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Abstract: This study aims to reduce the false alarm rate due to relief displacement and seasonal
effects of high-spatial-resolution multitemporal satellite images in change detection algorithms.
Cross-sharpened images were used to increase the accuracy of unsupervised change detection
results. A cross-sharpened image is defined as a combination of synthetically pan-sharpened
images obtained from the pan-sharpening of multitemporal images (two panchromatic and two
multispectral images) acquired before and after the change. A total of four cross-sharpened images
were generated and used in combination for change detection. Sequential spectral change vector
analysis (S2CVA), which comprises the magnitude and direction information of the difference image
of the multitemporal images, was applied to minimize the false alarm rate using cross-sharpened
images. Specifically, the direction information of S2CVA was used to minimize the false alarm rate
when applying S2CVA algorithms to cross-sharpened images. We improved the change detection
accuracy by integrating the magnitude and direction information obtained using S2CVA for the
cross-sharpened images. In the experiment using KOMPSAT-2 satellite imagery, the false alarm rate
of the change detection results decreased with the use of cross-sharpened images compared to that
with the use of only the magnitude information from the original S2CVA.

Keywords: KOMPSAT-2; cross-sharpening; multitemporal satellite images; sequential spectral
change vector analysis (S2CVA); change detection

1. Introduction

With the launch of various optical satellite sensors, such as KOMPSAT-2/3/3A, WorldView-2/3/4,
Pléiades, and Skysat, remotely sensed satellite images are being increasingly used in different
applications and fields [1]. Change detection is one such remote sensing application. It involves
analyzing a changed area due to disasters, deforestation, hazards, and urban development by
determining differences in the spatial and spectral characteristics among multitemporal satellite
images of the area [2]. Specifically, change detection can be used in sustainable applications in
environmental engineering, ecology, and urban sciences through Earth observations. Change detection
can generally be of the supervised or unsupervised type. Supervised change detection involves
classifying each satellite image and analyzing the change class using classification results [3].
However, it has some drawbacks; for example, high-accuracy classification data are required to
obtain high-confidence change detection results, and user intervention is required when generating
training datasets [4]. Therefore, unsupervised change detection has attracted increased interest in
recent years. In this technique, multitemporal satellite images of the same area are analyzed to detect
the presence or absence of changes without user intervention. Several unsupervised change detection
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methods applicable to satellite images with various spatial resolutions, such as image differencing,
image rationing, image-transformation-based techniques and change vector analysis (CVA), have been
developed [5]. Notably, CVA can be easily applied to various multitemporal satellite images using
the magnitude and direction of the difference between multitemporal images to estimate the changed
area [6]. CVA has also been extended to develop additional techniques. Chen et al. [7] extended CVA
to calculate spectral vector directions in multispectral images. Carvalho Júnior et al. [8] extended
the spectral measures used for remote sensing data analysis to CVA to effectively apply CVA to
multispectral images. Wu et al. [9] demonstrated that subspace-based change detection (SCD) has the
same characteristics as the spectral angle mapper (SAM) and extended SCD to adaptive SCD (ASCD)
and local SCD (LSCD). Bovolo and Bruzzone [10] transformed the magnitude and direction of CVA
into the polar domain and proposed a compressed CVA method (C2VA) to effectively extract the
changed area in polar coordinates. The sequential spectral CVA (S2CVA) technique was developed
to analyze the transition of a changed area and increase the change detection accuracy of CVA and
C2VA [11]. S2CVA uses the same method as C2VA to estimate the magnitude of the spectral change
vector; however, it uses the reference vector to calculate the direction of the spectral change vector.
In S2CVA, the reference vector used to calculate the direction of the spectral change vector is assumed
to be the vector with the highest weight in the spectral change vector, and it is calculated using the
principal component of the spectral change vector.

When pixel-based change detection techniques are applied to satellite images, false alarms often
occur due to the effects of relief displacement and nadir angle differences among multitemporal
images [6]. Such issues are especially common in high-resolution satellite images compared to
low-spatial resolution satellite images [12]. To solve this problem, various change detection algorithms
have been proposed. Im et al. [13] proposed an object-based change detection algorithm using
correlation, slope and intercept image analysis. Object-based Iteratively Reweighted-Multivariate
Alteration Detection (IR-MAD) has been applied to KOMPSAT satellite imagery to increase the change
detection accuracy [14]. Peng and Zhang [15] developed an object-based change detection method
based on the combination of segmentation optimization and multi-feature fusion. Furthermore,
to increase the change detection accuracy, Zhang et al. [16] applied a deep-learning-based change
detection algorithm to multi-spatial resolution remote sensing images. Seo et al. [17] generated a
simulated image based on random forest regression to maintain the radiometric and phenological
homogeneity conditions of multitemporal images. In addition to various change detection algorithms,
cross-sharpening methods provide many advantages for minimizing false alarms in the unsupervised
change detection of high-resolution satellite images. Wang et al. [18] applied an object-based change
detection method using four images generated via cross-sharpening. Byun et al. [19] applied
cross-sharpening techniques using near-infrared (NIR) bands to effectively detect the changed area
in a flood region. Wang et al. [20] confirmed that the change detection accuracy can be increased by
applying the IR-MAD technique to cross-sharpened images.

In this study, we improved the performance of S2CVA using a cross-sharpening technique.
First, we determined how the magnitude information changes when the CVA technique is applied
to a cross-sharpened image. In addition, we reduced the false detection rate in change detection
by integrating the magnitude and direction information of S2CVA based on cross-sharpened
multitemporal images. We applied the proposed method to KOMPSAT-2 satellite images and evaluated
the change detection results. The remainder of this paper is organized as follows. Section 2 explains the
image fusion and cross-sharpening techniques used in this study. Section 3 analyzes the characteristics
of the direction information generated by cross-sharpening in the S2CVA technique and describes
a method to reduce false alarms. Section 4 present the experimental results and discuss the use of
KOMPSAT-2, respectively. Finally, the conclusions are presented in Section 5.
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2. Sharpening

2.1. General Pan-Sharpening

Pan-sharpening is a technique in which a high-spatial-resolution multispectral image is produced
by fusing the spatial properties of a panchromatic image and the spectral properties of a multispectral
image [21]. Pan-sharpening is defined in Equation (1) [22].

M̂Sn = M̃Sn + gn(P− IL), n = 1, . . . , N (1)

where P is a panchromatic image with a high spatial resolution; M̃Sn is the interpolated image with
image size P; gn is the injection gain; IL is a synthetic intensity image with a low spatial resolution;
N is the number of spectral bands; and M̂Sn is the pan-sharpened multispectral image of the nth
band. Pan sharpening can be divided into component substitution (CS)-based and multiresolution
analysis (MRA)-based techniques according to the method of calculating IL in Equation (1) [23].
MRA-based algorithms generate a synthetic intensity image IL by applying a filtering technique
to P and produce a high-frequency image by subtracting IL from the panchromatic image [24].
Unlike MRA-based algorithms, which extract a high-frequency image from the panchromatic image,
CS-based algorithms produce a virtual intensity image IL using weighted combinations of multispectral
images or multiple linear regressions between the panchromatic and multispectral images and extract a
high-frequency image via subtraction from the panchromatic image [25]. One advantage of MRA-based
algorithms is that the possibility of spectral distortion is reduced [26]. However, when the geometric
characteristics between the panchromatic and multispectral images do not match, the spatial details
are relatively low compared with those provided by the CS-based algorithm because aliasing occurs
due to spatial frequency differences [27]. Overall, the CS-based algorithm provides more spatial details
but also more spectral distortion than does the MRA-based algorithm [28].

2.2. Cross-Sharpening

When a change detection method is applied to multitemporal satellite images with a high spatial
resolution and inconsistent geometrical characteristics, unchanged regions will be detected as changed
regions due to geometrical errors and object relief displacement because most change detection
techniques statistically analyze differences in the values of pixels at the same position in images [29].
To minimize change detection errors due to the geometrical characteristics of high-spatial-resolution
satellite images, Wang et al. [18] proposed change detection using cross-sharpening. Cross-sharpening
is a method of generating a fused image pair with similar geometric characteristics using multispectral
and panchromatic images with the same or different acquisition times. It is assumed that a satellite
sensor that simultaneously provides both panchromatic and multispectral images is used to acquire a
multitemporal image for change detection in a study area. When the panchromatic image obtained at
time t1, that is, a point in time before the change, is defined as Pt1, the multispectral image is defined as
Mt1, and the panchromatic and multispectral images obtained at time t2 are respectively defined as Pt2
and Mt2; thus, the fused multispectral image F at each time produced by the specific pan-sharpening
algorithm f is defined as shown in Equation (2).

Ft1t1 = f (Pt1, Mt1), Ft2t2 = f (Pt2, Mt2) (2)

When the nadir angle of Pt1 and Pt2 is different, the spatial positions of some objects, such as
apartments and high-rise buildings, are different due to relief displacement. When performing change
detection using general sharpened images Ft1t1 and Ft2t2, the objects or regions associated with the
abovementioned spatial displacement may be detected as changed regions, and this issue poses a
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problem. Cross-sharpening has been applied to minimize spatial dissimilarities between multitemporal
images caused by nadir angle and relief displacement differences, as defined in Equation (3) [18].

Ft1t2 = f (Pt1, Mt2), Ft2t1 = f (Pt2, Mt1) (3)

In Equations (2) and (3), four cross-sharpened images are generated according to the spatial
characteristics of the panchromatic images used in the cross-sharpening process. For example,
Ft1t1 and Ft2t2, which are general pan-sharpened images generated by Equation (1), will have different
spatial characteristics for each object based on the original high-spatial-resolution multitemporal
panchromatic image. This result occurs because the spatial characteristics of the sharpened images
are affected by Pt1 and Pt2. By contrast, because Ft1t1 and Ft1t2 are sharpened by Pt1, both images
have similar spatial characteristics. These results are the same for Ft2t1 and Ft2t2, and applying
unsupervised change detection to a combination of four cross-sharpened images (Ft1t1, Ft1t2, Ft2t1,
and Ft2t2) can reduce the influence of the geometrical errors that may occur in Ft1t1 and Ft2t2.
Moreover, for effective change detection, the generated cross-sharpened images can be modified
to have similar statistical characteristics by adjusting the histograms of various radiometric calibration
methods [30–34]. In addition, the accuracy of change detection using cross-sharpened images can be
influenced by the pan-sharpening algorithm applied for cross-sharpened image generation.

3. Modified S2CVA Algorithm

3.1. S2CVA

S2CVA is a modified version of C2VA used in the generation of direction information for changed
and unchanged areas. S2CVA is proposed to eliminate information loss caused by the compression
of multispectral information. An advantage of S2CVA is that it can grasp not only the change in area
but also the land cover trends via hierarchical analysis [35]. This method uses all the bands of a given
multispectral image. In addition, S2CVA represents the trend in a region as a 2-D polar coordinate
system that is compressed by the configuration of the magnitude ρ and direction θ. The magnitude ρ

indicates the spectral value of the multitemporal image, and the direction θ is generated based on the
spectral angular distance for a given pixel. ρ and θ are calculated using Equations (4)–(6) [35].

XD = X2 − X1 (4)

ρ =

√√√√ B

∑
b=1

(Xb
D)

2 (5)

θ = arccos[(
B

∑
b=1

(Xb
Drb)/

√√√√ B

∑
b=1

(Xb
D)

2
B

∑
b=1

(rb)
2
)] (6)

where X1 and X2 are multitemporal images, XD is the difference image of the multitemporal images,
Xb

D is the difference image of the bth (b = 1, 2, . . . , B) band, and rb is the bth component of the
reference vector r. The reference vector r is defined as an eigenvector resulting from applying principal
component analysis to XD. Therefore, r is the first eigenvector of the covariance matrix of XD, as given
in Equation (7). A is decomposed into eigenvalues and eigenvectors according to Equation (8) [35].

A = cov(XD) = E[(XD − E[XD])(XD − E[XD])
T] (7)

A·V = V·W (8)

where W is a diagonal matrix in which the eigenvalues are sorted in descending order and V is a
matrix of eigenvectors used to determine the reference vector r. The results of applying the S2CVA
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method to multitemporal images using Equations (4)–(5) comprise the magnitude ρ and direction θ

and can be expressed as a 2-D polar coordinate system, as shown in Figure 1 [35,36].
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In Figure 1, ρmax is the maximum value of ρ and Tρ, the threshold value of ρ, where ρ determines
the change. Liu et al. [35] performed change detection using the ρ value generated by the S2CVA
method and analyzed the land cover changes by classifying the direction θ according to the relevant
values. The experiment indicated that the changed region could be divided into several sectors based
on the range θ value based on the aspect of the changed region.

3.2. Modified S2CVA to Reduce False Alarms Using the Direction Vector for Cross-Sharpened Images

In this study, we improved the change detection performance by reducing false alarms
using the direction calculated by S2CVA. As noted above, the two products of S2CVA, that is,
magnitude and direction, can be used to estimate the primary changed region and analyze changed
area patterns, respectively. When change detection is performed using multitemporal images with
different seasonal characteristics, non-changed vegetation or soil areas may be considered changed
areas [36]. However, this categorization is likely to have a certain direction value based on changes
in the land cover pattern [37]. Therefore, some false alarms can be eliminated by using direction
values when the direction values of these incorrectly categorized areas display a certain pattern.
Cross-sharpened images emphasize the miscategorization of trends based on S2CVA products.
Some areas recognized as false alarms, such as those influenced by seasonal effects, vegetation growth,
and unchanged regions among regions with very high magnitudes, are spectrally distorted in the
cross-sharpened image. Specifically, in these regions, the spectral pattern of the difference image in
S2CVA is similar to the reference vector. Therefore, the changed area can be relatively small in the
direction image. Although changed areas have low direction values, these areas have large magnitudes
and therefore remain changed areas. Thus, the S2CVA directions in the cross-sharpened images can be
used to determine the changed area. The direction vector is assumed to extract the changed region
in a manner similar to the magnitude vector [38], and it can be used as the weight value. To use the
direction vector as a weight for the magnitude vector, the range of the direction vector values must
first be adjusted from 0 to 1, and the cumulative distribution function (CDF) must be applied to adjust
the values:

θCDF = P(X ≤ θ) (9)

where θCDF is the adjusted direction value; P is the probability of X. for all values of direction
information; and X is a random variable with a real range. The adjusted direction vector used as a
weight value for the magnitude vector is given by Equation (10):

ρweighted = ρ·θCDF (10)

where ρweighted is the weighted magnitude vector that, in this study, is used to evaluate the performance
of unsupervised change detection.
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4. Experimental Results and Discussion

We performed unsupervised change detection using high-resolution images generated by
cross-sharpening. The S2CVA method was applied for change detection, and the change magnitude
and direction vector values were calculated. The S2CVA direction vector was used to reduce false
alarms from regions categorized as changed by the S2CVA magnitude vector. To evaluate the
performance of change detection, we compared the change detection results produced using the
existing pan-sharpening images and the cross-sharpening images only.

4.1. Materials and Study Areas

In this study, high-resolution KOMPSAT-2 satellite images comprising panchromatic and
multispectral bands were acquired. Table 1 shows the specifications of the KOMPSAT-2
satellite imagery.

Table 1. Specifications of the KOMPSAT-2 satellite imagery.

Launch 28 July 2006

Ground sampling distance Panchromatic: 1.0 m
Multispectral: 4.0 m

Spectral bands

Panchromatic: 500–900 nm
MS1 (Blue): 450–520 nm

MS2 (Green): 520–600 nm
MS3 (Red): 630–690 nm
MS4 (NIR): 760–900 nm

Swath width 15 km (nadir)

Radiometric resolution 11 bits

The study areas were selected from two regions, namely, Cheongju and Daejeon, South Korea,
which are both under development. Table 2 describes the experimental datasets, and Figure 2 shows
images of Sites 1 and 2.

Table 2. Descriptions of experimental datasets.

Site 1 (Cheongju) Site 2 (Daejeon)

Image size 2400 × 2400 2000 × 2000

Acquisition date Before change 18 November 2008 5 October 2007
After change 21 May 2012 12 April 2011
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The images used in the experiments underwent data preprocessing, such as geometric and
radiometric correction. Geometric correction matches the ground control points (GCPs) in images and
removes errors due to misregistration [39]. The root mean square errors (RMSEs) of manual registration
were approximately 0.965 (20 GCPs at Site 1) and 0.6934 (6 GCPs at Site 2). Moreover, histogram
matching was performed for relative radiometric correction, although atmospheric correction should
also be applied. To evaluate the accuracy of the proposed change detection method, we compared
the proposed change detection results with the magnitude results derived using only pan-sharpened
images and cross-sharpened images. The true ground data for the changed areas in the multitemporal
images were produced and used for a quantitative accuracy assessment. Figure 3 shows the true
ground image of each study area.
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4.2. Experimental Results

4.2.1. Influence of the Cross-Sharpened Images Based on the Pan-Sharpening Algorithm on the
Change Detection Results

To select the algorithm for cross-sharpening, we applied representative CS- and MRA-based
algorithms—the Gram-Schmidt (GS) adaptive (GSA) algorithm and GS2, an MRA-based GS
algorithm—and a normalized difference vegetation index (NDVI)-based algorithm; these methods
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are known to provide effective pan-sharpening performance for KOMPSAT-2 satellite images [39–41].
The GSA algorithm was proposed by Aiazzi et al. [40]; it can produce high-frequency images using
intensity images generated by multiple regression analysis. The injection gain is calculated by dividing
the covariance by the variance. The GS2 algorithm calculates the injection gain in the same way
as the GSA algorithm. However, whereas the GSA algorithm uses multispectral images, the GS2
algorithm uses low-spatial-resolution panchromatic images that are degraded via the application of an
MTF filter as intensity images [41]. Choi et al. proposed the NDVI-based algorithm [42]. It provides
high-accuracy spectral and spatial characteristics for the sharpening of KOMPSAT-2 satellite images.
The main difference between existing sharpening algorithms and the NDVI-based algorithm is that
the local injection gain is extracted from the NDVI to perform pan sharpening and decrease spectral
distortion. We performed change detection using pan-sharpened and cross-sharpened multitemporal
images and the NDVI-based algorithm. Then, we performed an accuracy evaluation to confirm
the effect of the sharpening accuracy on change detection. To quantitatively evaluate the quality of
the pan-sharpened image, the erreur relative global adimensionnelle de synthese (ERGAS), SAM,
and universal image quality index (UIQI) evaluation indexes were used. The ERGAS index compares
the spectral characteristics of a band based on the sharpening result and the original image, and it is
calculated as shown in Equation (11) [43,44].

ERGAS = 100
h
l

√√√√ 1
K

L

∑
l=1

(
RMSE2(i)
MEAN(i)

) (11)

where h is the spatial resolution of the sharpened image, l is the spatial resolution of the multispectral
image, K is the number of bands in the sharpened image M̂S, MEAN(i) is the average value of the lth
band, and the RMSE is defined according to Equation (12):

RMSE =
1

MN

√√√√ MN

∑
i,j=1

(M̂S
L
(i, j)−MS(i, j))

2
(12)

where M × N is the image size; M̂S
L
(i, j) is the pixel value of the sharpened image and MS(i, j) is the

pixel value of the original multispectral image. Therefore, RMSE2(i) indicates the RMSE between the
ith band of M̂S and MS. Low ERGAS values correspond to small amounts of spectral distortion.

The SAM index is obtained by calculating the pixel-by-pixel vector between the sharpening result
and the original image, as given by Equation (13) [45,46].

SAM(v, v̂) = arccos(
v, v̂

‖ v ‖2‖ v̂ ‖2
) (13)

where v is the spectral pixel vector of the original multispectral band and v̂ is the pixel vector of the
sharpened band. When the SAM value equals 0, spectral distortion is minimized.

The UIQI evaluates the similarity between the sharpening result and the original image.
The evaluation terms include the correlation, radiometric distortion, and contrast distortion [47–49].
The UIQI is calculated using Equation (14):

UIQI(x, y) =
4σxyxy

(σ2
x + σ2

y )(x2 + y2)
(14)

where x and y are the original and sharpened images, respectively; σxy is the covariance between x and
y; and x and y are the variance of x and y, respectively. The smaller the values of ERGAS and SAM
are, the smaller the spectral distortion. In the case of UIQI, the closer the value is to 1, the lower the
spectral distortion. Figure 4 shows the images obtained by applying these algorithms, and Table 3
shows the accuracy evaluation results for the pan-sharpened images.



Sustainability 2018, 10, 3301 9 of 20

Sustainability 2018, 10, x FOR PEER REVIEW  9 of 20 

where x and y are the original and sharpened images, respectively; ��� is the covariance between x 

and y; and �̅ and �� are the variance of x and y, respectively. The smaller the values of ERGAS and 

SAM are, the smaller the spectral distortion. In the case of UIQI, the closer the value is to 1, the lower 

the spectral distortion. Figure 4 shows the images obtained by applying these algorithms, and Table 

3 shows the accuracy evaluation results for the pan-sharpened images. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 4. Sharpening results: (a) multispectral image at time 1 (before change), (b) result using Gram 

-Schmidt adaptive (GSA) at time 1, (c) result using GS2 at time 1, (d) result using the normalized 

difference vegetation index (NDVI)-based algorithm at time 1, (e) multispectral image at time 2 (after 

change), (f) result using GSA at time 2, (g) result using GS2 at time 2, and (h) result using the NDVI-

based algorithm at time 2. 

Table 3. Results of the pan-sharpening accuracy evaluation. 

Algorithm ERGAS SAM UIQI 

GSA 
Time 1 (before change) 3.5798 1.7084 0.6943 

Time 2 (after change) 3.0608 1.9015 0.6795 

GS2 
Time 1 2.7289 1.1826 0.7825 

Time 2 2.4152 1.4444 0.7529 

NDVI-based algorithm 
Time 1 2.7742 1.4072 0.7899 

Time 2 2.5982 1.5166 0.7521 

As shown in Table 3, the pan-sharpening results obtained using GSA exhibited the highest 

ERGAS and SAM values and the lowest UIQI values. These evaluation results indicate that spectral 

distortion occurred most frequently in the GSA algorithm and that the accuracies of the GS2- and 

NDVI-based algorithms were similar. Next, we analyzed how the quality of fusion images affected 

the change detection results. Change detection was performed using the pan-sharpened images 

obtained using each pan-sharpening algorithm, and then, the change detection performance was 

evaluated by calculating the receiver operating characteristic (ROC) curve and area under the curve 

(AUC) using reference data. The ROC curve, one of the indexes used to evaluate change detection 

performance, is a graphical representation of the detection and false alarm rates that occur when the 

threshold value is applied to the magnitude and converted to a binary image [50]. The AUC is 

calculated by integrating the area under the ROC curve. Generally, the larger the AUC value is, the 

better the change detection performance. Figure 5 and Table 4 show the ROC curve and AUC 

calculation results, respectively. 

Figure 4. Sharpening results: (a) multispectral image at time 1 (before change), (b) result using Gram
-Schmidt adaptive (GSA) at time 1, (c) result using GS2 at time 1, (d) result using the normalized
difference vegetation index (NDVI)-based algorithm at time 1, (e) multispectral image at time 2
(after change), (f) result using GSA at time 2, (g) result using GS2 at time 2, and (h) result using the
NDVI-based algorithm at time 2.

Table 3. Results of the pan-sharpening accuracy evaluation.

Algorithm ERGAS SAM UIQI

GSA
Time 1 (before change) 3.5798 1.7084 0.6943
Time 2 (after change) 3.0608 1.9015 0.6795

GS2
Time 1 2.7289 1.1826 0.7825
Time 2 2.4152 1.4444 0.7529

NDVI-based
algorithm

Time 1 2.7742 1.4072 0.7899
Time 2 2.5982 1.5166 0.7521

As shown in Table 3, the pan-sharpening results obtained using GSA exhibited the highest
ERGAS and SAM values and the lowest UIQI values. These evaluation results indicate that spectral
distortion occurred most frequently in the GSA algorithm and that the accuracies of the GS2- and
NDVI-based algorithms were similar. Next, we analyzed how the quality of fusion images affected the
change detection results. Change detection was performed using the pan-sharpened images obtained
using each pan-sharpening algorithm, and then, the change detection performance was evaluated by
calculating the receiver operating characteristic (ROC) curve and area under the curve (AUC) using
reference data. The ROC curve, one of the indexes used to evaluate change detection performance, is a
graphical representation of the detection and false alarm rates that occur when the threshold value is
applied to the magnitude and converted to a binary image [50]. The AUC is calculated by integrating
the area under the ROC curve. Generally, the larger the AUC value is, the better the change detection
performance. Figure 5 and Table 4 show the ROC curve and AUC calculation results, respectively.
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Figure 5. Receiver operating characteristic (ROC) curve results.

Table 4. Area under the curve (AUC) calculation results.

Algorithm AUC

GSA 0.7290

GS2 0.7433

NDVI-based algorithm 0.7464

The evaluation of the change detection accuracy showed that the best image sharpening
performance was obtained using the GS2 and NDVI-based algorithms, and the poorest performance
was displayed by the GSA algorithm. Thus, the sharpening accuracy was considered to affect the
change detection performance. In this study, cross-sharpening was performed using the NDVI-based
algorithm, which displayed the best change detection performance. Although the other pan-sharpening
algorithms can still be used for change detection, we chose the NDVI-based pan-sharpening algorithm
for generating cross-sharpened images in change detection.

4.2.2. Accuracy Estimation of the Change Detection Results from Cross-Sharpened Images

To evaluate the proposed change detection method, pan-sharpening and cross-sharpening
methods were applied using satellite imagery of the two study sites. NDVI-based sharpening,
which yielded the highest AUC value in Table 2, was used in this process. Using NDVI-based
pan-sharpening, Ft1t1, Ft1t2, Ft2t1, and Ft2t2 were generated for each study area. Figures 6 and 7 show
the pan-sharpening results.

Sustainability 2018, 10, x FOR PEER REVIEW  11 of 20 

    
(e) (f) (g) (h) 

Figure 6. Sharpening results: (a) ����� of Site 1, (b) ����� of Site 1, (c) ����� of Site 1, (d) ����� of Site 1, (e) 

����� of Site 2, (f) ����� of Site 2, (g) ����� of Site 2, and (h) ����� of Site 2. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7. Detailed images of the sharpening results at Site 1: (a) panchromatic image at time 1, (b) 

multispectral image at time 1, (c) panchromatic image at time 2, (d) multispectral image at time 2, (e) 

�����, (f) �����, (g) �����, and (h) �����. 

����� and �����, the pan-sharpening results at each study site, effectively reflect the spatial and 

spectral characteristics of the original imagery. However, as shown in Figure 7, some objects, such as 

buildings, were incorrectly matched when only pan-sharpened images were used. This issue 

occurred because the geometric characteristics of the images before and after the change did not 

match. In this manuscript, we performed image-to-image geometric correction to match the 

geometries of the images before and after the change. However, perfectly matching the geometrical 

characteristics of high-spatial-resolution satellite images with features such as shadows is difficult 

due to differences in off-nadir angles or acquisition times of multitemporal images. ����� and �����, 

the cross-sharpening results, show that spatial and spectral distortion occurred compared to the pan-

sharpening results. In the case of �����, by using the panchromatic image of time �1 and multispectral 

image of time �2 , the spatial characteristics of time �1  can be observed; however, the spectral 

characteristics are based on time �2. In addition, ����� reflects the spectral characteristics of time �1 

and spatial characteristics of time �2. As shown in Figures 7a,b and 8e,f, because ����� and ����� are 

sharpened by the same panchromatic image, ��� , some areas with spatial dissimilarity, such as 

shadows and buildings, have similar spatial characteristics. Moreover, regions with different spectral 

information due to land cover changes and seasonal variations in vegetated areas display distorted 

spectral information, but spatial characteristics are maintained in these areas. Therefore, it is possible 

to remove spatial heterogeneity and perform change detection using ����� and �����. This property is 

the same for ����� and �����, as shown in Figures 7e,f and 8g,h. To apply S2CVA, multitemporal images 

Figure 6. Cont.



Sustainability 2018, 10, 3301 11 of 20

Sustainability 2018, 10, x FOR PEER REVIEW  11 of 20 

    
(e) (f) (g) (h) 

Figure 6. Sharpening results: (a) 𝐅𝑡1𝑡1 of Site 1, (b) 𝐅𝑡1𝑡2 of Site 1, (c) 𝐅𝑡2𝑡1 of Site 1, (d) 𝐅𝑡2𝑡2 of Site 1, (e) 

𝐅𝑡1𝑡1 of Site 2, (f) 𝐅𝑡1𝑡2 of Site 2, (g) 𝐅𝑡2𝑡1 of Site 2, and (h) 𝐅𝑡2𝑡2 of Site 2. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7. Detailed images of the sharpening results at Site 1: (a) panchromatic image at time 1, (b) 

multispectral image at time 1, (c) panchromatic image at time 2, (d) multispectral image at time 2, (e) 

𝐅𝑡1𝑡1, (f) 𝐅𝑡1𝑡2, (g) 𝐅𝑡2𝑡1, and (h) 𝐅𝑡2𝑡2. 

𝐅𝑡1𝑡1 and 𝐅𝑡2𝑡2, the pan-sharpening results at each study site, effectively reflect the spatial and 

spectral characteristics of the original imagery. However, as shown in Figure 7, some objects, such as 

buildings, were incorrectly matched when only pan-sharpened images were used. This issue 

occurred because the geometric characteristics of the images before and after the change did not 

match. In this manuscript, we performed image-to-image geometric correction to match the 

geometries of the images before and after the change. However, perfectly matching the geometrical 

characteristics of high-spatial-resolution satellite images with features such as shadows is difficult 

due to differences in off-nadir angles or acquisition times of multitemporal images. 𝐅𝑡1𝑡2 and 𝐅𝑡2𝑡1, 

the cross-sharpening results, show that spatial and spectral distortion occurred compared to the pan-

sharpening results. In the case of 𝐅𝑡1𝑡2, by using the panchromatic image of time 𝑡1 and multispectral 

image of time 𝑡2 , the spatial characteristics of time 𝑡1  can be observed; however, the spectral 

characteristics are based on time 𝑡2. In addition, 𝐅𝑡2𝑡1 reflects the spectral characteristics of time 𝑡1 

and spatial characteristics of time 𝑡2. As shown in Figures 7a,b and 8e,f, because 𝐅𝑡1𝑡1 and 𝐅𝑡1𝑡2 are 

sharpened by the same panchromatic image, 𝐏𝑡1 , some areas with spatial dissimilarity, such as 

shadows and buildings, have similar spatial characteristics. Moreover, regions with different spectral 

information due to land cover changes and seasonal variations in vegetated areas display distorted 

spectral information, but spatial characteristics are maintained in these areas. Therefore, it is possible 

to remove spatial heterogeneity and perform change detection using 𝐅𝑡1𝑡1 and 𝐅𝑡1𝑡2. This property is 

the same for 𝐅𝑡2𝑡1 and 𝐅𝑡2𝑡2, as shown in Figures 7e,f and 8g,h. To apply S2CVA, multitemporal images 
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Figure 7. Detailed images of the sharpening results at Site 1: (a) panchromatic image at time 1,
(b) multispectral image at time 1, (c) panchromatic image at time 2, (d) multispectral image at time 2,
(e) Ft1t1, (f) Ft1t2, (g) Ft2t1, and (h) Ft2t2.

Ft1t1 and Ft2t2, the pan-sharpening results at each study site, effectively reflect the spatial and
spectral characteristics of the original imagery. However, as shown in Figure 7, some objects, such as
buildings, were incorrectly matched when only pan-sharpened images were used. This issue occurred
because the geometric characteristics of the images before and after the change did not match. In this
manuscript, we performed image-to-image geometric correction to match the geometries of the
images before and after the change. However, perfectly matching the geometrical characteristics of
high-spatial-resolution satellite images with features such as shadows is difficult due to differences in
off-nadir angles or acquisition times of multitemporal images. Ft1t2 and Ft2t1, the cross-sharpening
results, show that spatial and spectral distortion occurred compared to the pan-sharpening results.
In the case of Ft1t2, by using the panchromatic image of time t1 and multispectral image of time t2,
the spatial characteristics of time t1. can be observed; however, the spectral characteristics are based
on time t2. In addition, Ft2t1 reflects the spectral characteristics of time t1 and spatial characteristics
of time t2. As shown in Figure 7a,b and Figure 8e,f, because Ft1t1 and Ft1t2 are sharpened by the
same panchromatic image, Pt1, some areas with spatial dissimilarity, such as shadows and buildings,
have similar spatial characteristics. Moreover, regions with different spectral information due to
land cover changes and seasonal variations in vegetated areas display distorted spectral information,
but spatial characteristics are maintained in these areas. Therefore, it is possible to remove spatial
heterogeneity and perform change detection using Ft1t1 and Ft1t2. This property is the same for Ft2t1
and Ft2t2, as shown in Figure 7e,f and Figure 8g,h. To apply S2CVA, multitemporal images used for
change detection should have the same geometrical characteristics. Therefore, in this manuscript,
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Ft1t1Ft2t1, which is the stacked image of Ft1t1 and Ft2t1, was used as the reference image before the
change, and Ft1t2Ft2t2 was used as the target image after the change. Figure 8 shows the results of
applying the S2CVA method to the stacked image.
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Figure 8. Results from the combination of the following data with the S2CVA method: (a) magnitude
information using only pan-sharpened images of Site 1, (b) direction information using only
pan-sharpened images of Site 1, (c) magnitude information using pan-sharpened and cross-sharpened
images of Site 1, (d) direction information using pan-sharpened and cross-sharpened images of Site
1, (e) magnitude information using only pan-sharpened images of Site 2, (f) direction information
using only pan-sharpened images of Site 2, (g) magnitude information using pan-sharpened
and cross-sharpened images of Site 2, and (h) direction information using pan-sharpened and
cross-sharpened images of Site 2.

Figure 8a,b,e,f shows the change detection results obtained using only pan-sharpened images,
Ft1t1 and Ft2t2, and the results exhibit a similar trend. As shown in Figure 8a,e, the magnitude
information for change detection effectively confirmed the shapes of changed objects by effectively
reflecting the spatial characteristics. The direction information obtained using only the pan-sharpened
images (Figure 8b,f) showed low values for shadows caused by high buildings, such as apartments,
and high values in some changed areas, such as soil areas. Compared to the above results,
the magnitude information (Figure 8c,g) obtained using cross-sharpened images showed a similar
trend, but the trends of direction information differed. The direction values of the vegetation areas
were generally low at Site 1, whereas they were mostly high in areas excluding vegetation. At Site 2,
the vegetation areas displayed high direction values, whereas other unchanged areas, such as soil and
building areas, exhibited low values. Figure 9 shows the detailed S2CVA results.
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As demonstrated by the magnitude information of unchanged regions obtained using the cross-

sharpened images, as shown in Figure 9e,k, it was difficult to identify the detailed spatial forms of 

objects due to a blurring effect. However, false alarms that occurred at the edges were reduced, and 

the results effectively reflect the trends of changed and unchanged areas. In addition, the changed 

area in Figure 9e has significantly higher values than the unchanged area in Figure 9c. However, as 

shown in Figure 9k, in the magnitude information obtained using cross-sharpened images, some 

unchanged areas where the spectral characteristics were distorted by seasonal variations and the 

spectral differences of building roofs were considered changed even though these areas had not 

Figure 9. Detailed (400 × 400 pixels) S2CVA results: (a) pan-sharpened image at time 1 at Site 1,
(b) pan-sharpened image at time 2 at Site 1, (c) magnitude using only pan-sharpened images of Site 1,
(d) direction using only pan-sharpened images of Site 1, (e) magnitude using cross-sharpened images
of Site 1, (f) direction using cross-sharpened images of Site 1, (g) pan-sharpened image at time 1 at Site
2, (h) pan-sharpened image at time 2 at Site 2, (i) magnitude using only pan-sharpened images of Site 2,
(j) direction using only pan-sharpened images of Site 2, (k) magnitude using cross-sharpened images
of Site 2, and (l) direction using cross-sharpened images of Site 2.

As demonstrated by the magnitude information of unchanged regions obtained using the
cross-sharpened images, as shown in Figure 9e,k, it was difficult to identify the detailed spatial
forms of objects due to a blurring effect. However, false alarms that occurred at the edges were
reduced, and the results effectively reflect the trends of changed and unchanged areas. In addition,
the changed area in Figure 9e has significantly higher values than the unchanged area in Figure 9c.
However, as shown in Figure 9k, in the magnitude information obtained using cross-sharpened images,
some unchanged areas where the spectral characteristics were distorted by seasonal variations and
the spectral differences of building roofs were considered changed even though these areas had not
actually changed. To improve the change detection performance by removing such false alarms,
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direction information is used with cross-sharpened images. As shown in Figure 9c,e, some vegetation,
paddy, and soil areas where false alarms occurred had low direction values, whereas shadow areas
had low direction values only in the pan-sharpened image. Therefore, some unchanged areas with
high magnitude values were correctly classified using direction information because among areas with
very high magnitudes, areas influenced by seasonal effects or vegetation growth were recognized as
false alarms based on spectral distortion in the cross-sharpening images. In these regions, the overall
pixel profile is not significantly different, and therefore, the values are relatively low in the direction
image. Of course, even in the changed area, the pattern of the profile is similar, and areas where
only DN values change may be observed; however, these areas may have a very high magnitude
difference and therefore remain changed areas. To integrate the magnitude and direction information
for unsupervised change detection, the direction information was linearly transformed from 0 to 1 using
the CDF, and the probabilities of change detection for unchanged vegetation, paddy, and soil areas
were reduced by multiplication with magnitude information. Figure 10 shows the change detection
results of the final magnitude information with the linearly transformed direction information obtained
using cross-sharpened images compared to the traditional magnitude information of S2CVA based on
pan-sharpened images.

As shown in Figure 10c,d, the magnitude values of unchanged vegetation and complex urban
areas decreased compared to those in Figure 10a,d. However, the change area displays high magnitude
values. Therefore, false alarms that occur when performing change detection using the magnitude
information of traditional S2CVA can be effectively reduced using the proposed technique. To evaluate
the quantitative accuracy of the proposed change detection method, we compared the proposed
magnitude information results obtained using cross-sharpened images with those obtained using only
pan-sharpened images. Figure 11 and Table 5 show the ROC curve and AUC results according to the
magnitude information based on ground truth data.
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Table 5. AUC calculation results.

Study Area Change Detection AUC

Site 1
Magnitude using only pan-sharpened images 0.7464

Magnitude using cross-sharpened images 0.8070
Magnitude fused with direction using cross-sharpened images 0.8272

Site 2
Magnitude using only pan-sharpened images 0.8192

Magnitude using cross-sharpened images 0.9342
Magnitude fused with direction using cross-sharpened images 0.9456

Table 5 shows the change detection accuracy results for Sites 1 and 2; the magnitude information
obtained using cross-sharpened images reflects higher AUC values of 0.8070 and 0.9342 for the two
sites compared to the AUC values for the magnitude information obtained using only pan-sharpened
images. This result suggests that the magnitude information obtained using cross-sharpened
images can be used to more efficiently extract the changed area than can that obtained using
pan-sharpened images. In addition, the final magnitude information obtained by integration with
direction information displayed the highest AUC values of 0.8272 and 0.9456 for the two sites.
Specifically, the high AUC value for Site 2 is attributed to the fact that the magnitude information
value of the unchanged urban area was efficiently decreased by integrating the direction information.
Therefore, the experimental results indicated that the integration of the magnitude and direction
information obtained using cross-sharpened images effectively reduced regions where false alarms
were caused by seasonal influences and spectral dissimilarity. To verify the performance of the
proposed change detection method, binary images were generated using thresholds. In the case of
optimal threshold selection, the Youden index based on the ROC curve was selected. The Youden
index uses the maximum vertical distance of the ROC curve [51]. Thus, the optimal threshold obtained
using the Youden index is defined as a threshold value to maximize the difference between the
detection and false alarm rates [52]. The confusion matrix was calculated using the ground truth data.
Figure 12 shows a binary image that was generated by applying a threshold to the change detection
results obtained using the existing method and the proposed method, and Tables 6 and 7 show the
results of calculating the confusion matrix using ground truth data.

As shown in Tables 6 and 7, the false alarm rate decreased and the detection rate increased at
Sites 1 and 2 when using the proposed method. When change detection was performed using
high-spatial-resolution satellite images, the phenomenon in which the boundaries of frequently
occurring objects were extracted as change areas decreased. Specifically, traditional binary change
detection results obtained using only pan-sharpened images could not detect the changed area
efficiently, and some unchanged areas were detected as changed areas. The binary change detection
results obtained using only the magnitude information of cross-sharpened images exhibited the lowest
false alarm rate and highest overall accuracy. The detection rates were also the lowest at 0.196 for Site
1 and 0.645 for Site 2, as shown in Figure 12b,e and Tables 6 and 7. The results based on the magnitude
of cross-sharpened images displayed a very low false-positive rate. However, binary change detection
yielded a very low detection rate. However, adding direction information increased the false alarm
rate to an extent, but the detection rate also considerably increased. In addition, the false alarm
rate was lower in this case than for that based on the magnitude information of only pan-sharpened
images. This result was observed because most changed areas were detected as unchanged areas.
Although some unchanged areas were detected in the binary change detection results obtained using
cross-sharpened images and the integration of magnitude and direction information, most changed
areas could be detected, as shown in Figure 12c,f. In addition, the false alarm rate decreased compared
to that of traditional binary change detection (Figure 12a,d). Therefore, the cross-sharpening algorithm
and integration of magnitude and direction information can be used to modify S2CVA.
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Table 6. Results of calculating the confusion matrix of Site 1.
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Cross-Sharpened Images
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Ground Truth Ground Truth Ground Truth
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Change
detection map

Changed 320494 1295246 103913 65526 349142 765278
Unchanged 210088 3934172 426669 5163892 181440 4464140

Detection rate 0.604 0.196 0.658
False alarm rate 0.248 0.012 0.146
Overall accuracy 0.739 0.914 0.836

Table 7. Results of calculating the confusion matrix of Site 2.
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detection map
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Detection rate 0.779 0.645 0.908
False alarm rate 0.298 0.057 0.158
Overall accuracy 0.705 0.929 0.844
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5. Conclusions

S2CVA, the change detection technique used in this study, calculates the relevant magnitude and
direction vectors. This study focuses on reducing false alarms using a combination of the magnitude
and direction generated with the S2CVA technique. We attempted to minimize false alarms caused
by seasonal differences by fusing magnitude and direction data. We used high-spatial-resolution
KOMPSAT-2 satellite imagery and produced a high-spatial-resolution multispectral image via
the NDVI-based pan-sharpening algorithm. Specifically, images generated by applying the
cross-sharpening technique were used for change detection to reduce false alarms due to geometric
errors, which can occur when change detection is performed using only pan-sharpened images.
Therefore, although the difficulty associated with perfectly matching the geometric characteristics of
high-spatial-resolution satellite images makes these images unsuitable for urban change detection,
this problem can be overcome by using the proposed change detection method with cross-sharpened
images. An analysis of the magnitude calculated by the S2CVA method showed that some unchanged
regions with seasonal differences were likely to be classified as changed regions. To solve this problem,
we proposed the use of direction information and analyzed the direction of two study sites. The analysis
showed that regions with low direction values were mainly seasonally affected regions. By multiplying
the magnitude and direction, which were linearly transformed to 0–1, the aforementioned false alarm
regions were likely to be considered unchanged. To evaluate the performance of the proposed method,
we compared the results of experiments using only pan-sharpened images and those of experiments
using only the magnitude of S2CVA applied with cross-sharpened images. The ROC curve, AUC
results, and confusion matrix of binary change detection results indicated that the accuracy of the
proposed method is higher than that of the above two methods. In addition, the results based on the
integration of magnitude and direction information from cross-sharpened images yielded a higher
detection rate and lower false alarm rate than those of only magnitude information from pan-sharpened
images, as shown in the confusion matrix of the binary change detection results. Most of the false
alarms caused by the geometric errors that occur during change detection with cross-sharpened images
were reduced via the use of only pan-sharpened images.
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