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Abstract: Water and energy are basic resources for urban development. It is of extreme importance to
balance economic development, water and energy security, and environmental sustainability at the
city level. Although many studies have focused on energy-related CO2 emissions or water resources,
individually, in relation to socioeconomic development, few studies have considered water and
energy-related CO2 emissions as synchronous limiting factors. Here, taking Beijing as an example, a
partial least squares STIRPAT model—a method that combines partial least squares with the STIRPAT
(stochastic impacts by regression on population, affluence, and technology) model—was used to
determine the main driving factors of water use and energy-related CO2 emissions at the regional
scale from 1996 to 2016. The empirical results showed that the population, per capita gross domestic
product (GDP), urbanization level, technology level, and service level, are all important factors that
influence the total water use and energy-related CO2 emissions. Additionally, eight scenarios were
established to explore suitable development modes for future years. Consequently, a medium growth
rate in socioeconomic status and population, and a high growth rate in the technology and service
level, were found to be the most appropriate development modes. This scenario would result in a
total water use of 4432.13 million m3 and energy-related CO2 emissions of 173.64 million tons in
2030. The results provide a new perspective for decision makers to explore suitable measures for
simultaneously conserving water resources and reducing energy-related CO2 emissions in the context
of urban development.

Keywords: partial least squares STIRPAT model; water resources; energy-related CO2 emissions;
scenario analysis; Beijing

1. Introduction

Water and energy have become two bottlenecks restricting sustainable socioeconomic growth [1].
The long-term requirement for water and energy is increasing with population and economic
development, which has aggravated the global fragility of water and energy systems, both regionally
and nationally, in the past few decades [2]. Water, energy, and environmental status are especially
threatened in countries or regions experiencing high-speed economic and urbanization development.
Among such countries, China is a typical instance in which water and energy status are particularly
challenging for high-speed economic development and the aquatic ecosystems and environment are
highly stressed [3,4]. Cities are gathering places where population, industry, and wealth are highly
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concentrated, and large amounts of resources are consumed. In China, city regions account for 75%
of the total energy consumption and are responsible for 85% of energy-related CO2 emissions [5].
Additionally, water resources are one of the main factors in urban economic development. The city
development modes and policy choices have a significant impact on ensuring water and energy
security and sustainable environmental development.

To date, multiple studies have analyzed the impact of policy trends on the environment.
For example, Yang et al. investigated the climate impact of U.S. policy choices based on the assumption
of whether the U.S. follows its proposed nationally determined contribution and makes use of
technological innovation [6]. Pan et al. studied the implications of different effort-sharing principles
of China’s energy system transformation with regard to achieving the 2 ◦C goals [7]. Feyera et
al. developed the water evaluation and planning (WEAP) model to test various policy options to
determine which one could achieve sustainable water use in Kenya [8]. We should choose appropriate
city development modes to ensure not only city economic development, but also water and energy
security and environmental sustainability.

In addition, multiple studies have explored the driving forces of energy-related CO2 emissions to
ensure energy conservation and emission reduction [9–11]. For example, Pao and Tsai forecasted the
CO2 emissions, energy consumption, and economic growth in Brazil by applying a grey prediction
model (GM) and autoregressive integrated moving average (ARIMA) model [12]. Meng et al. proposed
a hybrid model for projecting energy-related CO2 emissions of China and compared the results with
those from the GM [13]. Liddle presented the STIRPAT (stochastic impacts by regression on population,
affluence, and technology) model to explore the carbon emissions elasticities for income and population,
and found that the carbon emissions elasticity of income is highly robust, in contrast to the carbon
emissions elasticity of the population [14]. Additionally, previous studies have investigated the
relationship between social development and water resources. Chenoweth used scenario analysis to
analyze whether the water resources of Israel, Palestine, and Jordan are adequate to enable social and
social development in the future [15]. Wang et al. evaluated the impact of socioeconomic development
on water resources use [16]. Jason Scott et al. selected fractional water allocation and capacity
sharing as a method of allocating and managing water entitlements to encourage sustainable economic
growth and social development in South Africa [17]. Zhao et al. explored the influencing factors of
population, affluence, urbanization level, and diet structure on the agriculture product-related water
footprint change based on an extended STIRPAT model to address China’s current water resource
pressures [18]. Although these studies have forecasted future CO2 emission or water resources from
different perspectives, and have provided meaningful policy implications, many studies have tended
to regard water and energy security as isolated factors, rather than consider them in conjunction in
formulating long-term policies.

The newly born concept of the water–energy nexus has emerged over the past decade, and is
closely related to population growth, urbanization, diminishing resources, and climate change [19].
Immense amounts of fundamental research have been conducted to analyze the link between water
and energy, i.e., water is needed to produce energy, and energy is consumed to maintain a water
supply. For example, He et al. evaluated the needed energy for various water supply sectors in
2020 and 2030 in China, and predicted that the urban domestic sector will overtake the agricultural
sector as the most energy-intensive sector in 2030 [20]. Sun et al. investigated the water–energy
nexus in the Beijing–Tianjin–Hebei region from the perspective of the electricity sector, and found
that the insufficient water demand of power generation can be mitigated, to a certain degree, due
to power structure adjustment and technological advancement, but that the trend towards water
shortages cannot be avoided [21]. Lam et al. calculated and compared the energy consumption for
water provision in thirty cities of the Middle East and North Africa [22]. However, most of these
studies have concentrated on the physical linkages of water and energy resources to make planning
and policy implications, and lack any integrated analysis exploring the common driving factors of the
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two from the aspect of social development to ensure water and energy security, and environmentally
sustainable development.

Beijing, as the capital of China, has been facing a water–energy predicament in balancing the
inherent tradeoffs among water and energy security, economic competitiveness, and environmental
sustainability. According to the Thirteenth Five-Year Plan (2016–2020), The gross domestic product
(GDP) growth is expected to average 6.5% per year from 2016 to 2020. The total water use will be
controlled at 4.3 billion m3, and the water intensity per unit of GDP will be reduced by over 30%
relative to the standards proposed in the Eleventh Five-Year Plan (2006–2010). The total energy
consumption will be capped at 76 million tons of standard coal, and the energy intensity per unit of
GDP is slated to drop by more than 17% in 2020. The proportion of high-quality energy will increase
to more than 95%, and the proportion of renewable energy will exceed 8% [23], to achieve peak carbon
dioxide emissions as soon as possible. It is important to consider the development modes of Beijing
under the dual control of water resources and energy-related CO2 emissions to fulfil future urban
planning requirements. The specific objectives in the present paper are to (1) identify the significant
common driving factors influencing water use and energy-related CO2 emissions in Beijing; (2) design
scenarios with driving forces at different levels according to the results; and (3) select a suitable way
to simultaneously conserve water resources and reduce energy-related CO2 emissions over the next
fourteen years.

2. Materials and Methods

2.1. Study Area

Beijing is the capital of the People’s Republic of China, and is located in the northern region of the
North China Plain, adjacent to Tianjin and surrounded by Hebei province (Figure 1). The per capita
GDP of Beijing was 16,789 USD in 2016, ranking second in China. The permanent population in 2016
was 21,729,000, and the urbanization rate reached 86.5%, which was second only to that of Shanghai in
the whole country. The proportion of the tertiary industry exceeded 80% and reached 80.3% [24,25].
Advanced technology and the introduction or internalization of high-end talents have become the
fundamental driving forces of Beijing’s economic development. The construction of cultural centers
and science and technology innovation centers has been promoted steadily [26].

Beijing is located in the Haihe River Basin, where water resources are scarce. The average per
capita reserves of water resources in Beijing were 161 m3 in 2016, or 1/60 of the global average [27].
The demand for water has already exceeded the supply capacity, due to the increase in urban
population and economic development. The demand and supply balance have been maintained
at the expense of the overdraft of groundwater, and has damaged the environment for many years [28].
The competition between supply and demand will become increasingly acute in the future as social
development progresses. Additionally, the city has a small primary energy reserve and is a typical
energy resource-poor city that relies heavily on foreign provinces [29]. Fossil energy accounts for up
to 76% of the energy consumption structure. Energy is the basic resource of urban development and
inevitably causes extensive CO2 emissions [24,30]; thus, it is imperative to explore future development
modes for achieving the goals of resources conservation and environmentally sustainable development
in Beijing.
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2.2. Methodology

2.2.1. Calculation of Energy-Related CO2 Emissions

Energy-related CO2 emissions were calculated based on the 2006 Intergovernmental Panel on
Climate Change (IPCC, Geneva, Switzerland) Guidelines for National Greenhouse Gas Inventories as
follows [31]:

ERCE = ∑
i=1

Ei × LCVi × CFi ×Oi ×
44
12

, (1)

where ERCE represents the total energy-related CO2 emissions (million tons), Ei is the total energy
consumption of fuel i (million tons), LCVi represents the lower calorific value of fuel i, CFi is the unit
calorific value of the ith kind of fuel in terms of carbon content, Oi is the oxidation rate of fuel i, and
LCV × CF × O contains the emission factors [32–34]. All emission factors for fuel combustion in this
study were obtained from Mi et al. [35], and 44/12 is the ratio of the molecular weights of CO2 and C.

2.2.2. STIRPAT Model

The well-known IPAT (Impact = Population × Affluence × Technology) model was first
established by Ehrlish and Holdren in the early 1970s to detect the driving forces of environmental
impact; the model can be described as follows: I = PAT [36]. Here, I represents the environmental
pressure (i.e., water use and energy-related CO2 emissions in our case study), P represents the
population size, A is affluence, and T refers to the technology level. The IPAT equation assumes
that I is affected by the three driving factors P, A, and T, and that proportionality exists between the
variables, which limits the application of the model in nonproportional scenarios. To overcome this
constraint, Dietz and Rosa proposed the STIRPAT model, which has a stochastic form that can be
expressed as follows [37]:

I = aP b AcT de, (2)

where a is the model constant; b, c, and d are the indexes of P, A, and T, respectively; and e is the error
term. Equation (2) is often converted to logarithmic form in empirical studies, as follows:

ln I = ln a + b ln P + c ln A + d ln T + ln e (3)

Additional driving factors can be incorporated into the STIRPAT model to analyze their impact
on environmental pressure. To obtain a deep understanding of the driving factors of water use and
energy-related CO2 emissions in Beijing, the urbanization rate, which is defined as the proportion
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of the total population living in the urban area, was introduced into the model to better reflect the
population factor. The real per capita GDP was used to represent the affluence factor. The added value
of tertiary industry relative to the real GDP was added to the model to reflect the impact of changes in
service level on water use and CO2 emissions. Finally, the technology level factors included the water
use intensity and energy intensity. The extended STIRPAT model can be described as follows:

ln WU = ln a0 + a1 ln P + a2 ln UR + a3 ln A + a4 ln ST + a5 ln TW + ln e1, (4)

ln ERCE = ln b0 + b1 ln P + b2 ln UR + b3 ln A + b4 ln ST + b5 ln TE + ln e2, (5)

where WU represents the total water use (million m3), P is the population size, ERCE is the
energy-related CO2 emissions (million tons), UR is the urbanization rate, A is affluence in terms
of per capita GDP (104 USD), ST is the proportion of added value from tertiary industry, and TW
and TE are the water use intensity and energy intensity, which are expressed as water use and energy
consumption per unit of GDP, respectively (m3/104 USD, tons of standard coal per 104 USD).

2.2.3. Partial Least Squares (PLS) Regression

PLS regression is regarded as one of the most effective methods for eliminating the correlation
between variables and is used for modeling under the condition of multicollinearity [38]. The steps
of PLS are as follows [39]: (1) Normalize the dependent variable Y and independent variable X, and
denote the resulting terms as F0 and E0, respectively; (2) extract the first components t1 and u1, which
must carry the most variation information to represent X and Y as best as possible; and (3) establish
a regression model such that t1 and u1 are the linear combination of x1, x2, . . . , xp and y1, y2, . . . , y3.
The calculation is ended when the prediction sum of squares (PRESSt) achieves a minimum score, and
the extracted t involves the optimal number of components.

The variable important in projection (VIP) value is adopted to reflect the explanatory potential of
each independent variable for each dependent variable, and can be calculated as follows [40]:

VIPj =

√
p

Rd(I; (t1, · · · , tm)

m

∑
h=1

Rd(I; th)w2
h j (6)

where VIPj represents the VIP of xj (j = 1, 2, . . . , p), p is the number of independent variables, and w is
the jth component of the wh-axis, which can be used to measure the marginal contribution of xj to tj,

where
k
∑
j

w2
hj = w′hwh = 1 and h = 1, 2, . . . , m.

2.3. Data

The annual total population (P), per capita GDP (A), urbanization rate (UR), water use intensity
(TW), energy intensity (TE), and percentage of added value from tertiary industry (ST) data were
collected or calculated from the National Bureau of Statistics of China, Beijing Statistical Yearbook, and
Beijing Energy Statistics Yearbook [23,41,42]. GDP was corrected for inflation to remove the factors
of price changes in calculating economic aggregates, to facilitate the comparison of aggregates over
time [43].

3. Results and Discussion

3.1. Estimating Energy-Related CO2 Emissions in Beijing

As shown in Figure 2, the total energy consumption in Beijing ranged from 37.35 to 69.62 million
tons of standard coal from 1996 to 2016. The change trend of total energy consumption was mainly
manifested in two stages. From 1996 to 2011, the total energy consumption increased relatively
quickly, with an annual growth rate of 3.6%, showing a slight upward trend, while the growth rate
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of energy consumption gradually leveled off, with an average annual growth rate of 1.6% from 2012.
This behavior is due to the transformation and upgrading of Beijing’s industrial capacity. In addition,
the economic growth changed sharply, ending a period of double-digit growth. According to Figure 3,
the energy-related CO2 emissions in Beijing showed an increasing trend from 33.96 million tons
to 129.62 million tons during the study period. The energy-related CO2 emissions increased by
95.66 million tons in 20 years. However, the emissions intensity, which refers to CO2 emissions per
unit of GDP (million tons/104 USD), showed a significant downward trend with an annual decline
rate of 6.42%, indicating that Beijing has achieved partial success in building a low-carbon economy
and developing clean energy.
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3.2. Regression Analysis

3.2.1. Collinearity Diagnostics

A correlation test was carried out to test the collinearity between variables. There existed a
relatively high correlation between variables, and most of the absolute values of the correlation
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coefficients were greater than 0.9 (Tables 1 and 2). Then, the ordinary least squares (OLS) method was
adopted to further test whether there existed multicollinearity between a given dependent variable
and the independent variables. All variance inflation factor (VIF) values were greater than 10 (Tables 3
and 4), indicating that there was substantial multicollinearity among these variables. Therefore, the
regression results based on OLS were unreliable, and could not reflect the relationship between the
driving factors and the associated water use and energy-related CO2 emissions in Beijing. To eliminate
the multicollinearity among variables, the PLS method was adopted to model the regression analysis.

Table 1. Matrix of correlation between variables (water use).

lnWU lnP lnA lnUR lnTW lnST

lnWU 1
lnP −0.512 * 1
lnA −0.623 ** 0.973 ** 1

lnUR −0.629 ** 0.953 ** 0.974 ** 1
lnTW 0.652 ** −0.978 ** −0.997 ** −0.975 ** 1
lnST −0.643 ** 0.933 ** 0.979 ** 0.935 ** −0.972 ** 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

Table 2. Matrix of correlation between variables (energy-related CO2 emissions).

lnERCE lnP lnA lnUR lnTE lnST

lnERCE 1
lnP 0.987 ** 1
lnA 0.997 ** 0.973 ** 1

lnUR 0.977 ** 0.953 ** 0.974 ** 1
lnTE −0.990 ** −0.982 ** −0.989 ** −0.948 ** 1
lnST 0.967 ** 0.933 ** 0.979 ** 0.935 ** −0.968 ** 1

** Correlation is significant at the 0.01 level (2-tailed).

Table 3. OLS results.

Variable Coefficient t-Statistic Sig. VIF

1. OLS results (water use)

C −16.947 −12.760 0.000
lnP 0.800 8.316 0.000 78.800
lnA 0.978 10.927 0.000 296.370

lnUR −0.221 −1.020 0.026 24.818
lnTW 0.905 15.813 0.000 293.144
lnST −0.641 −2.808 0.015 110.544

R squared 0.993
F-statistic 147.858

Sig. 0.000

2. OLS results (energy-related CO2 emissions)

C −0.738 −0.570 0.079
lnP 0.732 7.143 0.000 69.817
lnA 0.686 6.873 0.000 287.886

lnUR 0.605 1.705 0.014 51.666
lnTE 0.149 −2.213 0.047 131.445
lnST 0.543 1.171 0.064 356.158

R squared 1.000
F-statistic 3986.371

Sig. 0.000
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Table 4. Cumulative variance explanation of the results by PLS analysis.

PLS
Component Variance of X Cumulative

Variance of X Variance of Y Cumulative
Variance of Y Adjusted R2

1. Water use

t1 0.974 0.974 0.377 0.377 0.342
t2 0.009 0.983 0.332 0.709 0.674
t3 0.006 0.989 0.100 0.809 0.773
t4 0.010 0.999 0.040 0.848 0.808
t5 0.001 1.000 0.126 0.975 0.966

2. Energy-related CO2 emissions

t1 0.972 0.972 0.994 0.994 0.994
t2 0.013 0.986 0.003 0.998 0.997
t3 0.005 0.991 0.001 0.998 0.998
t4 0.007 0.998 0.000 0.999 0.999
t5 0.001 0.999 0.000 0.999 0.999

3.2.2. PLS Regression of the STIRPAT Model

The PLS method was adopted to correct the STIRPAT model in the presence of multicollinearity
among variables. By PLS theory, R2X is the ability of the extracted principal components to interpret
the independent variables X, and R2Y is the ability to explain the dependent variable Y. When water
use was the dependent variable and the number of principal components equaled 5, maximum values
of R2X (cum) = 1.000, R2Y (cum) = 0.975 and adjusted R2 = 0.966 were attained, indicating that this
scenario represented the best explanation of both the dependent and independent variables (Tables 4
and 5). Additionally, when energy-related CO2 emissions were the dependent variable and the number
of principal components equaled 5, maximum values of R2X (cum) = 0.998, R2Y (cum) = 0.999 and
adjusted R2 = 0.999 were found, indicating that this scenario represented the best interpretation of both
the dependent and independent variables (Tables 4 and 5). Thus, both the independent variables and
dependent variables could be interpreted by the principal components with a satisfactory regression.
We can conclude from this result that the future total water use and energy-related CO2 emissions
could be estimated based on the PLS-STIRPAT model (Table 5). The associated regression models can
be defined as follows:

ln WU = −18.390 + 0.975 ln P + 1.017 ln A− 0.194 ln UR− 0.215 ln ST + 0.965 ln TW (7)

ln ERCE = −1.812 + 0.702 ln P + 0.748 ln A + 0.242 ln UR− 0.130 ln ST + 0.096 ln TE (8)

The VIP values, which reflect the importance of the independent variables to a dependent variable,
are shown in Figure 4. These factors demonstrated similar importance in energy-related CO2 emissions,
for which all the VIP values ranged within 0.985–1.019. The influences of the factors on energy-related
CO2 emissions in Beijing were ranked as follows: lnP (1.019) = lnA (1.019) > lnTE (1.007) > lnUR (0.992)
> lnST (0.985). However, when water use was considered as the dependent variable, the VIP values of
the independent variables were distinct and ranged within 1.554−0.884. The influences of the factors
on water use in Beijing were ranked as follows: lnTW (1.554) > lnP (1.152) > lnA (1.012) > lnST (0.894)
> lnUR (0.880). The VIP values of the independent variables were all greater than 0.8, indicating that
those variables were significant in explaining the dependent variable [44].
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Table 5. Overview of the PLS regression results.

Variable Water Use (lnWU) Energy-Related CO2 Emissions (lnERCE)

Constant −18.390 −1.812
lnP 0.975 0.702
lnA 1.017 0.748

lnUR −0.194 0.242
lnTW/lnTE 0.965 0.094

lnST −0.215 −0.130
R2X (cum) 1.000 0.998
R2Y (cum) 0.975 0.999

Adjusted R2 0.966 0.999

3.3. Model Verification

To further test the robustness of the STIRPAT model, both total water use and energy-related CO2

emissions from 2011 to 2016 were calculated based on Equations (7) and (8), and compared with actual
values. The estimated values were almost equal to the actual values, and the average relative errors of
water use and energy-related CO2 emissions were 0.99% and 1.29%, respectively (Table 6). Therefore,
the PLS-STIRPAT model could be adopted to forecast future total water use and energy-related CO2

emissions in Beijing.

Table 6. Comparison between actual values and estimated values of water use and CO2 emissions
from 2011 to 2016 in Beijing.

Year

Water Use Energy-Related CO2 Emissions

Actual
Values

(Million m3)

Estimated
Values

(Million m3)

Relative
Error
(%)

Actual Values
(Million tons)

Estimated
Values (Million

Tons)

Relative
Error (%)

2011 3596 3575 0.59% 97.23 99.84 2.65%
2012 3588 3566 0.61% 105.49 106.06 0.54%
2013 3638 3608 0.83% 109.05 109.17 0.11%
2014 3749 3711 1.01% 114.31 114.58 0.24%
2015 3820 3855 1.70% 121.5 119.33 1.73%
2016 3880 3832 1.21% 129.62 126.45 2.45%

3.4. Scenario Analysis and Prediction of Water Use and Energy-Related CO2 Emissions in Beijing

Scenarios aimed at estimating future water use and energy-related CO2 emissions were designed
based on the PLS-STIRPAT model. Generally, population factors and affluence factors may lead to
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an increasing trend in total water use and CO2 emissions, while technology factors, such as energy
intensity, water use intensity, and service level, are negative factors that may have a negative influence
on dependent variables. Therefore, we divided these variables into two parts, and assumed that the
trends of variation in driving factors would be consistent within each part. Additionally, considering
that the urbanization rate of Beijing has been relatively high and remained almost stable from 2010 to
2016, the urbanization rate is not considered in this study. The future trends of each driving factor were
divided into three situations with diverse speeds: low (L), medium (M), and high (H). The combination
of these factors formed eight scenarios, which are shown in Table 7, and the annual variation rates of
each factor are shown in Table 8.

The predicted total water use and energy-related CO2 emissions in Beijing from 2016 to 2030
are displayed in Figures 5 and 6. The total water use and CO2 emissions will clearly continuously
increase over the next fifteen years. The scenario-specific total water use in 2030 can be ranked in
increasing order as “S5”, “S7”, “S4”, “S6”, “S2”, “S1”, “S3”, and “S8”, and the corresponding values
are 4432.13, 5236.39, 5576.53, 5956.89, 6194.79, 7047.16, 7794.33, and 8866.78 million m3, respectively.
In addition, the energy-related CO2 emissions in 2030 can be ranked in increasing order as “S7”, “S5”,
“S6”, “S2”, “S1”, “S4”, “S3”, and “S8”, which is a different order from that of predicted water use;
the corresponding values are 162.36, 173.64, 182.32, 195.19, 206.59, 215.40, 230.72, and 242.52 million
tons, respectively.
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In the business-as-usual (BAU) scenario of S1, the total water use and energy-related CO2

emissions will rise quickly to 7047.16 million m3 and 206.59 million tons in 2030, respectively,
representing a 78.96% and 59.39% increase, respectively, relative to the values in 2016. In S2, with an
emphasis on adopting innovative technology to improve water efficiency and energy efficiency, and
an increased focus on industrial restructuring, the total water use and energy-related CO2 emissions
will reach 6194.79 million m3 and 195.19 million tons in 2030, respectively, or 13.8% and 5.8% less than
the values for S1. Under a hypothetical situation with developing social and economic prosperity
and rapid population growth in S3, the total water use and energy-related CO2 may inevitably
increase due to rapid urban development. The predicted total water use in 2030 is 7794.33 million m3,
which is a 25.8% increase relative to that in S2, while the energy-related CO2 emissions will be
230.72 million tons, a 10.35% increase over S2. In S4, the government of Beijing continues to pursue
prosperity in terms of social and economic development, while paying more attention to controlling
the environmental pressure on water resources and energy. The total water use will decrease by
39.8%, while the CO2 emissions will be reduced by 7.1% relative to the values in S3. In S5, with a
medium increase in population and per capita GDP, high technological innovation and high industrial
structure optimization, the total water use will be 4432.13 million m3 in 2030, which is the minimum
value among the eight scenarios, while the energy-related CO2 emissions will be 173.64 million tons,
which is the second-lowest value. Although the minimum energy-related CO2 emissions appear
in S7 with a value of 162.36 million tons, this scenario may be unacceptable, due to the low speed
of economic development, which cannot approach the annual growth rate of 6.5% established in
the Thirteenth Five-Year Plan (2016–2020) of Beijing as closely as S6 can. S8 shows an extensive
social development mode that focuses more on rapid economic growth and population expansion,
and neglects technological investment and industrial adjustment. Consequently, the total water use
and energy-related-CO2 emissions in S8 reach their peak values among the eight scenarios. From
this analysis, positive technology innovation and industrial restructuring have a significant impact
on reducing the total water use, while controlling economic growth and population expansion can
effectively control energy-related CO2 emissions. This conclusion is inconsistent with the calculated
VIP values. In general, socioeconomic status and population grow in the medium-increase mode,
and high growth rates in the technology and service levels correspond to the most suitable urban
development mode under the dual control of water use and energy-related CO2 in Beijing. In this
urban development mode, the total water use will be 4432.13 million m3, and the energy-related CO2

emissions will be 173.64 million tons in 2030, representing reductions of 37.1% and 18.9%, respectively,
relative to the BAU scenario in S1.
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Table 7. Future development scenarios for the city of Beijing.

Scenario Scenario Description Affluence (A) Population Size (P) Technology Level (TW/TE) Service Level (ST)

S1 (BAU)

This scenario is set as the basic situation. We assume that
economic growth can meet the projections in the
Thirteenth Five-Year Plan (2016–2020) and that the
growth rate is slowly decreasing. Population growth has
been consistent for the past five years and will gradually
slow in the next decade. The technology level can meet
the resource-saving targets, while the industrial structure
follows the current development trend.

M M L L

S2
S2 is based on S1, and emphasizes faster technical
progress and an adjustment of the industrial structure to
target resource saving.

M M M M

S3 This scenario is based on S2 and focuses more on rapid
development of the economy and population. H H M M

S4

The driving factors of per capita GDP and population
remain high, and the CO2 emissions are controlled due to
the application of energy-saving or water-saving
technology.

H H H H

S5
Relative to S4, medium economic-development and
population-growth modes are adopted to reduce
energy-related CO2 emissions.

M M H H

S6
Risks and challenges lead to a decline in economic and
population growth. Furthermore, the development of
technology moves slowly.

L L L L

S7 Relative to S6, S7 focuses more on environmentally
friendly industries. L L M M

S8

This scenario attaches excessive importance to economic
development and population growth while largely
ignoring the pressure on the environment. This social
development mode is unsustainable, and may lead to a
waste of resources.

H H L L
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Table 8. Annual change rates for each factor in the L, M, and H scenarios (%).

Variable Scenario
Years

2017–2020 2020–2025 2025–2030

P
L 0.5 0.25 0.15
M 1 0.5 0.25
H 2 1 0.5

A
L 5.5 3.5 1.5
M 6.5 4.5 2.5
H 7.5 5.5 3.5

TW
L −5 −2.5 −1
M −6 −3 −1.5
H −7 −3.5 −2.5

TE
L −3 −1.5 −1
M −4 −2 −0.5
H −5 −2.5 −1.5

ST
L 0.9 0.8 0.7
M 1.0 0.9 0.8
H 1.1 1.2 1.3

3.5. Uncertainty Analysis

In the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, two kinds of calculation
methods were advanced for energy-related CO2 emissions: the reference method and the sectoral
method. The reference method is a top-down approach that focuses on terminal energy consumption,
and multiplies the associated factors by the emission factors of different fuels to obtain the total
energy-related CO2 emissions, while the sectoral method is a bottom-up approach in which each
department calculates the total carbon emissions and sums them to obtain the total carbon emissions.
In this study, the energy-related CO2 emissions were calculated from terminal consumption of different
fuel types, rather than aggregated from all economic sectors. The results of the two various calculation
method may include gaps. Furthermore, we used the emission factors, which play a vital role in
calculating carbon emissions, provided by Mi et al. [35]. In their study, they proposed that the default
values recommended by IPCC overestimated China’s CO2 emissions. Therefore, uncertainties may
exist in the calculated energy-related CO2 emissions.

4. Conclusions and Policy Implications

In this study, the PLS-STIRPAT model was established to explore future development modes in
Beijing under the dual control of water resources and energy-related CO2 emissions. The population,
per capita GDP, urbanization rate, water (or energy) intensity, and the proportion of added value from
tertiary industry were selected as the driving factors to predict the total water use (or energy-related
CO2 emissions). The VIP values of all factors indicated that all these factors are important in influencing
the total water use and energy-related CO2 emissions. Additionally, the scenario analysis results
showed that the total water use and CO2 emissions will continuously increase over the next fourteen
years. Additionally, under the dual control of water use and energy-related CO2 emissions, the most
suitable urban development mode will enable the socioeconomic status and population to grow
at a medium pace, and a high growth rate will be observed in the technology and service sectors.
By 2030, the total water use will be 4432.13 million m3, and the energy-related CO2 emissions will be
173.64 million tons.

With its high-speed economic and urbanization development, Beijing will inevitably face pressures
involving increased water demand and energy consumption. It is of prime importance to balance city
economic development, water and energy security, and environmental sustainability. Based on our
analysis, several suggestions are presented:
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(1) The per capita GDP is the most significant factor influencing Beijing’s energy-related CO2

emissions, and has a significant influence on water use. Economic growth is necessary to achieve
the basic goal of national survival and development, but inevitably applies environmental
pressure. To fulfil targets of water and energy security and environment sustainability, Beijing
needs to consider controlling the economic growth within a reasonable range, and change the
strategies of economic growth to incorporate high-quality patterns. Moreover, it is essential to
establish related regulations and laws on resource production to balance economic development,
and water and energy security.

(2) In terms of goals for cutting CO2 emissions and water security, population is another vital
factor. Hence, it is recommended to continue to control the population size and attach
importance to optimizing the population structure and quality in Beijing. Furthermore, the
relevant authorities are suggested to enact efforts to raise people’s environmental awareness and
encourage households to maintain sustainable consumption patterns.

(3) The technology factors, including energy consumption intensity and water use intensity, play
prominent negative impacts on energy-related CO2 emissions and the total water use, respectively.
Therefore, Beijing needs improved energy efficiency in energy-intensive industries, and to
establish target-oriented responsibility systems and adopt low-carbon technology. Furthermore,
it is recommended that government control be strengthened, and priority given to water
conservation. Examples include adjusting crop configurations and promoting water-saving
irrigation to improve water efficiency for agriculture, and improving the efficiency of cooling
water (and reducing its use) to realize industrial water saving. In addition, the authorities
concerned need to bring functions into full play to improve society’s independent innovation
ability. For example, it is suggested that increasing investment in science and supporting multiple
enterprises with independent intellectual property rights and independent innovation capabilities
will vigorously develop water-saving and low-carbon technologies, and improve economic
growth’s reliance on scientific-technical progress in Beijing.

(4) Water and energy are essential to human beings. However, policymaking efforts regarding
optimization of the industrial structure, and ensuring water and energy security, are isolated from
each other. It is of great important to improve policy integration related to these two resources.
However, the research is still preliminary, and lacks specific energy use figures for the water
sector. The preparation of the projections of energy use figures for the water sector are needed in
the future. This study provides a theoretical foundation for Beijing to explore its city development
mode under the dual control of water resources and energy-related CO2 emissions, and provides
a new perspective for establishing water and energy security integrally in formulating long-term
policies for policymakers in other cities or countries.
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