Optimization of Land-Use Structure Based on the Trade-Off Between Carbon Emission Targets and Economic Development in Shenzhen, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Calculation Methods for Carbon Emissions
2.3.1. Carbon Emissions of Energy Consumption
2.3.2. Carbon Emissions of Industrial Processes
2.3.3. Carbon Emissions of Waste
2.3.4. Carbon Emissions from Forestry, Agriculture, and Other Land-Use Types
2.4. Assignment of Carbon Emissions to Various Land-Use Types
2.5. Economic Benefit Coefficients of the Various Land-Use Types
2.6. MOLP Model Development
3. Results
3.1. Carbon Emissions Composition Characteristics of Shenzhen in 2016
3.2. Comparison of Carbon Emissions and Economic Benefit Coefficients of Various Land-Use Types
3.3. Optimization of Land-Use Structure Based on the MOLP Model
4. Discussion
4.1. Suggestions for Reducing Carbon Emissions from the Optimal Scenario
4.2. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef] [Green Version]
- United Nations Climate Change Annual Report 2017. Available online: http://unfccc.int/resource/annualreport/index.html#0 (accessed on 6 August 2018).
- Green, F.; Stern, N. China’s changing economy: Implications for its carbon dioxide emissions. Clim. Policy 2017, 17, 423–442. [Google Scholar] [CrossRef]
- Fang, X.N.; Zhou, B.B.; Tu, X.Y.; Ma, Q.; Wu, J.G. “What kind of a science is sustainability science?” an evidence-based reexamination. Sustainability 2018, 10, 1478. [Google Scholar] [CrossRef]
- Feng, K.S.; Davis, S.J.; Sun, L.X.; Li, X.; Guan, D.B.; Liu, W.D.; Liu, Z.; Hubacek, K. Outsourcing CO2 within China. Proc. Natl. Acad. Sci. USA 2013, 110, 11654–11659. [Google Scholar] [CrossRef]
- Lund, H.G. Guide for classifying lands for greenhouse gas inventories. J. For. 2006, 104, 211–216. [Google Scholar]
- Rounsevell, M.D.A.; Reay, D.S. Land use and climate change in the UK. Land Use Policy 2009, 26, S160–S169. [Google Scholar] [CrossRef]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Le Quéré, C.R.; Moriarty, R.M.; Andrew, G.P.; Peters, P.; Ciais, P.; Friedlingstein, P.; Jones, S.D.; Sitch, S.; Tans, P.; Arneth, A.; et al. Global Carbon Budget 2014. Earth Syst. Sci. Data 2015, 7, 47–85. [Google Scholar] [CrossRef]
- Melton, J.R.; Arora, V.K. Sub-grid scale representation of vegetation in global land surface schemes: Implications for estimation of the terrestrial carbon sink. Biogeosciences 2014, 11, 1021–1036. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landsc. Urban Plan. 2011, 103, 83–93. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Zhao, R.Q.; Zhang, M.; Wu, C.Y. Land use, total carbon emissions change and low carbon land management in coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Mainuddin, M.; Gupta, A.D.; Onta, P.R. Optimal crop planning model for an existing groundwater irrigation project in Thailand. Agric. Water Manag. 1997, 33, 43–62. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Jalili, K.; Nikkami, D. Land use optimization in watershed scale. Land Use Policy 2009, 26, 186–193. [Google Scholar] [CrossRef]
- Wang, H.R.; Gao, Y.Y.; Liu, Q.; Song, J.X. Land use allocation based on interval multi-objective linear programming model: A case study of Pi county in Sichuan province. Chin. Geogr. Sci. 2010, 20, 176–183. [Google Scholar] [CrossRef]
- Rao, Y.X.; Zhou, M.; Ou, G.L.; Dai, D.Y.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable land-use management in Semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Bourgoin, J.; Castella, J.C.; Hett, C.; Lestrelin, G.; Heinimann, A. Engaging local communities in low emissions land-use planning: A case study from Laos. Ecol. Soc. 2013, 18, 9. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in Guangzhou as an example. Sci. Total Environ. 2018, 635, 26–34. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Urbanization impact on carbon emissions in the Pearl River Delta region: Kuznets curve relationships. J. Clean. Prod. 2018, 180, 514–523. [Google Scholar] [CrossRef]
- Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn/ (accessed on 26 October 2018).
- Shenzhen Statistics. Available online: http://www.sztj.gov.cn/ (accessed on 26 October 2018).
- China Emission Accounts and Datasets. Available online: http://www.ceads.net/ (accessed on 26 October 2018).
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 26 October 2018).
- Shan, Y.L.; Guan, D.B.; Zheng, H.R.; Ou, J.M.; Li, Y.; Meng, J.; Mi, Z.F.; Liu, Z.; Zhang, Q. Data Descriptor: China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.Q. Carbon Cycle of Urban Eco-Economic System and Its Regulation through Land Use Control: A Case Study of Nanjing City. Ph.D. Dissertation, Nanjing University, Nanjing, China, 2011. [Google Scholar]
- Tao, Z.P. Ecological Burden and Ecological Footprint: The Concept of Weight and Area for Sustainable Development; Economic Science Press: Beijing, China, 2003. [Google Scholar]
- Lai, L. Carbon Emission Effect of Land Use in China. Ph.D. Dissertation, Nanjing University, Nanjing, China, 2010. [Google Scholar]
- Chen, J.F.; Chang, K.T.; Karacsonyi, D.; Zhang, X.L. Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat Int. 2014, 43, 61–71. [Google Scholar] [CrossRef]
- Shenzhen Wastewater Treatment Plant Situation Table in 2016. Available online: http://swj.sz.gov.cn/zwfw/bmxx/pshjs/psgltj/201705/t20170517_6708459.htm (accessed on 2 August 2018).
- Announcement of the National Environmental Protection Agency on Issuing the “Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant”. Available online: http://kjs.mee.gov.cn/hjbhbz/bzwb/shjbh/swrwpfbz/200307/t20030701_66529.shtml (accessed on 2 August 2018).
- Municipal Environmental Status Bulletin of Shenzhen in 2016. Available online: http://www.szhec.gov.cn/xxgk/tjsj/ndhjzkgb/201703/t20170331_6109219.htm (accessed on 2 August 2018).
- Han, X.D.; Zhou, Y.; Wang, S.X.; Liu, R.; Yao, Y. GDP specialization in China based on nighttime imagery. J. Geo-Inf. Sci. 2012, 14, 128–136. (In Chinese) [Google Scholar]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Fang, J.Y.; Yu, G.R.; Liu, L.L.; Hu, S.J.; Chapin, F.S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, S.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, J.; Tang, Y.Z. Restructuring and repositioning Shenzhen, China’s new mega city. Prog. Plan. 2010, 73, 209–249. [Google Scholar] [CrossRef]
Land Use Types | Energy Consumption | Industrial Process | Waste | Forestry, Agriculture, Land Use, and LUCC | |
---|---|---|---|---|---|
Land Use and LUCC | Animals | ||||
Farmland | Agriculture | — | — | Vegetation and Soil | — |
Woodland | Forestry | — | — | Vegetation and Soil | — |
Grassland | Animal husbandry | — | — | Vegetation and Soil | Animals |
Water and shallows | Fishery | — | — | Soil | — |
Built-up area | Industry, construction, wholesale and retail trade and catering, residential consumption, transport, storage, postal and telecommunication services, other services | Industrial production | Waste water and solid garbage from industry and household | Vegetation and Soil | Population |
Other land | — | — | — | Soil | — |
Constraints | 2020 | 2025 | ||
---|---|---|---|---|
Lower Limit (hm2) | Upper Limit (hm2) | Lower Limit (hm2) | Upper Limit (hm2) | |
Total area constraints | - | 201,219.00 | - | 205,388.65 |
Farmland constraints | 2688.00 | 3961.06 | 2318.62 | 3961.06 |
Wood land constraints | 78,448.61 | - | 80,101.57 | - |
Grass land constraints | 2125.00 | 2500.00 | 2250.00 | 2625.00 |
Water and shallows constraints | 14,473.87 | 20,669.00 | 15,501.75 | 22,519.80 |
Built-up area constraints | 94,525.25 | 100,400.00 | 102,709.04 | 111,380.60 |
Other land constraints | 3168.00 | - | 2217.60 | - |
Transfer in | ||||||
Grassland | Farmland | Built-up Area | Woodland | Other Land | Water and Shallows | |
Grassland | 49.26 | 390.57 | 12.31 | 1.90 × 10−3 | 5.90 | |
Farmland | 6.70 × 10−3 | 383.33 | 22.57 | 2.00 × 10−5 | 4.85 | |
Built-up area | 1.61 | 132.63 | 689.01 | 2.97 | 18.66 | |
Woodland | 6.50 × 10−3 | 878.23 | 2147.96 | 6.40 × 10−3 | 21.41 | |
Other land | 4.80 × 10−3 | 57.91 | 1296.29 | 20.83 | 1.42 | |
Water and shallows | 6.50 × 10−3 | 117.21 | 536.56 | 25.43 | 6.30 × 10−3 | |
Transfer out | ||||||
Grassland | Farmland | Built-up Area | Woodland | Other Land | Water and Shallows | |
Grassland | −6.70 × 10−3 | −1.61 | −6.50 × 10−3 | −4.80 × 10−3 | −6.50 × 10−3 | |
Farmland | −49.26 | −132.63 | −878.23 | −57.91 | −117.21 | |
Built-up area | −390.57 | −383.33 | −2147.96 | −1296.29 | −536.56 | |
Woodland | −12.31 | −22.57 | −689.01 | −20.83 | −25.43 | |
Other land | −1.90 × 10−3 | 0.00 | −2.97 | −6.40 × 10−3 | −6.30 × 10−3 | |
Water and shallows | −5.90 | −4.85 | −18.66 | −21.41 | −1.42 |
Land type | Area in 2016/hm2 | Total Carbon Emissions/t | Intensity of Carbon Emissions/t C·hm−2·a−1 |
---|---|---|---|
Farmland | 3961.06 | 20,322.61 | 5.13 |
Woodland | 78,448.62 | −20,540.40 | −0.26 |
Grassland | 2401.57 | 53,832.73 | 22.42 |
Water and shallows | 14,473.87 | 15,953.98 | 1.10 |
Built-up area | 96,483.98 | 23,197,153.91 | 240.42 |
Other land | 3960.00 | −30.10 | −0.76 × 10−3 |
Items | 2020 | 2025 | ||||
---|---|---|---|---|---|---|
Natural Scenario | Low Carbon Scenario | Low Carbon Economic Scenarios | Natural Scenario | Low Carbon Scenario | Low Carbon Economic Scenarios | |
Farmland/ha | 3561.93 | 2688.00 | 3961.06 | 3119.09 | 2318.62 | 2608.69 |
Woodland/ha | 77,084.26 | 84,238.88 | 78,448.61 | 75,412.12 | 80,391.64 | 80,101.57 |
Grassland/ha | 2053.72 | 2125.00 | 2125 | 1688.88 | 2250.00 | 2250.00 |
Water and shallows/ha | 13,392.33 | 14,473.87 | 14,473.87 | 12,153.34 | 15,501.75 | 15,501.75 |
Built-up area/ha | 105,363.90 | 94,525.25 | 99,042.46 | 117,621.74 | 102,709.00 | 102,709.00 |
Other land area/ha | 2658.32 | 3168.00 | 3168.00 | 1615.28 | 2217.60 | 2217.60 |
Total area/ha | 201,603.40 | 201,219.00 | 201,219.00 | 203,971.03 | 205,388.65 | 205,388.65 |
Total carbon emissions/t | 25,390,976.21 | 22,781,523.57 | 23,875,621.08 | 28,326,696.36 | 24,752,155.40 | 24,753,719.58 |
GDP/104 Yuan | 20,271.20 | 18,735.68 | 19,605.51 | 21,712.32 | 19,696.99 | 19,768.95 |
Scenario 3—Land Pattern in 2016 | Scenario 3—Scenario 1 | |||
---|---|---|---|---|
2020 | 2025 | 2020 | 2025 | |
Farmland | 0.00 | −1352.37 | 399.13 | −510.4 |
Woodland | −0.01 | 1652.95 | 1364.35 | 4689.45 |
Grassland | −276.57 | −151.57 | 71.28 | 561.12 |
Water and shallows | 0.00 | 1027.88 | 1081.54 | 3348.41 |
Built-up land | 2558.48 | 6225.02 | −6321.44 | −14912.7 |
Other land | −792.00 | −1742.40 | 509.68 | 602.32 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Qiao, R.; Ma, X. Optimization of Land-Use Structure Based on the Trade-Off Between Carbon Emission Targets and Economic Development in Shenzhen, China. Sustainability 2019, 11, 11. https://doi.org/10.3390/su11010011
Han D, Qiao R, Ma X. Optimization of Land-Use Structure Based on the Trade-Off Between Carbon Emission Targets and Economic Development in Shenzhen, China. Sustainability. 2019; 11(1):11. https://doi.org/10.3390/su11010011
Chicago/Turabian StyleHan, Dang, Ruilin Qiao, and Xiaoming Ma. 2019. "Optimization of Land-Use Structure Based on the Trade-Off Between Carbon Emission Targets and Economic Development in Shenzhen, China" Sustainability 11, no. 1: 11. https://doi.org/10.3390/su11010011
APA StyleHan, D., Qiao, R., & Ma, X. (2019). Optimization of Land-Use Structure Based on the Trade-Off Between Carbon Emission Targets and Economic Development in Shenzhen, China. Sustainability, 11(1), 11. https://doi.org/10.3390/su11010011