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Abstract: Solar irradiation is influenced by many meteorological features, which results in a complex
structure meaning its prediction has low efficiency and accuracy. The existing prediction methods are
focused on analyzing the correlation between features and irradiation to reduce model complexity
but they do not account for redundant analysis in feature subset. In order to reduce the information
redundancy in the feature set and improve prediction accuracy, a novel feature selection method
for short-term irradiation prediction based on Conditional Mutual Information (CMI) and Gaussian
Process Regression (GPR) is proposed. Firstly, the CMI values of different features are calculated to
evaluate correlation and redundant information between features in the feature subsets. Secondly,
GPR with a stable prediction performance and adaptively determined hyper parameters is used as
the predictor. The optimal feature subset and the GPR covariance function can be selected using
Sequential Forward Selection (SFS). Finally, an optimal predictor is determined by the minimum
prediction error and the prediction of solar irradiation is carried out by the determined predictor.
The experimental results show that CMI-GPRagk has the highest prediction accuracy with the
optimal feature set has low dimension, which is 4.33% lower in MAPE than the predictor without
feature selection, although both of them have an optimal kernel function. The CMI-GPR g is less
complicated for the predictor and there is less redundancy between features in the model with the
dimension of the optimal feature set is only 14.

Keywords: solar irradiation; short-term irradiation prediction; feature selection; Gaussian Process
Regression; conditional mutual information

1. Introduction

Solar energy is the cleanest and richest renewable energy in the world. However, photovoltaic
power generation is influenced by the randomness and volatility of solar irradiation. In order to reduce
the negative effect on the stability when the photovoltaic connects to power grid, the photovoltaic
power need to be predicted accurately [1]. The solar irradiance is the most important factor affecting the
power output of photovoltaic power, so the prediction results of solar irradiation with high accuracy
can effectively improve the prediction accuracy of photovoltaic output and help for the dispatching
department of the electrical grid to arrange the scheduling plan and operation mode for the power
grid [2,3].
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The conventional irradiation prediction models can be divided into three types: statistical
models [4], physical models [5] and intelligent algorithm models [6]. The statistical models are
established by analyzing the relationship between irradiation data at each time, they are simple and
efficient. However, the prediction has low accuracy and the parameters of the higher-order models are
difficult to determine. The physical models are based on numerical weather forecasts. Because of a
large number of factors that affect the accuracy of solar irradiation predictor, the input of the physical
models has a pretty high dimension and they are very complicated to operate. By using intelligent
algorithm models, the nonlinear intelligent prediction models can be constructed. They have a good
nonlinear fitting ability and takes full account of the impact of external conditions on irradiation.
The predicted results are more accurate.

At present, the commonly used intelligent algorithm methods in short-term solar irradiation
prediction include BP artificial neural network (BPNN) [7], RBF neural network (RBFNN) [8],
extreme learning machine (ELM) [9] and support vector machine (SVM) [10]. BPNN has a good
self-organization and adaptive processing ability and it can solve the nonlinear fitting problem in
irradiation prediction. But it is prone to the problem of local optimal solution. RBFNN does not
have the local minimum problem but it has high demand on feature set. When the data is not
sufficient, it will have a low prediction accuracy. ELM has the randomly generated initial weights,
which will lead to over-fitting or instability. SVM can transform the prediction problem into quadratic
programming problems from the perspective of risk minimization and obtain the global optimal
problem [11]. However, the kernel function’s selection and optimization of parameters are complex
and the prediction result is unstable.

The solar irradiation can be influenced by various natural environmental factors [12], such as
air pressure, precipitation, humidity, temperature and so on [13,14]. Hence the irradiation prediction
model based on intelligent algorithm is more complicated than traditional load forecasting [15].
Furthermore, because of different meteorological environment in different regions, a unified irradiation
prediction model cannot meet all the needs of irradiation prediction in different places. Therefore,
the historical data of different specific regions should be analyzed separately and the optimal prediction
models with different feature subsets should be designed separately in different areas [16,17].

In order to reduce the complexity of predictor, feature selection is used to reduce the feature set
dimension [18,19]. The existing feature selection method commonly used for irradiation prediction is
the Filter method [20,21]. In the Filter method, when the feature importance is got, the optimal feature
subset can be determined by SFS or Sequential Backward Selection (SBS). The methods for measuring
the correlation of features include Pearson Correlation Coefficient (PCC) [22,23], Mutual Information
(MI) [24,25] and so forth. Although PCC and MI can analyze the correlation between features and
solar irradiation, it cannot analyze the information redundancy between features in the subset.
The redundant information existing among the highly correlated meteorological features lead to
the high complexity and low prediction accuracy. On the basis of MI, Conditional Mutual Information
(CMI) also measured the redundancy of features in the process of feature importance calculation [26,27].
Therefore, using CMI to construct the importance rank of features can further reduce the influence
of informational redundancy in the feature subset based on the strong correlation between selected
features and solar radiation which has already calculated by CMI [28].

In order to obtain reliable feature selection results, the predictor should have less parameters and
stable prediction accuracy in the feature selection process. GPR is a machine learning method based
on Bayesian theory and statistical theory. It has good performance in dealing with high dimension,
small data set and nonlinear complex problems. GPR has less parameters to be optimized and strong
generalization ability. It also has a stable and accurate forecast result in prediction [29]. Thus, it can be
efficiently used to predict solar irradiation [30].

In order to reduce the information redundancy in the feature set and improve the prediction
accuracy, a feature selection method based on CMI and GPR for solar irradiation prediction is proposed.
Firstly, CMI is used as the feature importance analysis method and adopted to calculate the importance
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of each feature. Secondly, the SFS method based on CMI and GPR with 10 different covariance functions
is used to choose the optimal feature subset for solar irradiation forecast. The feature selection is
carried out with the prediction accuracy as the index of evaluation. Finally, the optimal predictor used
for solar irradiation forecast with highest forecast accuracy is constructed with the optimal feature
subset and the best covariance function. The commonly used methods are used as the contrast test
to prove the superiority of the proposed method. In order to prove the advantage and feasibility
of the new method, the real measured solar irradiation data in solar irradiation research laboratory
(SRRL) [31], Oak Ridge National Laboratory (ORNL) [32] and Natural Energy Laboratory of Hawaii
laboratory Authority (LELH) are used in numerical experiments [33] and each data set could contain
same feature types and the feature set with same structure will be built.

2. Solar Irradiance Forecasting Using CMI and GPR

The new method is mainly composed of two components: CMI and GPR. The purpose of
using CMI is to build the optimal feature subset and the optimal predictor is based on the GPR.
The combination of the optimal feature subset and the optimal predictor makes up the optimal
prediction method.

To build the optimal feature subset, the importance values of different features need to be
calculated by CMI first. Then, in terms of the descending order of CMI value, the ranking of feature
importance is got. Finally, the feature selection is carried out by using GPR combines the SFS method
according to the ranking of feature importance and the optimal feature subset is determined with the
minimum error.

To build the predictor of GPR, ten different GPR models with different covariance functions are
built. And best covariance function can be selected in the experiment and the optimal predictor is
constructed. The optimal predictor method can be determined by the optimal feature subset and
optimal predictor. The methodology of the proposed method can be shown in the red box of Figure 1.

Original feature
set

Analyze the importance
of features by CMI

v

Using different kinds of
covariance functions to build
different kinds of GPR models|

v

Features Selection by using SFS
method based on CMI according to
the MAPE of predictors

y

The optimal GPR predictor is constructed
with the optimal feature subset and
covariance function

v

Solar irradiation predict by the optimal
GPR predictor

Figure 1. The flowchart of the proposed method.
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When the optimal prediction method is determined, the solar irradiation prediction experiment
will be carried out by using this method, as shown in the blue box of Figure 1.
The details about CMI and GPR are explained in the following parts.

2.1. Conditional Mutual Information

CMI makes the new selected features in the subset have strongly correlated with the solar
irradiance. It also selects the features with least redundant information.

Suppose that X and Y are two random variables, and p(x, ) is the joint probability distribution
of X and Y. The mutual information between X and Y is expressed as:

Y) = o PY)
HKY%—;éh&mﬂgpwww) 1)

When the irradiation value is X, the features to be selected is Y and the selected feature is Z,
the CMI is expressed as Y between X and Z:

I(X;Y|Z)=1(X;Z) - (X;Y; Z) )

I(X;Y|Z) refers to that the information sharing between X and Y in the case that Z is the selected
feature. If Y and Z contains the same amount of information about X, the values of I(X; Z) and
I(X;Y; Z) are equal. The value of I(X;Y|Z) is zero. If Y contains information about X but Y does not
contain information related to Z, the value of CMI is nonzero. If the X and Y have lower correlation
with Z, the amount of shared information I(X; Y|Z) will be bigger and a greater value of CMI will be
got. Therefore, CMI takes full account of the information redundancy between candidate features and
selected features. That makes the CMI value between the candidate feature and the target feature is
the largest. Therefore, it can effectively reduce the redundant information in the optimal feature subset
of short term solar irradiation prediction.

2.2. Gauss Process Regression

In the process of feature selection, different feature subsets have different dimension and feature
types. It is difficult to ensure the predictor using different feature sets has a well effect with same
parameters. Therefore, the predictor with few parameters and stable prediction accuracy will ensure
the stability and credibility of feature selection.

Gaussian Process (GP) is a set of any finite number of random variables meet the joint Gauss
distribution, which is determined by mean function and covariance function:

m(x) = E[f(x)] ©)
k(xx') = E[(f(x) = m(x))(f(x) = m(x))] @

where x,x' € R? is the arbitrary random variable, m(x) is the expectation of the f(x), k(x,x) is the
covariance of x and x". Therefore, GPR can be defined as f(x) ~ GP(m(x),k(x,x")). For the irradiation
prediction, using the following model:

y=f(x)te (5)

x is the input feature vector, f refers to the value of the function, y is the vector of observed value
with noise. Assume the noise is ¢ ~ N(0,03), the prior distribution of y can be obtained:

y ~ N(0,K(X, X) + 021,) (6)

The joint prior distribution of the observed value y and the predicted value f, is described
as follows.
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2
Y | ~n(o, K(X,X) + 02l K(X,x) @)
f* K(X*/X) k(X*,X*)
where K(X,X) = K, = (kl-]-) is a n X n symmetric positive definite covariance matrix and
the k;; = k(xi, xj) is to measure correlation between feature vector x; and feature vector x;,
K(X,x:) = K(x., X)" is the n x 1 covariance matrix between test set x, and the input of training set

X. K(x«,xx) is the covariance matrix of test point x.. I, is the n-dimensional unit matrix.
The posterior distribution of the predictive value f, can be calculated by using the
following formula:

f*|X,y,x* ~ N(f*/ COV(f*)) 8)
In this equation,
fo =Ko, X)[(X,X) + 021,] 'y ©)

cov(fy) = k(xs, %) — K(x4, X) %

[K(X, X) + 02L,] ' K(X, x.) (10)

fl. = f, and 6'}* = cov(fy) are the mean value and variance of the predicted values (f.)
corresponding to the test points x..

GPR can use different covariance functions. The covariance functions can determine how the
response at one point x; is affected by responses at other points x;, i # j, i = 1,2,...,n. The most
commonly used covariance function is Squared Exponential Kernel functions:

1(x — %)  (xi — %))
k= 2 - ] ]
Ufexp[ 5 " ]

(11)

In this equation, ¢ is the length scale of feature data, oy is the signal standard deviation.
The feature length scales briefly define how far apart the input values x; can be for the response
values to become uncorrelated. Both ¢; and ¢y need to be greater than 0.

When get the 07 and 07 is determined, the prediction values f. and variance @'J%* can be obtained
by using the Equations (9) and (10).

In order to get an accurate prediction value, the decision of GPR need a loss function L(y, y* ),
which specifies the loss incurred by predicting the value y* when the true value is y. For example,
the loss function could equal the absolute deviation between the prediction and the truth. The goal is
to make the point prediction y* which incurs the smallest loss. The best prediction, in the sense that it
minimizes the expected loss, is:

Voptimal = min | L(y,y")p(y"Ix’, D)y’ (12)

x* is the input data corresponding to y*. D is the data set corresponding to x*.When the predictive
distribution is Gaussian the mean and the median coincide and indeed for any symmetric loss function
and symmetric predictive distribution we always get y as the mean of the predictive distribution.

The model is established by GPR applying the principle of probability distribution, then transform
the distribution from the prior distribution to the posterior distribution in the Bayesian framework.
GPR has less parameters to set. The parameters of GPR can be automatically obtained through the
training process and avoid the complex process of parametric optimization. There are less factors affect
the prediction stability of GPR [34]. Therefore, its suit for solar irradiation forecast feature selection.

3. Feature Importance and Election Analysis

In this section, part 3.1 is the construction of the feature set. The intuitive analysis of feature sets is
carried out in part 3.2. In part 3.3, the further evaluation of feature importance by using CMI, MI and
PCC is carried out. In order to select the best feature subset, the sequential forward feature selection is
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proposed in part 3.4 and part 3.5. In part 3.6, ten kinds of covariance functions of GPR are compered to
select the best one. In part 3.7, the feature selection experiments with contrast predictors are carried
out and the optimal feature subsets and predictors are determined in this part.

3.1. The Construction of the Data Set

In order to construct the original dataset for the experiment and verify the effectiveness of the
method, the measured data collected from SRRL, ORNL and LELH were used respectively. Each data
set contains 7 types of meteorological information. In order to accurately identify important features
and redundant features among the feature sets, 10 similar neighboring historical features are included
in each type of information. At the same time, the Angstrom-Prescott linear regression equation:
S% = a+ by is usually used to reflect the solar irradiation and the time features [35]. In this equation:
So is the extraterrestrial irradiation on horizontal surface (Wh/m?). S is the annual horizontal global
solar irradiation (kWh/ mZ). Coefficients a and b are the empirical coefficients, n is the actual sunshine
duration in a day (hours) and N is the monthly average maximum bright sunshine duration in a day
(hours). The empirical coefficients a and b depend on the S and n. Considering that the solar irradiation
is related to the diurnal and annual variations, the time features are added to the original feature set as
date (day) and moment (hour). Therefore, the original feature set is made up of the following features:
feature 1 is day, feature 2 is hour; feature 3 to 12 is historical irradiation (S;;); feature 13 to 22 is historical
temperature (T} ;); feature 23 to 32 is historical relative humidity (H;;); feature 33 to 42 is historical
wind direction (Wd,_;); feature 43 to 52 is historical wind speed (Ws;_;); feature 53 to 62 is historical
air pressure (P;_;); feature 63 to 72 is historical precipitation (R;.;), i =1, 2, ... 10. Among them, ¢ is the
time to be predicted; i is the sampling point. Because this work is part of the PV output prediction
and according to the requirements of the national grid for short-term and ultra-short-term PV output
forecasting, the sampling interval is 15 minutes. The measured data collected from SRRL, ORNL and
LELH have the same feature types and data set structure.

3.2. Analysis of Original Feature Set

When using the data from SRRL, the relationship between the meteorological features and solar
irradiation can be analyzed by using Figure 2.

«;\%«\d O o »L\\\‘< S
R PN PSS R
R S R R S L S T

o 100 Solat Irradiation 25100 Solar Irradiation Y
E 0 H H H H H H E 0
SO WA A AAEE
@ oL @0
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0 : i : f i : é 0‘
g 9% : : : : : T 94
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Figure 2. The relationship between different meteorological features and solar irradiation.
(a) The original data for a week in September 2015 (b) Enlarge the data in the red box.
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The data shown in Figure 2a are randomly selected from 18 February to 24 February 2015.
It can be seen from Figure 2a that, the values of solar irradiation, pressure, relative humidity and
temperature have obvious daily periodicity. Wind speed, wind direction and precipitation show
obvious randomness. In order to show the trend of changes more clearly, the fifth day (in the area of
red box) is randomly selected from Figure 2a for detailed analysis. Figure 2b is used to display the
data in the red box. Figure 2b is the measured data from 7 to 18 o’clock. At the time of 7 to 12 o’clock,
the values of pressure, relative humidity are in the process of decline, while the value of temperature
and irradiation are in the process of increase. At the time of 12 to 18 o’clock, the value of pressure
and relative humidity are decreased slightly, the value of temperature continues to rise, the values of
irradiation began to decline during this time, while the changes of wind speed and wind direction do
not show significantly correlated with the solar irradiation.

3.3. Feature Importance Analysis

To analyze the importance of features, three different evaluation methods are used, they are
PCC, MI and CML. In Figure 3, the values of features importance are calculated by CMI, MI and PCC
respectively. The measured data are collected from the whole year of 2015 using the data of SRRL.
Therefore, the importance values contain the information of the whole year. In order to embody the
superiority of CMI in analyzing feature importance and redundancy, the top 12 features are selected
and marked in red in Figure 3. As shown in Figure 3, different importance criteria lead to obviously
different rankings of feature importance. Compared with PCC and MI, CMI contains more features
types (4 types) marked in red in the top 12 features. The features rankings of top 12 according to feature
importance are shown in Table 1 and the results of different measured data sets by using different
calculation methods can be compared.

Z W, . V7
qp%lou 583, 7;‘7;0 6,'"/7'10 s, 4~W¢0 pI‘Plo /‘)"/?Io
kS
8 72}
S5 1
5 3
e [T —
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eature numbper
(a)PCC
1 .
s
D o
29
g2 ]
22
i anlEERNEEN S .
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0 10 20 30 40 50 60 70
Feature number
(M1
1 .
kS
88
§5o -
S & |I
= unanlainnl
£ o u )
0 10 20 30 40 50 60 70
Feature number
(c)CMI

Figure 3. The importance of features using different importance analysis method.

Using the data of SRRL as the example to evaluate the ability of different methods about the
features correlation and redundancy. As shown in Figure 3 and Table 1, S;.; is the most important
feature by the 3 methods in SRRL data set. S;.; is the most similar feature to the S;.4, it is behind S;.; in
the ranking of PCC and MI. But S;.; is behind the twelfth at the ranking of CMI importance. Because
of the feature sets selected by PCC and MI include many features close in time among the same type,
it leads to a large amount of redundancy information contained in the feature sets. The feature set
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selected by CMI include more features types and has fewer features within the same type. It obviously
to see that CMI could evaluate the redundancy of information between features.

In addition, the common features of PCC, MI and CMI in the top 12 features with highest feature
importance value include: S;.1, St.3, St.4, St.5, St.6, T-1 and so forth. The top 12 features with highest
feature importance of the PCC include 3 types of features: historical solar irradiation, temperature and
relative humidity. The top 12 features with highest feature importance obtained by MI mainly include
3 types of features: historical irradiation, temperature and time. But the top 12 features with highest
feature importance obtained by CMI method include four types of features: historical irradiation,
temperature, wind speed and time. Therefore, CMI can fully consider the redundancy between the
features in the same type when calculating the feature importance.

Using the same method, the measured data of ORNL and LELH are also used to analyze the
importance of features. From Table 1, it can be seen that the ranking of CMI usually contains more
type of features than MI and PCC among the top 12 features by the data of ORNL and LELH. So,
it can prove that by different data sets, CMI can also effectively analyze the informational redundancy
between the features.

At the same time, Table 1 shows that the data sets collected from different locations will have
different rankings. Therefore, feature selection needs to be carried out when the different data sets
are used.

Table 1. The importance ranking of features of different data sets with different importance
analysis method.

Data Method Importance Ranking of Features (Top 12)
PCC 5¢1,54-2,5¢-3,5¢-4,54-5,54-6,54-7,5+-8,54-9,T-1,H-1, T2

SRRL Ml Stfl ,St,Z,Stfg,hOl/lV,St74,St,5,5t76,St,7,5t,8,5t,9,5t,]O,Tt,I
CMI St—] /Tt—l /Tt—9lwst—1 /St—6/St-10/Tt—4/St—8/St—5/St—4/Sf—3/hour
PCC 5¢1,5¢-2,5¢-3,5¢-4/5¢-5,51-6/T1-1,T1-5,T1-9,T1-4,5¢-7, W3

ORNL MI St-l/St'z/St's/hourlst'4/St'5/st-6lst-7lst-8lst-9lst-]Oth'l
CMI St.1,hour,5;.10,5¢-9,51-8,5+-7,T+-6,5t-4,5+-3,51-5,5+-2, W81
PCC S¢1,51-2,5¢-3,5+-4,5¢-5,5+-6,5t-7,Hp-1,H-2,5¢-8,Hp-3,Hp 4

LELH MI S.1,hour,S.2,5¢.8,5¢3,Tt-1,Ht 2,5¢-5,5-4/5+-3,5+-2,5¢-7
CMI 5¢1,51-2,5¢-3,51-4,T1-5,H.1,5¢.6,51-8,hour,Hy_4,54.7,Py 1

3.4. Data Description and Evaluation Indicators of Feature Selection

The measured data of SRRL, ORNL and LELH in 2015 are selected as the training set and
validation set. Because the values of solar irradiation are greater than zero is mainly concentrated at
7:00 to 19:00, the irradiation values to be predicted are located at this time domain [36].

In this experiment, the validation set is made up of the data four weeks random select from
spring, summer, autumn and winter respectively in 2015. Other data is used to constitute training sets.
The experiment uses the data with the time interval of 15 minutes. In order to achieve the prediction
goal of 1 hour ahead, it needs to do rolling forecast with four steps continuously, the construction of
the original feature set and the prediction goal are shown in Figure 4. In Figure 4, the original feature
set for feature selection is made up of feature 1 to feature 72, the features marked with ¢ are the original
input features of 7 o’clock and the features marked with t” are the original input features of 19 o’clock.
Therefore, S to S;,3) as the 4 prediction values in 7 o’clock and Sy to S¢,3) as the 4 prediction values
in 19 o’clock. As shown in Figure 4, the dimension of input of the predictor is 72, which increases
the complexity of predictor training process and reduces the prediction efficiency. At the same time,
there is a lot of redundant information in the original feature set, which makes the prediction accuracy
at a lower level. While, feature selection can reduce the dimension of the input features and solve these
negative effects.
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The feature selection method of SFS is carried out by using MAPE as a measure:

m

Y (1Xe — Xi| /%) (13)

i=1

MAPE =

S~

where X; is the real value, S(t is the predictive value, m is the number of the predictive value (or real value).

day (6) 1 hour (t) 1 S(:-10). . S(=1) | T(:-10). . T(t-1) I RG-10. L RGD | S 4 steps forecasting
dzzy(zﬂ): hour(z+1): St-9). .S : T(t-9).. T(0) : : R(t-9). . R(1) S(t+1) for 7 o'clock
day (t+2)) hour (t+2) S(¢t=8).. S(¢+1) | T(¢-8).. T(¢+1) | R(t-8). . R(t+1) S(t+2)
day (¢+3)! hour (¢+3) ! S(¢+=7). . S(¢+2) ' T(e-1). . T(1+2) ! LR L R(142) S(¢+3)
e |}Thef0recastingf0r
N S A S S T S R 8o 18 o'clock
dﬁy(z'): hour (¢") :5(1'*10)..5(1’*1)ir(l’*10)..T(z'*l); : R(t’-10). . R(¢’-1) NE)
day (¢’+1) hour (¢’+1); S(¢’-9).. S") | T(t’-9) .. T(t") | \ R(T-9). . Rt S(¢’+1) 4 steps forecasting
da‘y(t'+2)1 houz‘(t’+2): S’-8). . S+ T(¢’-8) ., . T(¢'+1)! : R(e’-8). . R(¢’+1)|  S(¢'+2) for 19 o'clock
day (¢'+3) hour (£’+3) S(’-T). . S(£’+2)|T(¢'=7) . . T(¢’+2), L RG=T). R(2)| S(+)
T T | | T e
Featurel: Feature 2 : Feature 3 to 12 :Feature 13t0 22 :Feature 23to 52: Feature 63 to 72 P:?:If;lsve
. . Y . H =
Original feature set(input) Prediction goal(output)

Figure 4. The description of original feature set and prediction goal.

3.5. The Method of Feature Selection Based on CMI and GPR

The SFS process based on CMI and GPR is as follows:

(1) Construct the original feature set;

(2) Using CMI to calculate feature importance;

(3) The SFS method is carried out according to the ranking of features’ importance. GPR predictors
is constructed with different feature subsets and the MAPE obtained from the GPR predictor is used as
index to determine the optimal features subset.

(4) Finally, the prediction model constructed with the optimal feature subset is used as the final
prediction model to predict the solar irradiation.

3.6. Covariance Function Selection and Optimal Predictor Build of GPR

To select the best covariance function of GPR, the experiment of covariance functions selection is
proposed. The expressions of 10 covariance functions of GPR are shown in Table 2 [30].

Table 2. 10 kinds of covariance functions of GPR.

GPR Covariance Function Mathematical Expression Function Number
T
Squared Exponential Kernel k(x;, x;10) = (7]% exp[— % %] @
1
Exponential Kernel k(x;, X; 10) = ‘Tj% exp(— %) )
Matern 3/2 k(x;, xj|0) = Uj%(l + \/g’rl ) exp[f%] ©)
Matern 5/2 k(xi, xj|0) = ]%(1—|— \/flrl +%)exp(—%) @
. . 2 -
Rational Quadratic Kernel k(xi, x;16) = (7]%(1 + 2:(1[7 [ 5) ®
d oy )?
ARD Squared Exponential Kernel k(x, x;|0) = (Tj% exp[—3 ¥ %77;7"‘)] ®
m=1 "
ARD Exponential Kernel k(xi, xj\g) = Uj% exp(—r2) )
ARD Matern 3/2 k(x;, x;|6) = (7%(1 +1/3r2) exp(—+/317) ®
ARD Matern 5/2 k(x;, x;]6) = (7/%(1 + 51y + 313) exp(—/512) o)
d -
ARD Rational Quadratic Kernel k(xl-,x]-|9) = 0’%(1 + ﬁ y (x‘m;%ﬁz) ()

m=
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In Table 2, from function @ to &: 07 is the feature length scale and the value will not be
changed with the input determined. oy is the signal standard deviation. ¢ [log 6;,log 6¢],

r = \/ (x; — xj)T(xl- — x;) is the Euclidean distance between x; and x;. From function ® to 10 are

% (xim;;jm)z
m=1 m
the number of features entered into the predictor, m = 1,...,d, 0y, is the feature length scale under
the different features, its numeric value will be changed with the different features. oy is the signal
standard deviation. a is a parameter which is larger than zero and value of it is determined by ¢, or ;.

10 covariance functions are used to construct 10 GPR models respectively. The training set is used
to train the 10 GPR models and the feature selection process is carried out using the validation set in
each model. The verification set is constructed by the data randomly selected from the four seasons in
2015. The training set is made up of the remaining data in 2015.

Figure 5 shows the process of feature selection for GPR combines with 10 different covariance
functions by using SRRL data sets. Each GPR model combines PCC, MI and CMI to get the error
statistics (measured by MAPE). The three methods of PCC-GPR, MI-GPR and CMI-GPR correspond to
Figure 5a—c.

the automatic relevance determination covariance function, r, = , where the d is

101

o
-
N

=
71

MAPE (%)
MAPE(%)

H
=
MAPE (%)

ponential Kernel(15,9.825)
25
Features number
(a)Feature select using PCC

511 40

Features number

101 12
& g ; g
% % ARD Expgge_nyall_Kernel(36,9860) %
= = o =
I .
1 25 40
Features number
(b)Feature select using M1
10 20=< : 1;
3 gz 18 Lo
& 50 & . &
< < 10F SmESh oo o e aaaas <
s | s . S 10 - — 3 ===
= ARD Exponential Kernel(14,8.707)
0 5 - 10
5 10 11 25 40 41 72
Features number Features number Features number
(c)Feature select using CMI
Squared Exponential Kemel — — Exponential Kernel ~— — Matem3/2 — — Matem5/2 - — Rational Quadratic Kernel
ARD Squared Exponential _ ARD Exponential ARD Matern 3/2 ARD Matern 5/2 ARD Rational Quadratic
Kernel Kernel Kernel

Figure 5. Feature selection process with different GPR covariance functions.

It can be seen from Figure 5 that the prediction error decreases with the increase of the feature
dimension at first. When the dimension of features from 11 to 40, the error decreases slightly and the
predictors with different covariance functions will have a different minimum MAPE value. It can be
seen that the accuracy of prediction can be increased by adding redundant features. The black circle
in Figure 5 is used to mark the minimum MAPE value. In this process, the value of error is mainly
distributed between 10% and 20%. When the dimension of feature set increases to 41 dimensions, all of
the error values are greater than the minimum error.

Table 3 shows the dimension of optimal feature subset and the minimum MAPE values obtained
in the experiment of covariance function selection by using three different data sets of SRRL,
ORNL and LELH.
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Table 3. Feature selection results with GPR using different covariance functions in different area.

Predictor
. X . PCC-GPR MI-GPR CMI-GPR
Location Covariance Function Feature Feature Feature
MAPEmin Dimension MAPEin Dimension MAPEmin Dimension
Squared Exponential 10.546 23 10.056 35 9.246 12
Exponential 10.727 13 10.984 34 9.027 20
Matern3/2 10.687 29 10.546 36 9.951 18
Matern5/2 10.469 28 10.479 42 9.096 19
Rational Quadratic 10.165 29 10.099 40 9.294 21
ARD Squared Exponential 10.046 34 10.058 35 10.278 17
SRRL ARD Exponential Kernel 9.825 15 9.860 36 8.707 14
ARD Matern 3/2 10.752 13 9.944 34 10.517 19
ARD Matern 5/2 10.241 13 10.078 32 8.730 11
ARD Rational Quadratic 9.932 33 9.957 30 9.396 12
Squared Exponential 13.518 40 9.541 36 7.872 18
Exponential 11.480 41 9.058 34 7.279 23
Matern3/2 11.871 41 9.481 33 7.130 20
Matern5/2 11.999 41 9.498 35 7.562 20
Rational Quadratic 11.253 41 8.456 37 6.862 13
ARD Squared Exponential 11.130 34 8.284 34 7.025 16
ARD Exponential Kernel 10.078 33 7.732 32 6.668 16
ORNL ARD Matern 3/2 10.840 36 8.978 32 6.699 20
ARD Matern 5/2 11.314 46 9.489 30 6.839 24
ARD Rational Quadratic 10.276 33 8.048 34 7.2726 26
Squared Exponential 15.581 40 12.792 37 12.180 13
Exponential 13.869 51 12.479 40 12.548 13
Matern3/2 14.173 51 12.588 29 13.090 17
Matern5/2 14.372 51 11.789 30 12.554 23
Rational Quadratic 12.663 51 11.588 33 12.215 17
ARD Squared Exponential 12.507 50 11.546 32 11.743 17
LELH ARD Exponential Kernel 12.386 52 10.843 33 11.806 16
ARD Matern 3/2 12.941 50 11.548 34 12.011 13
ARD Matern 5/2 12.840 46 10.954 35 12.303 20
ARD Rational Quadratic 12.709 42 10.901 32 10.115 16

Using the SRRL data, the minimum MAPE of PCC-GPR is 9.825%, the covariance function is ARD
Exponential Kernel and the dimension of feature set is 15. The minimum MAPE value of MI-GPR
is 9.860%, the covariance function is ARD Exponential Kernel and the feature dimensional is 36.
The minimum value of MAPE by CMI-GPR is 8.707%, the covariance function is ARD Exponential
Kernel and the feature dimension is 14. The minimum MAPE of CMI-GPR is 1.153% lower than the
MAPE of MI-GPR and 2.118% lower than PCC-GPR.

The dimension of optimal feature subset by using CMI-GPR is least, which is 22 less than the
dimension of MI-GPR and 1 less than dimension of PCC-GPR. Although the dimension of PCC-GPR’s
feature set is 1 more than CMI-GPR, the MAPE value of PCC-GPR is 2.118% larger than CMI-GPR.

In summary ARD Exponential Kernel function shows the best performance of the prediction. So,
ARD Exponential Kernel function is selected as the best covariance function of GPR. In the same way,
the covariance function selection experiment is performed by using the other two locations: ORNL
and LELH.

In comparison, CMI-GPR with ARD-Exponential Kernel (abbreviated as CMI-GPRgk) is the
optimal predictor when SRRL and ORNL datasets are used. The optimal predictor with its optimal
feature subset has better prediction accuracy. When using the LELH dataset, the optimal predictor of
CMI-GPR build by ARD Rational Quadratic (abbreviated as CMI-GPRarq) with its optimal feature
subset has the better prediction accuracy.

3.7. The Comparison Experiment of Feature Selection

CMI, MI and PCC are combined with BPNN and SVR respectively as the contrastive experiment
of the proposed method. The results of feature selection are analyzed in this part. In order to show the
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difference between different predictors, the same training set and verification set of GPR models were
used in the comparison experiment.

In the contrast experiment, the number of input layer and hidden layer nodes of BPNN is set
according to Kolmogorov theory: the number of input layer nodes is #7, the number of hidden layer
nodes is 1. The mathematical relation between n; and njy is ny = n7 + 1. In the process of feature
selection, 1 and n, are adjusted with the changes of the dimension of input features [37-39].

The RBF kernel function of is selected as SVR'’s kernel function. The cross-validation method
is used to determine the parameters of SVR such as the penalty factor c and the variance coefficient
g [40]. Then the best combination of parameters is obtained. Setting the [-10,10] to the optimal range
of c and g [41,42]. The parameters of GPR, such as the feature length scale ¢;, the signal standard
deviation 0y and the distributed feature length scale 03, can be automatically acquired during training
processing according to the dimensions and the length of features [34]. So, the parameter optimization
can be simplified.

Figure 6 shows the process of feature selection based on GPRspk, SVR and BPNN combined with
CMI, MI and PCC respectively using data of SRRL. Figure 6a shows the process of feature selection by
GPRapk combined with CMI, MI and PCC respectively. When the first 10 features are added to the
predictor, predicted error is significantly reduced. Adding new features, the error continuous to reduce
and then reaches the minimum MAPE. The value of minimum MAPE is 9.025% and the dimension
of feature subset is 14. From the perspective of MAPE, CMI-GPRapk obtain the minimum MAPE
value (9.025%). The minimum MAPE of MI-GPRsgx is 9.154%. The smallest MAPE of PCC-GPR zgx is
9.193%. Therefore, CMI-GPR gk has the highest accuracy.
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o o 9. MI1(17,9.154)PCC(24,9.193) WY
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Figure 6. The process of feature selection with different predictors and different importance
analysis methods.

Paying attention to the types and dimension of feature subset, the following conclusions can
be obtained: the dimension of the optimal features subset is 14 for CMI-GPRagk, the dimension is
17 for MI-GPRagk and the dimension is 24 for PCC-GPRagk. In the three optimal feature subsets,
the CMI-GPR4pk contains four types of features: historical irradiation, temperature, wind speed and
time. MI-GPRagx contains four types of features: historical irradiation, moment, temperature and
relative humidity. PCC-GPR gk contains 3 types of features: historical irradiation, temperature and
relative humidity.

Combining the above analysis, the following conclusions can be obtained: the optimal feature
subset of CMI-GPR gk contains more types of features and has lowest dimension. While the predictor
of CMI-GPRAgx has the highest accuracy than MI-GPRapx and PCC-GPRagk. Therefore, MI-GPRagx
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and PCC-GPRygk contains some redundant and invalid information, which results in lower accuracy
and higher dimension of feature subset.

Figure 6b is the processes of feature selection combination of CMI, MI and PCC with SVR. In terms
of error, the minimum MAPE is 10.150%, the prediction method is CMI-SVR. In terms of feature’s
dimension, the dimension of CMI-SVR is the lowest and the dimension is 13.

As shown in Figure 6c, the feature selection of BPNN with CMI, MI and PCC are obtained.
CMI-BPNN has the best results with the minimum MAPE (10.652%) and the dimension of feature
subset is 16.

Based on the above analysis, CMI-GPRagx, CMI-SVR and CMI-BPNN are the three best predictors
after the feature selection by using SRRL data sets.

In order to compare the feature selection with different data sets, the experimental results of
ORNL and LELH are sorted out. it is can be seen from Table 4 that CMI-GPRgx and CMI-GPRaRrq
are the optimal predictors when using ORNL and LELH data sets, respectively.

Table 4. Feature selection results in different area.

Data Predictor MAPE Dimension
CMI-GPR gk 6.668 16
MI-GPR Ak 7.732 20
PCC-GPRagk 10.078 25
CMI-SVR 8.735 14
ORNL MI-SVR 9.738 21
PCC-SVR 9.962 25
CMI-BPNN 8.565 16
MI-BPNN 7.428 23
PCC-BPNN 9.655 26
CMI-GPRaRo 10.176 13
MI-GPR ppx 10.843 23
PCC-GPR gk 12.386 25
CMI-SVR 17.410 14
LELH MI-SVR 17.956 20
PCC-SVR 18.732 28
CMI-BPNN 13.412 24
MI-BPNN 13.655 28
PCC-BPNN 14.237 31

The errors and dimensions of feature subset by using different data sets can be shown in Table 4.
The results show that CMI-GPR gk and CMI-GPRRrq have the highest accuracy and low dimension
of the optimal feature subset for different data set.

4. Prediction Experiment of Actual Measured Irradiation Data

In this section, the experiment of solar irradiation prediction is carried out. The optimal feature
subsets and optimal predictors are constructed by the experiments of feature selection in chapter 3.
The comparative prediction method with different feature selection methods and the basic method
with established feature set can be used to testify the validity of the proposed method. The established
feature set is built refer to the [43].

4.1. Data Description and The Construction of Predictor with Optimal Subset

In order to demonstrate the universal adaptability and effectiveness of the proposed method
in different time, weather conditions and seasons, the measured data of SRRL, ORNL and LELH in
2016 are used to test respectively. The test set is selected from spring, summer, autumn and winter
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randomly. In the experiment, two covariance functions (ARD Exponential Kernel and ARD Rational
Quadratic) are used in GPR to build the optimal GPR predictors (GPRagx and GPRarq). Meanwhile,
SVR and BPNN as the contrastive predictors.

The construction of optimal features subsets is shown in Tables 3 and 4. For example, the optimal
subsets of CMI-GPR gk are composed of the first 14 features in the ranking of feature importance
when the SRRL data set is used.

4.2. Valuation Indicators

As for evaluation indicators, Mean Absolute Error (MAE), Relative Mean Absolute Error (rtMAE),
Root Mean Square Error (RMSE) and Relative Root Mean Square Error (rRMSE) as the indicators to
evaluate each method in addition to MAPE [23]. The error formulas are follows:

mo1X— X
MAE = M (14)
m
mo|Xp— X
rMAE = W x 100(%) (15)
=1 Xt
(X — %)
RMSE = || =t=1"" "=/ (16)
m
rRMSE = % X 100% (17)
=1 Kt

where X; is the real value, X; is the predictive value, m is the number of the predictive value.

4.3. Prediction Experiment

In order to compare the accuracy of different predictors with their optimal feature subsets,
the prediction experiments are carried out in spring, summer, autumn and winter by using the
data collected from three locations. When the data of SRRL is used, 4 optimal prediction methods
are proposed to verify prediction accuracy, namely, CMI-GPRagx, CMI-GPRaRrq, CMI-SVR and
CMI-BPNN. The predicted results are shown in Figure 7 and error statistics are shown in Figure 8.
Figure 7 shows the result of solar irradiation forecasting in 4 reasons by 4 different optimal predictors
with their optimal feature subset. Figure 8 shows the error distribution of solar irradiation forecasting
in 4 reasons by 4 different optimal predictors with their optimal feature subset. As Figure 8 shown,
the method has higher predictive accuracy when the absolute value of the error is closer to 0. The result
of the errors of different prediction methods (they may not the optimal ones) under the different
feature sets are shown in Table 5.

Figure 7a shows the results of a random selected weekly irradiation prediction experiment
of spring. As shown in Figure 7a, it is usually sunny in spring and the predictors have a high
predictive accuracy. Figure 8a—d show the error distribution of real values and predictive values of
solar irradiation in spring, which corresponds to the error distribution of CMI-GPRzgx, CMI-GPRARQ,
CMI-SVR and CMI-BPNN respectively. As shown in Figure 8, two of the most precise prediction
methods are CMI-GPR gk and CMI-GPRRrq. Figure 8a shows that the errors are concentrated between
—50 W/m?2 and 50 W/m?, while Figure 8c,d show that the distribution of predictive errors about
CMI-SVR and CMI-BPNN are relatively dispersed.

As Table 5 shown, the MAPE of CMI-GPRpgk are the lowest. For other error indicators,
such as the rRMSE of CMI-GPRpgk is decreases about 4.4% and rMAE decreases about 3.564% than
CMI-SVR. CMI-GPR gk also has shown better predicted accuracy than CMI-GPRarg and CMI-BPNN.
CMI-GPRagk has the highest predictive accuracy.

Figure 7b shows the results of a random selected weekly irradiation prediction experiment from
summer. In Figure 7b, the fluctuation of solar irradiation is undulating in summer, especially in
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the 2nd, 6th and 7th days. Figure 8e-h shows the error distribution of CMI-GPR gk, CMI-GPRaRq,
CMI-SVR and CMI-BPNN respectively in summer. The number of error’s values between —100 W /m?
and 100 W/m? is biggest by using CMI-GPRark. Therefore, the CMI-GPR gk has the highest accuracy
of prediction. As Table 5 shows, the error value in summer is significantly increased compared with
spring. CMI-GPR gk predictor has the smallest error. Other error indicators refer to Table 5.

Figure 7c shows the results of a random selected weekly irradiation prediction experiment from
autumn. As shown in Figure 7c, the overall trend of autumn is very unstable and the predictive
accuracies of the 2nd, 3rd and 5th days is significantly reduced. Figure 8i-1 show the error distribution
of CMI-GPR gk, CMI-GPRARg, CMI-SVR and CMI-BPNN respectively in autumn. The predictor of
CMI-GPR4Egk is the best. Compared with CMI-GPR gk, the error of CMI-GPRzRrq increased by 6.958%
in MAPE, increased by 7.205% in rRMSE and 2.161% in rMAE. The predictive errors of CMI-SVR and
CMI-BPNN are obviously worse than CMI-GPR gk and CMI-GPRaRg.

Figure 7d shows the results of a random selected weekly irradiation prediction experiment
from winter. As shown in Figure 7d, the 2nd and 4th days of real value fluctuates obviously in
winter while the other five days of real value are less volatile. Figure 8m—p shows the distribution
of error by using MI-GPR gk, CMI-GPRARrqg, CMI-SVR and CMI-BPNN in winter and CMI-GPR gk
has the best distribution of error. As the Table 5 shows, the MAPE of CMI-GPR gk is 12.472%.
Other predictors: the MAPE values of CMI-GPRarg, CMI-SVR and CMI-BPNN are 16.628%,
16.942% and 16.992% respectively.

From the errors of all year to analyze the result of prediction, CMI-GPRapk has the highest
predictive accuracy. The MAPE of CMI-GPRpgk is 5.365%. It is decreased about 3.299% than
CMI-GPRARQ, 7.647% than CMI-SVR and 7.871% than CMI-BPNN. As shown in Table 5, by using
other indexes of error evaluation, the CMI-GPR gk also shows the best performance.

To verify the effectiveness of the proposed method, the statistical errors about suboptimal
prediction method are shown in Table 5. From Table 5, it can be seen that, the methods by
using PCC and MI have higher errors than by using CMI generally. For example, in spring,
the RMSE of CMI-GPR pgx is 25.917 W/m? lower than MI-GPR gk and 20.547 W/m? lower than
PCC-GPRgk. In summer, the MAPE of MI-GPRpk and PCC-GPRgk is 3.846% and 5.764% higher
than CMI-GPRagk.-
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Figure 7. The result of solar irradiation forecasting with different predictors using optimal feature subset.
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Figure 8. The histogram of the error by different predictor in 4 seasons using the optimal feature subset.

Table 5. Error statistics of experimental results by SRRL.

Predictor

Season Error CMI- CMI- CMI- CMI- MI- PCC- MI- PCC-
GPRapx  GPRapg  SVR BPNN  GPRpgx GPRapk GPRarg GPRarg GPRaec  GPRarg  SVR  BPNN
MAPE 5.365 5.887 4776 7.235 6.008 6.245 5.994 7.310 6.987 7.412 10545  12.461
RMSE 36.925 78.450 61.080 58.243 62.842 57.472 64.752 69.221 57.158 76.637 89.445 96575
Spring MAE 18387  55.834  43.595 35.807 46724  39.258 52.100 62438  40.264 51.942 70452 75.683
rRMSE 6.032 9.688 10.432 9.524 9.685 13.759 12.563 13.117 7.002 23.451 18.028  20.076
tMAE 3.004 6.357 6. 568 5.850 6.421 5.973 7.697 8.082 9.916 6.237 1647  17.648
MAPE 8.978 10537 22123 16.800 12.824 14.742 14.496 14.059 15.056 15.266 18481 22,630
RMSE 40497  55.041 90.407 118294  45.630 63.179 59.730 67.872 68.415 72702 96014  124.720
Summer  MAE 23.901 31.393 77.140 75.693 29.087 52476 40.381 57.274 60.174 69.974 78099  84.269
rRMSE 8.766 13.185 18.293 28.332 7.925 10510 16.217 11.033 12.548 12630 29239 34305
MAE 4529 9.519 18.476 16.129 5.693 10.286 10.458 12.131 13.735 14.804 17.642  22.244
MAPE 12184 19.142 25747 29.458 20.369 23.075 24.259 25.116 30.409 33.547 30257 32275
RMSE 62.950 73.656 98408  101.067  89.716  90.070 88.646 92437  89.617 77.908 96.154  135.002
Autumn  MAE 26.252 39.790 75497  86.193 50.435 73.492 48482 75.668 53.225 51.715 61.390  79.841
rRMSE  11.307 18512 24.785 34.456 14.510 18.439 16.803 19.042 18.319 17.865 20544 35562
MAE 7.838 9.999 18.999 23.671 12.168 17.067 11.374 18.659 12.693 12.374 13732 18.275
MAPE 12472 16.628 16.942 16.992 15.561 17.041 18.418 18.475 17.862 18.300 19.931 22,070
RMSE 43.921 64.568 81133 116209 72364 75.290 78.821 80.056 77827  81.273 64.754  98.680
Winter MAE 25.784 40.487 62.840 78.233 42.640 64.741 62.456 68.671 59.470 61.151 64.754  72.680
rRMSE 7.384 10.853 15.542 19.524 17.993 18.813 19.003 15.300 13.010 14.726 15533 17.206
MAE 4325 6.804 9.249 13.820 7.062 14.029 13.998 13.766 11.973 12.266 12739 14.507
MAPE 9.750 13.049 17.397 17.621 13.691 15.776 15.792 16.990 17.579 18.631 22304  18.859
RMSE  46.073 67.929 82757  98.453 67.649 71.503 72,987 77.397 73.254 77.130 86.592  113.744
All Year ~ MAE 23.581 41.877 64.768 68.982 42222 57.492 50.855  66.0128  53.283 58.700 68.674  78.118
rRMSE 8.372 13.060 17.263 22,959 12.778 15.380 16.147 14.623 12.720 17.168 20.836  26.787
MAE 4924 8.170 13.323 14.868 7.836 11.839 10.882 13.160 12.079 11.420 15.146  18.169

When compare the results of the basic methods and the proposed methods, it can be found that
the errors of basic method by using established feature sets is generally higher than proposed method.
For example, the MAPE of GPRgk is 1.662% higher than CMI-GPR gk in spring and 6.078% higher
in summer. The other details of error data are shown in Table 5.

Therefore, CMI-GPRagk can be considered the best prediction method in solar irradiation
prediction by using the data of SRRL.
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To testify the adaptability of the proposed method, the verification experiments of solar irradiation
are carried out by using the data of ORNL and LELH at the same time. In the verification experiments,
GPRagx shows the higher accuracy than SVR, BPNN and GPRaRrq. To make further compare the
influence of different feature subsets on the solar irradiation prediction, the error statistics of GPRagx
combines CMI, MI and PCC (named as CMI-GPRagx, MI-GPRagx and PCC-GPRagk respectively)
and the GPRagx combines the constructed feature set (named as GPRagk) are shown respectively
in Table 6.

Table 6. Error statistics of experimental results by ORNL and LELH.

Predictor
Season Error CMI-GPRAEK MI-GPRAEK PCC-GPRAEK GPRAEK
ORNL LELH ORNL LELH ORNL LELH ORNL LELH

MAPE 12472 7204 14151 8410 16277 8203 16.832 9.242
RMSE 43.925 24491 54581 37423 49488 42996 51.755 48.666
Spring MAE 25786 20.036 34574 33.824 26154 30.674 30.287 29.825
rRMSE 7.387 5968 11586 6.652 11.262 6.746 12131 7.023
rMAE 4.321 4.122 9.478 8.776 6.469 6.409 7.247 6.371

MAPE 12183  9.595 15.616 10.867 16.458 10.020 16.026 10.547
RMSE 62954 23357 71.623 25.023 72.090 25.176 70.249 26.739
Summer MAE 26256  9.209 34472 18.135 36.534 16.694 37.012 18.274
rRMSE 11.305 3280 13.767 5516 17902 5552 16.866  5.951
rMAE 7.839 2.251 6.798 5.627 9.514 7.475 9.335 7.923

MAPE 5.367 9.192 6.319 10.809 7.282 9.762 7.873  10.686
RMSE 36.924 34457 47.640 45290 49.051 37.621 55.525 42.684
Autumn MAE 18.383 19.085 29.716 26.008 32.112 26.725 35.647 30.007
rRMSE 6.031 5.457 7.014 6.473 6.384 6.636 6.561 7.012
rMAE 3.004 3.162 6.312 4.204 7.275 6.279 7.144 7.034

MAPE 8.974 6.622 11.845 8971 10497 9.322 11.709  9.297
RMSE 40.497 21305 54.428 26435 49569 30.111 56.688 29.725
Winter MAE 23900 8487 32379 15.094 29.630 17263 31.120 17.242
rRMSE 8.762 4.878  10.002  5.002 9.833 6.265 11.196  6.241
rMAE 4.523 3.654 6.725 4.204 5.742 7.537 6.915 7.638

MAPE 9.749 8153 11983 9.764 12,629 9.327 13110 9.943
RMSE 46.075 25903 57.068 33.543 55.050 33976 58554 36.954
All Year MAE 23.581 14204 32.785 23.265 31.108 22.839 33.517 23.837
rRMSE 8.371 489 10592 5911 11345 6.300 11.689  6.557
rMAE 4.922 3.297 7.328 5.703 7.250 6.925 7.660 7.242

As shown in Table 6, using the data of ORNL and LELH, CMI-GPR gk shows the lower errors than
the other prediction methods. For example, when using the data of ORNL, the rRMSE of CMI-GPRAgx
is 3.302% than GPRpgk, is 2.221% lower than MI-GPR gk and is 2.983% lower than PCC-GPRppk.
Therefore, CMI-GPRgx is the best prediction method with the highest predictive accuracy.

Comprehensive consideration of irradiation prediction experiments using 3 different data sets,
CMI-GPRagk has higher predictive accuracy. Therefore, the best prediction method is CMI-GPR k.

5. Conclusions

In order to determine the optimal feature subset of solar irradiation prediction and construct the
optimal predictor, the new feature selection method of the irradiation prediction based on CMI and
GPR is proposed. This method can avoid the negative effects of redundancy between features in the
feature subset and improve the forecast accuracy by the GPR with ARD Exponential Kernel function.

The following results are obtained:
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(1) When the importance of features is analyzed by CMI, the optimal feature subset with low
redundancy of information and strong correlation between the selected features are constructed.
Therefore, the influence of redundancy in the irradiation prediction can be reduced.

(2) From the experiment of solar irradiation forecasting, GPR shows the higher prediction accuracy.
It could determine the parameters automatically and avoid the complex parameters optimization
process, which is the advantage for feature selection.

(3) The predict ability of GPR with different covariance functions has been analyzed and the
covariance function of ARD Exponential Kernel is chosen to construct the predictor according to the
experiment results. CMI-GPRaxg is the best prediction model with low feature dimension and the
highest prediction accuracy. The dimension of optimal feature set of CMI-GPR kg is 14, which is
5 lower than PCC-GPRxg and 11 lower than MI-GPRagk. The MAPE of solar irradiation forecasting
of CMI-GPR gk is 3.299% lower than CMI-GPRRrq, 7.647% lower than CMI-SVR and 7.871% lower
than CMI-BPNN.
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