industries of
B, D, L, and G.

Table 8. Estimation of ripple loss among dependent industries (unit: billion USD).

Indirect Affected Industries bi0 Ripple Loss Indirect Affected Industries bi0 Ripple Loss

A Farming, forestry, animal
husbandry and fishery 0.27 0.16 K Realty business 0.48 0.37

B Mining industry 5.38 5.55 L Leasehold and business service
industry 2.55 1.90

C Manufacturing industry 49.42 43.76 M Scientific research, technical service
and geologic examination industry 0.09 0.07

D Production and supply of electric
power, gas and water 2.62 1.97 N Water conservancy, environment

and public institution management 0.01 0.01

E Construction industry 0.07 0.05 O Neighborhood services and other
service industry 0.28 0.21

F Wholesale and retail trade 1.89 1.67 P Education 0.04 0.03

G Traffic, storage and mail business 2.36 1.74 Q Sanitation, social security and
social welfare industry 0.01 0.01

H Accommodation and food industry 0.35 0.25 R Cultural, physical and
entertainment industry 0.03 0.02

I Information transfer, computer
service and software industry 0.83 0.59 S Public administration and social

organization 0.03 0.03

J Finance industry 1.76 1.41 Total 59.80

Using Equation (10), the system-wide ripple loss is estimated to be about US $60 billion which is
2.6 times of the annual output loss of manufacturing industry. It clearly shows a significant multiplier
effect from the production capacity loss to ripple loss. Hence, attention should be paid not only to
the direct damage and production capacity loss within manufacturing industry but also to the ripple
impacts on related industries.

4. Discussions

How to reasonably simulate direct loss and indirect loss as a function of increasing hazard
intensity is highly concerned by the academic community. In this study, an integrated framework is
proposed for assessing physical damage, production capacity loss and inter-sector ripple loss coupling
depth-damage curve, Cobb-Douglas production function and IO model.

The integrated methodology in this paper presents the following improvements over previous
studies. First, detailed firm-level census data rather than land use or administrative region data are
applied to exposure analysis and mapping, which eliminates the assumption of evenly distribution
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of asset value within a certain land use type. It also avoids the disaggregation of economic statistics
and the likely consequent uncertainty. Second, instead of taking the manufacturing industry as a
whole, classified depth-damage curves are developed to assess the physical damage of fixed assets
and inventory for different manufacturing classes. This reveals the differences of asset exposure and
vulnerability of various sectors within the manufacturing industry. Third, production capacity loss
(i.e., flow loss) rather than physical damage (i.e., stock loss) is used as an input to the IO model,
which takes the marginal productivity of input factors into consideration. Classified Cobb-Douglas
production functions are applied to transform the physical damages of asset and labor into production
capacity loss. Cobb-Douglas functions are built based on individual firm data from which differences
in returns-to-scale at firm level are concerned. This approach overcomes the weakness of constant
returns-to-scale assumption [14] Finally, IO model is utilized in this study not only to evaluate the
system-wide indirect ripple loss triggered by affected manufacturing industry, but also to identify
the most vulnerable and critical sectors (nodes) within the regional industrial networks for disaster
risk prevention.

However, there are still some uncertainties and problems to be studied in the future. First,
the damage curve is recognized as the primary source of uncertainty in flood damage estimation [49].
Because of the lack of detailed and reliable post-flood loss data in the study area, the depth-damage
curves used for physical damage assessment are mainly developed from HAZUS-MH, which need
to be further localized and calibrated in the future. Second, Cobb-Douglas function is performed to
transform physical damage into annual output loss. Different understandings and parameter settings
in the Cobb-Douglas function may lead to uncertainty in annual output loss estimation. It is essential
to develop optimal production functions for different sectors and regions based on their specific
characteristics. Third, IO model and CGE model are commonly used for the indirect system-wide
ripple loss assessment. The estimated ripple loss obtained from IO model can be further compared
and verified with the CGE model.

5. Conclusions

From the perspective of ex-ante risk analysis, we develop an integrated multi-process
and multi-scale assessment methodology for economic loss evaluation caused by floods in the
manufacturing industry. Given a hazard intensity scenario, the resulting physical damage, production
capacity loss and inter-sector ripple loss can be estimated successively.

The results show that, given no floodwall protection, a scenario of a 1000-year storm flood would
cause approximate direct asset damages of US $21 billion to affected manufacturing firms, including
fixed asset damage of US $12 billion and inventory damage of US $9 billion. The damage hotspots are
found in and around several key industrial development zones, due to their high level of inundation
depth, high density of asset exposure, and water-susceptible industrial structure. The shortage of input
productive factors of asset and labor would further lead to production capacity loss of US $25 billion to
affected manufacturing firms/sectors. During the transformation from physical damage to production
capacity loss, the amplification ratio varies across manufacturing classes and industrial development
zones with specific structures. In addition, the affected manufacturing industry would indirectly result
in ripple losses of US $60 billion among dependent sectors, which implies a significant multiplier
effect. Our results have important implications for reasonable cost-benefit analysis of structural flood
control measures such as dike upgrading and tidal barrier construction of Huangpu River, as well as
for manufacturing firm location planning and resilience strategy decision-making.
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21. Zeleňáková, M.; Gaňová, L.; Purcz, P.; Horský, M.; Satrapa, L. Determination of the potential economic flood
damages in Medzev, Slovakia. J. Flood Risk Manag. 2018, 11, S1090–S1099. [CrossRef]

22. Wu, J.; Li, N.; Hallegatte, S.; Shi, P.; Hu, A.; Liu, X. Regional indirect economic impact evaluation of the 2008
Wenchuan Earthquake. Environ. Earth Sci. 2012, 65, 161–172. [CrossRef]
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