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Abstract: In recent years, many countries have published their timetables to promote electric 

vehicles. Many researches have focused on the benefits of electric vehicles. Compared with gas 

vehicles, electric vehicles are more suitable for modern cities, because they are considered to be 

environment-friendly by the public. Hence we pay attention to the environmental costs of electric 

vehicles. In this paper, an electric vehicle network is established. To analyze this electric vehicle 

network, we define environmental costs for the network and propose a stochastic user equilibrium 

model to describe drivers’ route choice behavior. An algorithm is proposed to solve this model. The 

model and the algorithm are illustrated through a numerical example. We test the calculation 

feasibility of the proposed model and the computational efficiency of the proposed algorithm via 

this numerical example. A comparative analysis is conducted to show the benefits of introducing 

electric vehicles into traffic networks. With the sensitivity analysis, we also reveal the relationship 

between people’s environmental awareness, the quantity of electric vehicles and the environmental 

costs of the overall traffic network. 

Keywords: electric vehicle network; environmental costs; environmental awareness; travel 

behavior; sensitivity analysis; energy vehicles; sustainable transport; logit model; environmental 

impacts 

 

1. Introduction 

An electric vehicle (EV) network may be one of the topics which the public is focused on. This is 

because many countries have announced their incentivizing policies for electric vehicles. After 

England declared its intention to forbid the sale of gas vehicles (GVs) from the year 2040 onwards in 

July 2017, France, Germany and Netherlands also pronounced their intentions to cease selling gas 

vehicles. As of January 2018, more than six developed countries and 18 states in the United States 

have made their timetables for substituting gas vehicles with electric vehicles (EVs). With such a large 

number of EVs, not only an environment-friendly traffic network but also a brand-new travel mode 

will come into being. In the academic literature, researchers call it the electric vehicle network. The 

electric vehicle network can only come into being when there is a considerable quantity of electric 

vehicles in the traffic network. If electric vehicles only occupy a very small proportion of the network, 

they will have little impact on the whole network. For example, an electric vehicle network had not 

yet been developed when the first electric vehicle Citicar was produced by Vanguard-Sebring in 1973. 

2% of the vehicle market which is ensured by the Zero Emissions Mandate in California in 1998, also 

has negligible effects on the network. However, the dream of an electric vehicle network is going to 
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be realized, since many countries have released their announcements to substitute GVs with EVs in 

a few decades. These announcements published by governments guarantee the uptake of a large 

quantity of electric vehicles, which will actualize the electric vehicle network in the very near future. 

Thus, a reasonable number of electric vehicles are considered in this paper, varying from 20% to 80%. 

A recent research article predicted that there would be 13~40 million EVs of a total of 300 million 

vehicles operating on the U.S. roads over the next decade [1]. Many researchers predicted that EVs 

which rely entirely on battery will provide an ultimate solution for personal transportation [2]. Such 

a large number of EVs mean not only a considerable market but also an environmentally-friendly 

modern world. The critical reason for many countries to develop timetables for electric vehicles is 

that electric power is more environmentally-friendly than gasoline and is easy to obtain. An EV is 

much more beneficial to the environment compared with a GV. However, in regard to the aggregate 

quantities of drivers, the results can differ. Actually, on the scale of traffic networks, we still do not 

know whether EVs are environmentally-friendly to the overall traffic network. This is because the 

traffic network is a non-linear complex system. When drivers take environmental costs into 

consideration, their travel behavior will be changed, which affects the environmental costs in turn. 

Moreover, in the scale of traffic networks, there is no explicit definitions of the environmental cost of 

private vehicles or urban traffic networks. Both of these problems lead to the ambiguity of the 

influences which EVs impose on the environment. 

The environmental costs and drivers’ travel behavior should be considered simultaneously, 

which complicates our research goals. Because of the interrelation of environmental costs and drivers’ 

travel behavior, it is not possible to analyze each of them independently. Hence the equilibrium 

theory needs to be employed. What is more, travelers only consider their internal costs, i.e., the 

generalized travel costs hereafter, which affect their own benefits. However, the environmental costs 

are external costs. This means that the environmental costs do not directly harm travelers’ benefits. 

Thus, when analyzing travelers’ environmental costs, we need to take their environmental awareness 

into consideration, which further complicates our research goals. As we are aware, different levels of 

environmental awareness will lead to different generalized travel costs and subsequently different 

travel behavior and flow patterns. Remember, in urban traffic networks, there are in general millions 

of travelers. Both the quantities of travelers and the requirements of equilibrium in generalized travel 

costs increase the complexity of our problems. 

1.1. Related Studies 

As mentioned above, travelers only care about their generalized travel costs. To the travelers, 

the most appealing benefit of motorization is the generalized costs, which include travel time costs, 

monetary costs, operating costs and environmental costs. There has been lots of research focusing on 

the travel time costs, monetary costs and operating costs [3–6]. This research proposed generalized 

costs which contain travel time costs, monetary costs and operating costs of vehicles, respectively. 

For example, Jiang and Xie proposed a generalized cost for EVs which contained travel time costs 

and operating costs [6]. Sun et al. proposed a generalized cost which considered travel time costs, 

operating costs and monetary costs, for buses [5]. Besides these costs mentioned above, the 

environmental impacts of vehicles have recently been a topic of great interest [7–11]. The 

environmental impacts on special vehicles and carriers can be found as well [12,13]. However, the 

environmental costs of private vehicles or of urban traffic networks have not been focused on. To 

consider the environmental impacts of EV networks, the environmental costs are indispensable. 

The research problem of interest in this article is a network equilibrium problem for an EV 

network. To describe and solve this problem, traffic network equilibrium problems and drivers’ route 

choice behavior should be considered. Some equilibrium models were employed to solve the network 

equilibrium problem in literature [5,14–16]. For example, one of the most famous forms of 

equilibrium is called the user equilibrium (UE) which was proposed to describe Multiplayer Non-

cooperative Competition behavior among the drivers in urban traffic networks. Another useful tool is 

an improvement of UE: Stochastic user equilibrium (SUE), which describes the network more 
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practically and precisely [17]. In this paper, we employ SUE to describe the drivers’ route choice 

behavior. 

1.2. Objectives and Contributions 

We focus on the environmental costs of electric vehicles. In this paper, we define the 

environmental costs for both gas vehicles and electric vehicles to fill the gaps in the literature and 

analyze the environmental costs through a comparative analysis and a sensitivity analysis. 

We consider the environmental costs of EVs in an electric vehicle network. In this paper, we are 

curious about the influence, especially the environmental influence, made by EVs in traffic networks.  

Thus, we analyze the environmental impacts of EVs by proposing an SUE model for EV networks. 

The major contributions of our research are listed as follows: 

We take environmental costs into consideration in the scale of traffic networks. An electric 

vehicle network is established. The environmental costs for the travelers in the EV network is related 

with travelers’ environmental awareness. 

To solve our problem of describing the environmental costs in EV network, we propose a logit-

based SUE model for EV network with environmental costs. An algorithm is proposed to solve this 

model. 

A large-scale network is used as a numerical example to test the computational efficiency of this 

algorithm. Moreover, the comparative analysis and the sensitivity analysis are employed to illustrate 

the test results. Through our work, we verify the environmental impacts of EVs. The results can be 

used for governments to promote EVs in a private vehicle market. 

2. Methodology 

2.1. Modeling 

In this section, we will propose a model to describe the electric vehicle network and its 

properties. The most relevant properties of an EV network in this paper are its environmental costs 

and its travelers’ route choice. A traffic network is commonly considered to be a non-linear complex 

system. This is because the flow pattern of the network is not determined by one specific traveler, but 

is instead determined by all travelers’ route choice behavior. This is the reason why the theory of 

urban traffic network, or the so-called traffic assignment problem (TAP), was proposed in 1980s. In 

this section, the environmental costs and the travelers’ route choice in electric vehicle network are 

discussed. By doing this, we conclude by covering the differences between an EV network and a GV 

network and propose our model for electric networks in this section. 

2.1.1. Environmental Costs 

Compared with gas vehicles, electric vehicles hardly create contaminants while traveling. 

However, generating electricity does produce contaminants. Thus, we define the unit contaminant of 

EV as the contaminant produced by generating the electricity which is consumed by EV when EV 

travels a unit of distance. In modern days, in most power plants, the contaminants are under 

centralized treatment. So, in general, the contaminants produced for generating electricity are much 

less harmful than those produced directly by consuming gas. Furthermore, in many countries, a large 

amount of electricity is produced by clean energy, such as nuclear energy and wind energy. For 

example, in France, more than 70% electricity is produced by nuclear [18]; the United States produces 

the most wind-generated electricity in the world [18]. Thus, although it is hard to describe the 

contaminant of EV throughout different countries with a fixed number, the unit contaminant of EV 

is definitely lower than that of GV. Here, in this paper, we use a parameter 𝐸𝑒 to denote the unit 

contaminant of EV and 𝐸𝑔 to describe that of GV, where 𝐸𝑒 < 𝐸𝑔. To simplify the discussion, for gas 

vehicles we assume 𝐸𝑔 = 1. Note that in different countries, 𝐸𝑒 may vary because of their electricity 

structure. 
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Now we can define the link performance function, which describes the generalized costs in 

overall traffic network, with the consideration of environmental costs. Here we employ the famous 

Bureau of Public Road (BPR) function and make a revision of it. The revision makes the BPR function 

suitable for describing environmental costs in the overall traffic network. We give out the expression 

of the revised BPR function as follows: 

𝑡𝑎,𝑖
′ (𝒙𝒂) = 𝑑𝑎 (1 + 0.15 (

∑ 𝑥𝑎,𝑖𝑖

𝐶𝑎
)
4

) + 𝑑𝑎𝐸𝑖  (1) 

where the first term on the right side refers to the travel cost while the second term refers to the 

environmental costs; for each link a, 𝑑𝑎 is a constant which denotes the physical length of link a. 

Equation (1) describes the generalized cost on link a. This first term on the right side is the travel 

time cost. It denotes the time a vehicle may cost when the vehicle is traveling through this link. Note 

that the original BPR function is not suitable for the EV network. This is because it does not take EVs 

into consideration. Through our revision, both GVs and EVs are considered. The second term denotes 

the vehicle’s environmental cost when the vehicle is traveling. We note that the environmental cost 

of a vehicle is determined only by the distance it travels and the unit contaminant. This is because in 

traffic networks, although the gasoline/electricity consumed when idling may be different from that 

consumed when traveling, the idling of vehicles always happens at the end of a link. So, when 

considering the environmental cost as per link, we can regard idling as a part of traveling and 

calculate the environmental cost for each link by multiplying the link’s length by the unit contaminant 

of vehicles. Thus, since the length of each link can be easily measured, in urban traffic network, the 

environmental cost a vehicle endures can be directly determined by the length 𝑑𝑎 of the links that it 

travels through and the unit contaminant 𝐸𝑖. Similar conclusions can also be found in other research 

on EVs [6,19]. 

With the help of Equation (1), it is enough to describe the generalized cost for EV network. 

However, for travelers, the generalized cost needs to be further modified. This is because travelers 

always make their decisions while only considering their own costs. Actually, the environmental cost 

is an external cost, and it does not directly affect travelers. That is to say, if a traveler produces 

contaminants when traveling, this does not directly harm his/her own benefits. Only when the 

traveler has environmental awareness, can the non-environmentally-friendly behavior provide 

him/her with a moral punishment which becomes an internal cost that he/she cares about. 

Unfortunately, travelers only consider their internal costs. Thus, we design a parameter A to describe 

the environmental awareness. The generalized cost becomes 

𝑡𝑎,𝑖(𝒙𝒂) = 𝑑𝑎 (1 + 0.15 (
∑ 𝑥𝑎,𝑖𝑖

𝑐𝑎
)
4

) + 𝑑𝑎𝐴𝐸𝑖  (2) 

where A denotes the average level of citizens’ environmental awareness in the network. 

When considering travelers’ behavior, we describe their generalized costs with (2) rather than 

(1). 

Between each OD pair, there are many paths for travelers to use. Each path is made up with 

several end-to-end links. Apparently, the cost of a path, which is called the path cost, is the 

summation of the costs of the links belong to this path. For example, if a path consists of two links, 

the path cost equals to the cost of the first link plus that of the second one. Hence we define the path 

cost of traveler i on the path k between OD pair rs more precisely for EV network as: 

𝑐𝑘,𝑖
𝑟𝑠 = ∑ 𝛿𝑎.𝑘

𝑟𝑠 𝑡𝑎,𝑖(𝒙𝒂)𝑎   (3) 

where 𝛿𝑎.𝑘
𝑟𝑠  is the link-path incidence parameter, where 𝛿𝑎,𝑘

𝑟𝑠 = 1 if link 𝑎 belongs path 𝑘 between 

OD pairs 𝑟𝑠, and 𝛿𝑎,𝑘
𝑟𝑠 = 0, otherwise. 

2.1.2. Logit-Based Stochastic User Equilibrium 

In this paper, we analyze the impact of EVs on the overall network. Hence a theory of traffic 

network is needed. The theory of traffic network is a foundation of much traffic research, for example, 

on network design problems (NDPs) [20], traffic assignment problems (TAPs) [21], and route choice 
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analysis [22,23]. In this paper, the TAP and the theory of traffic network are employed as tools to 

consider our problems with respect to the electric vehicle network. 

In conventional networks (i.e., gas vehicle networks), researchers have proposed a number of 

models to describe the network. One of the most famous models known as logit-based stochastic user 

equilibrium (SUE) is employed and revised here for agreement with electric vehicle networks. 

The logit-based SUE was first proposed by Daganzo and Sheffi to describe travelers’ route choice 

behavior in TAPs [21]. It describes the principle travelers hold when traveling: Travelers always 

choose their paths which they perceive as the paths with the lowest generalized costs. And, as we 

mentioned before, the generalized costs are always internal costs. However, different travelers have 

different perception levels about their internal (path) costs. To solve this problem, the logit-based 

SUE was proposed. The logit-based SUE model calculates the probability of path chosen by the 

drivers in terms of the path costs perceived by them. The lower a path cost is perceived to be by the 

drivers, the larger probability the path will be chosen to travel on. Details about the logit-based SUE 

model can be found in a great deal of research, such as Reference [18]. However, the original logit-

based SUE model is not suitable for electric vehicle networks because there are two types of vehicles 

(or drivers). Thus, we propose a revision of the original logit model and make it fit for electric vehicle 

networks. 

𝑃𝑘,𝑖
𝑟𝑠 =

exp⁡(−𝜃𝑖𝑐𝑘,𝑖
𝑟𝑠)

∑ exp⁡(−𝜃𝑖𝑐𝑙,𝑖
𝑟𝑠)𝑙

, ∀𝑙 ∈ 𝐾𝑟𝑠  (4) 

where 𝜃𝑖 denotes the drivers’ perception levels for path costs, 𝑖 = 𝑒 for electric vehicle drivers and 

𝑖 = 𝑔 for gas vehicle drivers. 

Equation (4) is a slight revision of the logit model, which divides the vehicles into two types: 

EVs and GVs. Then, we can calculate their path choice probabilities respectively. 𝜃𝑖 is the perception 

level of the drivers. It is a critical parameter for SUE which was first proposed by Reference [21]. This 

parameter describes the perception levels of different types of drivers. Since drivers have their own 

preferences, different types of drivers may have different perception levels. Details about this 

parameter can be seen in Reference [21]. Since there is currently no obvious evidence to prove that 

GV drivers and EV drivers are different in perception ability, we assume the perception parameters 

of electric vehicle drivers and gas vehicle drivers are the same, i.e., 𝜃𝑒 = 𝜃𝑔. 

For vehicle 𝑖, the path flow can be obtained: 

𝑓𝑘,𝑖
𝑟𝑠 = 𝑞𝑖

𝑟𝑠𝑃𝑘,𝑖
𝑟𝑠 (5) 

where 𝑞𝑖
𝑟𝑠 denotes the traffic demand of vehicle 𝑖. 

Note that in Equation (4), the denominator also has a realistic meaning. Since the logit-based 

model was originally proposed with respect to the theory of utility maximization [24,25], the 

denominator of Equation (4) actually denotes the summation of the utility of all the paths between 

the OD pair, i.e., 

𝑢𝑖
𝑟𝑠 = ∑ exp⁡(−𝜃𝑖𝑐𝑙,𝑖

𝑟𝑠)𝑙   (6) 

According to the definition and the expression of Equation (6), we can easily determine that the 

utility of the paths is in negative correlation to their generalized costs. That is to say, a larger utility 

of a specific OD pair means the travelers between this OD pair suffer smaller generalized costs. This 

property of 𝑢𝑖
𝑟𝑠  will be utilized later in Section 3.2 to analyze whether the existence of EVs is 

beneficial to the travelers. 

2.1.3. Stochastic User Equilibrium for EVs with Environmental Costs 

After introducing and employing the above revisions, we subsequently propose our model as 

follows: 

min 𝑧(𝒙(𝒇)) = ∑ ∑ (∫ 𝑡𝑎,𝑖(𝜔) d𝜔
𝑥𝑎,𝑖
0

)𝑖𝑎 + ∑ [
1

𝜃𝑖
∑ ∑ 𝑓𝑘,𝑖

𝑟𝑠
𝑘𝑟𝑠 ln𝑓𝑘,𝑖

𝑟𝑠]𝑖   (7) 

Subject to: 
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∑ 𝑓𝑘,𝑖
𝑟𝑠

𝑘 = 𝑞𝑖
𝑟𝑠  (8) 

𝑥𝑎,𝑖 = ∑ ∑ 𝑓𝑘,𝑖
𝑟𝑠𝛿𝑎,𝑘

𝑟𝑠
𝑘𝑟𝑠   (9) 

𝑓𝑘,𝑖
𝑟𝑠 ≥ 0 (10) 

The objective function (7) employs a framework of logit-based SUE model for traditional traffic 

network. The critical difference between Equation (7) and the objective function of traditional SUE 

model is the term of ∫ 𝑡𝑎,𝑖(𝜔) d𝜔
𝑥𝑎,𝑖
0

. In Equation (7), the costs of both GVs and EVs are taken into 

consideration, and both the travel time costs and the environmental costs are taken into 

consideration. Traditional SUE models did not achieve these two goals. 

Equation (8) is the constraint of flow conservation. It ensures that the sum of the path flow 𝑓𝑘,𝑖
𝑟𝑠 

equals to the traffic demand 𝑞𝑖
𝑟𝑠; Equation (9) is the definition constraint of link flows in terms of 

path flows; Equation (10) is the nonnegative constraint which makes sure the path flows are 

nonnegative. 

The equivalence of this model and the uniqueness of its solution can be easily proved by 

employing Lagrange function and the convexity of this model. The proofs for traditional SUE model 

can be seen in other research [18,21]. And since our revision does not change the convexity of the 

model, the equivalence and the uniqueness proofs remain unchanged and are omitted here. 

2.2. Algorithm 

The SUE model we proposed is a non-linear programming (NLP) model, which is usually hard 

to solve. Luckily, there are a few dedicated algorithms for solving SUE models efficiently. In this 

section, we employ the method of successive average (MSA) which is used to solve traditional SUE 

problems. MSA was first introduced into traffic networks in the 1960s [26]. It transforms this NLP 

into a shortest path problem which can be solved easily by the Dijsktra algorithm [26]. Here, we 

propose a revised MSA algorithm to solve our model. 

We revise the MSA algorithm for the logit-based SUE for EV network with environmental costs: 

Step 1: Initialization 

Let 𝑥𝑎,𝑖
(0)

= 0, calculate the free-flow link cost 𝑡𝑎,𝑖
(0)

 and the path cost 𝑐𝑘,𝑖
𝑟𝑠,(0)

 by (2) and (3), where 

𝑖 = 𝑒 for electric vehicles and 𝑖 = 𝑒 for gas vehicles. Obtain the initial path flow 𝑓𝑘,𝑖
𝑟𝑠,(0)

 by (4) and 

(5). 

Step 2: Update 

Update 𝑥𝑎,𝑖
(𝑛)

= ∑ ∑ 𝑓𝑘,𝑖
𝑟𝑠,(𝑛)

𝑘𝑟𝑠  and calculate 𝑡𝑎,𝑖
(𝑛)

 and 𝑐𝑘,𝑖
𝑟𝑠,(𝑛)

 by (2) and (3). 

Step 3: Finding the search direction 

According to 𝑐𝑘,𝑖
𝑟𝑠,(𝑛)

 obtained in Step 2, we calculate the auxiliary path flow 𝑔𝑘,𝑖
𝑟𝑠,(𝑛)

 by (4) and 

(5). 

Step 4: Moving 

𝑓𝑘,𝑖
𝑟𝑠,(𝑛+1)

= 𝑓𝑘,𝑖
𝑟𝑠,(𝑛)

+ 𝛼𝑛(𝑔𝑘,𝑖
𝑟𝑠,(𝑛) − 𝑓𝑘,𝑖

𝑟𝑠,(𝑛)
) (11) 

where 𝛼𝑛 = 1/𝑛 which denotes the step length of moving. 

Step 5: Convergence criterion 

If 

√∑ ∑ ∑ (𝑓𝑘,𝑖
𝑟𝑠,(𝑛+1)

−𝑓𝑘,𝑖
𝑟𝑠,(𝑛)

)2𝑘𝑟𝑠𝑖

∑ ∑ ∑ 𝑓𝑘,𝑖
𝑟𝑠,(𝑛)

𝑘𝑟𝑠𝑖

≤ 𝜀  (12) 

where 𝜀 is a pre-given accuracy, the algorithm stops and 𝑥𝑎,𝑖
(𝑛)

 is the solution (i.e., link flow at SUE). 

Otherwise, let 𝑛 = 𝑛 + 1 and return to step 2. 

To test our model and algorithm more clearly, in the next section, we propose an example which 

is the Sioux-Falls network. We use all nodes, links and OD pairs of this large-scale network to test the 

computational efficiency of our model. 
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3. Numerical Example 

In this section, we test our model and algorithm through a large-scale network which is 

frequently used as numerical examples in traffic network researches. Besides the disclosure of the 

test results and the comparison between the flow pattern of the traditional traffic network and that 

of the EV network, calculation feasibility and sensitivity analysis of our model are also conducted. 

Since traffic network problems are usually large-scale problems in computation, the calculation 

feasibility of our problem will be tested. Furthermore, our problem involves some parameters which 

play an important role in our model, and a sensitivity analysis will be conducted. All these works are 

based on the large-scale network and are conducted on an ordinary personal computer. Our 

experiments may be repeated with similar data and tools. 

3.1. Calculation Feasibility 

For the convenience of expression, we discuss the calculation feasibility first. 

As we know, transportation problems and TAPs are usually large-scale problems in 

computation. For example, in the numerical example of Reference [27], the Sioux-Falls network is 

considered. In that example, the notation 𝛿𝑎,𝑘
𝑟𝑠  actually denotes 1342 × 76 parameters. 

Because of the large scales of TAPs, the most critical problem we concern is the calculation 

feasibility. In our model, not only traditional vehicles (i.e., gas vehicles) but also EVs need to be 

considered. Furthermore, because of the introducing of EVs, both the quantities of variables and 

parameters double compared to the usual quantities. The scale of the model becomes quite large. 

Hence we are concerned with the computational efficiency of our algorithm more than anything else. 

To test our problem, we illustrate a typical large-scale network, the Sioux-Falls network, as our 

example. The Sioux-Falls network is a famous network which is frequently used in testing TAPs. It 

has 24 nodes, 76 links and 528 OD pairs as Figure 1. The length 𝑑𝑎 of each link is the same as the 

input data proposed by Reference [28]. The links’ capacities and traffic demand follow those 

proposed by Reference [29]. 

To show the efficiency of our algorithm, we test our example on an ordinary personal computer 

with a 2.60 GHz CPU, an 8 GB RAM and Windows 8.1 Enterprise 64-bit operating system. The model 

was coded with MATLAB. 

In this example, we set the accuracy 𝜀 =1 × 10−5, the perception levels of drivers 𝜃𝑒 = 𝜃𝑔 = 0.5 

and the environmental awareness 𝐴 = 2. The algorithm converges to the solution, see Figure 2. 

In Figure 2, every marker represents an iteration of the proposed algorithm. For example, the 1st 

marker in Figure 2a illustrates the 1st iteration of the proposed algorithm achieves the accuracy of 4.5 

× 10−1. From Figure 2a and Table 1, we can see that the proposed algorithm converges quickly. At 6th 

iteration, the algorithm has reached the accuracy of 1%. After that, the curve of the convergence 

performance becomes gentle. However, although the convergence slows down, this algorithm is still 

quite efficient. Figure 2c shows the iterations and the computational time as per the accuracy this 

algorithm achieves. Note, for clearly illustration, we use a logarithmic abscissa in Figure 2c. It only 

takes 0.23 s and 159 iterations for the algorithm to converge at the accuracy of 9.9 × 10−6. What is more, 

Figure 2b is a closer view of Figure 2a. For better readability, in Figure 2b, we remove the markers 

and observe that the convergence curve of this algorithm is smooth. No “zig-zag” is observed during 

the whole convergence process. This means the accuracy of this algorithm is always getting higher 

along with iterations. These results show typical characteristics of MSA for SUE, which is as expected. 
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Figure 1. Sioux-Falls network. 

 

Figure 2. Convergence performance of the revised MSA algorithm. (a) The accuracy of each 

iteration; (b) A closer view of (a); (c) The iteration and computational time as per accuracy. 
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Table 1. Accuracy at certain iterations. 

Iteration Accuracy Iteration Accuracy Iteration Accuracy Iteration Accuracy 

1 4.5 × 10−1 10 3.0 × 10−3 60 7.2 × 10−5 120 1.8 × 10−5 

3 5.1 × 10−2 20 6.9 × 10−4 80 4.0 × 10−5 140 1.3 × 10−5 

6 9.1 × 10−3 30 3.0 × 10−4 100 2.5 × 10−5 159 9.9 × 10−6 

This large-scale example shows the computational efficiency of the proposed algorithm. 

Although both the quantities of variables and parameters double, the calculation is still efficient 

enough. One of the reasons may be that our revised algorithm takes advantages of MSA which is a 

dedicated algorithm to solve TAPs. With the help of MSA, we actually transform the NLP into a 

shortest path problem, which is extremely efficient for solving TAPs. 

3.2. Comparative Analysis 

The computational efficiency ensures our experimental results are obtained within a reasonable 

calculating time. Since we assume that a large number of EVs make a great impact on the overall 

traffic network, in this section, we will compare the flow pattern of the EV network with that of the 

traditional one. 

We set the proportion of the EVs to all vehicles as 0.8, which means 80% vehicles are EVs, and 

keep other parameters the same as those in the former section. By doing this, we obtain the test results 

in the case that 80% vehicles are EVs (denoted as 𝐹0.8). Then, we make the EVs vanish. It means all 

the vehicles in the network are gas vehicles to imitate the case of traditional traffic network (denoted 

as 𝐹0). Since our model is a path-based model which uses path flow as its variables, we can actually 

compare the differences of each path in the network. However, as we mentioned above, in such a 

large-scale network there are usually thousands of paths. To list all the paths is unviable. Thus, as an 

alternative, we list the link flows instead. Considering that link flows are made up of path flows, thus, 

if we observe the changes in link flow, we know the path flows have changed. The test results are 

listed as follows in Table 2. 

Table 2. Comparison between link flows of EV network and those of traditional traffic network. 

# of Link 𝑭𝟎.𝟖 𝑭𝟎 # of Link 𝑭𝟎.𝟖 𝑭𝟎 # of Link 𝑭𝟎.𝟖 𝑭𝟎 

1 1790 1774 27 8339 8237 53 6257 6185 

2 2729 2701 28 7290 6960 54 4919 5058 

3 1792 1775 29 7949 8381 55 5650 5911 

4 2810 2809 30 2130 1796 56 5467 5566 

5 2728 2700 31 3207 3110 57 5926 6157 

6 3461 3461 32 8277 8175 58 6256 6185 

7 2921 2840 33 4963 4991 59 3092 3011 

8 3468 3468 34 6193 6462 60 5456 5557 

9 5178 5173 35 2913 2832 61 3092 3011 

10 3168 3074 36 4945 4969 62 2649 2611 

11 5156 5148 37 4619 4628 63 3581 3397 

12 3912 3972 38 4591 4598 64 2639 2602 

13 3759 3750 39 4344 4338 65 3905 3932 

14 2811 2809 40 6188 6459 66 4174 4347 

15 3931 3977 41 3894 3881 67 8269 8277 

16 5703 5706 42 3317 3207 68 3582 3397 

17 3214 3116 43 7333 7003 69 3878 3902 

18 4929 5065 44 3885 3874 70 4350 4301 

19 5722 5712 45 5925 6156 71 3321 3210 

20 3224 3123 46 8236 8242 72 4357 4307 

21 782 633 47 4915 4967 73 2995 2848 

22 4929 4980 48 7948 8380 74 4317 4308 
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23 3719 3718 49 6228 6344 75 4190 4368 

24 781 632 50 5651 5912 76 3006 2857 

25 7329 7302 51 2129 1795    

26 7289 7270 52 6229 6345    

From Table 2, we find that the link flows of some links vary a lot, while others barely change. 

However, since traffic network is a non-linear system, it is not possible to claim which flow pattern 

is better. We can only tell that, due to the impact of EVs, drivers’ route choices do change. If we want 

to explore which flow pattern is more beneficial to travelers as per their generalized costs, we need 

to pick some OD pairs for deeper analysis. 

In Sioux-Falls network, there are 528 OD pairs in total. It is impossible to analyze all of them as 

per their precise values at a time. Hence we choose 10 of them randomly and calculate their utilities 

as per (6). 𝑢𝑖,0.8
𝑟𝑠  denotes the utilities of OD pair 𝑟𝑠 for vehicle i in the case of 80% vehicles are EVs, 

and 𝑢𝑔,0
𝑟𝑠  denotes the utilities of OS pair 𝑟𝑠 for GVs when there are no EVs in the network. The results 

are shown in Table 3. 

Table 3. Comparison of utilities of an EV network and those of a traditional traffic network. 

# of OD Pair (r–s) 𝒖𝒈,𝟎.𝟖
𝒓𝒔  𝒖𝒆,𝟎.𝟖

𝒓𝒔  𝒖𝒈,𝟎
𝒓𝒔  

25 (1–14) 1.338 × 10−12 1.084 × 10−8 1.159 × 10−12 

50 (4–2) 5.909 × 10−8 1.511 × 10−5 5.868 × 10−8 

75 (2–17) 2.910 × 10−10 3.192 × 10−7 2.803 × 10−10 

100 (12–3) 2.479 × 10−3 1.831 × 10−2 2.479 × 10−3 

125 (4–10) 3.510 × 10−7 5.719 × 10−5 3.521 × 10−7 

150 (22–4) 1.659 × 10−12 1.612 × 10−8 1.513 × 10−12 

175 (5–16) 3.447 × 10−8 8.709 × 10−6 3.307 × 10−8 

200 (12–6) 6.746 × 10−10 7.515 × 10−7 6.697 × 10−10 

225 (7–8) 1.104 × 10−2 4.947 × 10−2 1.105 × 10−2 

250 (20–7) 1.233 × 10−4 2.476 × 10−3 1.233 × 10−4 

For the convenience for someone intending to repeat our experiment, we list the numbers of the 

picked OD pairs in Table 3. The numbers of OD pairs are in the same order as those in most research 

analyses which cited the Sioux-Falls network [30,31]. From Table 3, we find that the utilities of most 

OD pairs are improved. The exceptions are those of OD pairs 125 and 225, but the decrease in utility 

is not substantial. Note that the utilities of these OD pairs for GVs, a very slight decrease can be 

observed. Compared with the increment of utilities for EVs and the utilities of other OD pairs, the 

decrement is very small. We wonder whether this is a general phenomenon: To a certain degree, the 

introducing of EVs may help to increase the utilities, i.e., to reduce travelers’ generalized costs. To 

verify this statement, we list the utilities of all the OD pairs and their increments (or decrements), 

which can be seen in Figure 3. 

To clearly illustrate the utilities of 528 OD pairs, we rank the OD pairs as per 𝑢𝑔,0.8
𝑟𝑠  in 

descending order. Thus, note the numbers of OD pairs in Figure 3 are not same as those in Table 3. 

We list the utilities 𝑢𝑔,0.8
𝑟𝑠 , 𝑢𝑒,0.8

𝑟𝑠 , and 𝑢𝑔,0
𝑟𝑠  of all 528 OD pairs in Figure 3 to analyze the changes in 

utilities after introducing EVs into the network. As shown in the legend of Figure 3, the blue, red and 

yellow lines denote 𝑢𝑔,0
𝑟𝑠  𝑢𝑔,0.8

𝑟𝑠  and 𝑢𝑒,0.8
𝑟𝑠  respectively. We regard the line 𝑢𝑔,0

𝑟𝑠  as the baseline, the 

gaps between the line 𝑢𝑔,0
𝑟𝑠  and the line 𝑢𝑔,0.8

𝑟𝑠  represent the increments of utilities for GVs after 

introducing EVs into the network. Similarly, the gaps between 𝑢𝑔,0
𝑟𝑠  and 𝑢𝑒,0.8

𝑟𝑠  mean the increments 

of utilities for the EVs which were GVs before they changed their roles. Note, the utilities of 528 OD 

pairs range from 1 × 10−1 to 1 × 10−17. To make our results more readable, we illustrate them in the 

logarithmic coordinate. The green bars in Figure 3 represent the ratio of the gaps between 𝑢𝑔,0.8
𝑟𝑠  and 

𝑢𝑔,0
𝑟𝑠  to 𝑢𝑔,0

𝑟𝑠 , and they are in the linear coordinate. 
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Figure 3. Utilities of 528 OD pairs of Sioux-Falls network. 

It is as expected that the utilities for EVs are higher than those for GVs. This is because the 

generalized costs of EVs, which contain the environmental costs in them, are less than those of GVs. 

What is more, after introducing EVs, we observe that the utilities for GVs are also improved. The 

utilities for most of OD pairs are not lower than before, and some of them are obviously improved. 

However, one may argue that there are only slight gaps between the two curves which represent 

𝑢𝑔,0.8
𝑟𝑠  and 𝑢𝑔,0

𝑟𝑠  in the figure. This is because they are in the logarithmic coordinate. To show the 

increments more clearly, we illustrate them with green bars in the linear coordinate in Figure 3. Since 

the utilities for each OD pair is not in the same order of magnitude, we make each bar to represent 

the ratio of the gaps 𝑢𝑔,0.8
𝑟𝑠 − 𝑢𝑔,0

𝑟𝑠  to the baseline utilities 𝑢𝑔,0
𝑟𝑠 . 

We observe that the utilities for GVs of most OD pairs are improved, and that some of the 

increments contribute nearly 90% of the baseline utilities. Although the utilities of some OD pairs 

decrease, the decrements are quite lower compared with the increments. The largest decrement only 

equals to 2.69% of the baseline utility. Moreover, the average of the increments is 11.8% of the baseline 

utilities, while that of the decrements is only 0.6%. 

In this section, through a comparative analysis, we verify the benefits of the EV network. The 

existence of EVs in the traffic network improves the utilities, i.e., reduces the generalized costs, for 

not only the EV drivers (they were GV drivers before) but also stubborn GV drivers. It is indeed wise 

for the governments over the world to promote their encouraging policies for EVs. 

Besides the above analysis, we are also curious about the extent of the impact of EVs and how 

much in total generalized costs will be reduced as per the quantity of EVs introduced into the traffic 

network. To answer this question, a sensitivity analysis will be conducted in the next section. The 

sensitivity analysis illustrates the impacts of the parameters which represent the proportion of EVs, 

citizens’ environmental awareness and the unit contaminant of vehicles in the proposed model. 

3.3. Sensitivity Analysis 

Besides the test results and the computational efficiency, we also consider the parameters in the 

proposed model, especially the parameters related with environmental costs of the EV network. In 

this section, a sensitivity analysis is employed to discuss our test results. We are interested in how 

the environmental costs of the traffic network will vary, if we improve the proportion of EVs and 

citizens’ environmental awareness, or if reduce the contaminants when generating electricity. 

The environmental cost of the overall traffic network is a summation of the environmental costs 

of all vehicles on all links in the network: 

𝑇𝑒𝑐 = ∑ ∑ 𝑥𝑎,𝑖𝑑𝑎𝐸𝑖𝑖𝑎   (13) 
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Note, here the environmental cost of a specific link a is not defined as 𝑑𝑎𝐴𝐸𝑖 , since the 

environmental costs of the network is an objective fact. It is not an internal costs that reflected by 

people’s environmental awareness, thus, it has nothing to do with the parameter 𝐴 to measure this 

objective fact. Therefore, we employ the second term 𝑑𝑎𝐸𝑖 of (1) rather than that of (2) to describe 

the environmental cost of the link. 

The proportion of EVs in urban traffic network is usually considered related to citizens’ 

environmental awareness. Therefore, we analyze the environmental awareness 𝐴  and the 

proportion of EVs together. The results are plotted in Figure 4. 

 

Figure 4. Sensitivity analysis of the parameters ratio and 𝐴. 

As mentioned before, we fix the contaminant of EV 𝐸𝑒 =0.8 and vary the proportion of electric 

vehicles from 20% to 80%. The environmental awareness 𝐴 vaies in the range of 0~5. When 𝐴 = 5, 

the internal environmental costs for the travelers equals to around 5 times of the travel time costs, 

which is considered large enough. From Figure 4, we can find that when 𝑟𝑎𝑡𝑒 and 𝐴 get lower, 𝑇𝑒𝑐  

increases as a convex curve. This means when the proportion of electric vehicles and/or the 

environmental awareness decrease, the growth of the total environmental costs will increase at an 

accelerating rate. Thus, it is ideal for governments to improve people’s environmental awareness and 

the quantity of electric vehicles. 

Figure 5 shows the relationship of the total environmental costs and the contaminant level of 

electric vehicles 𝐸𝑒. Here, we take 30 values of 𝐸𝑒 varying in the range of [0, 1]. Each marker in Figure 

5 represents a value of 𝐸𝑒 . Since the energy of EVs is electricity, 𝐸𝑒  reflects the contaminant 

produced in generating electricity. Hence 𝐸𝑒  getting lower means more clean energy is used to 

generate electricity. 

According to Figure 5, when 𝐸𝑒 increases, the total environmental costs of the overall network 

increase. The results suggest that, if the unit contaminant of EVs can be reduced, the environmental 

costs made by EVs will decrease. That is to say, besides the people’s environmental awareness and 

the proportion of EVs, the unit contaminant of EVs also makes a great impact on the environment of 

traffic networks. 
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Figure 5. Sensitivity analysis of the parameter 𝐸𝑒. 

4. Discussions and Conclusions 

Since the environmental effects of EVs have become topics of interest recently, our goal is to 

discuss the environmental costs of EVs qualitatively and quantitatively. We wanted to verify whether 

the existence of EVs would affect drivers’ route choice behavior and to what extent would EVs affect 

the environmental costs of the traffic network. 

Although the environment-friendly attribute of EVs is one of the most significant reasons for 

governments to promote EVs, the environmental costs of EV networks were given little attention in 

previous studies. One of the strengths in this paper is that we propose a definition of environmental 

costs for both urban traffic networks and for the travelers. We consider private vehicles’ 

environmental costs in the scale of traffic networks, which was not previously achieved in literature. 

Furthermore, on the basis of the definition, we establish and analyze the EV networks with 

environmental costs. To imitate a real EV network and describe travelers’ route choice behavior, we 

propose a revised SUE model for the EV network and a revised MSA algorithm to solve our problems. 

By doing this, we actually help with evaluation of the policies promoting EVs. Due to the contribution 

of this model, governments can develop better policies to reduce both travelers’ travel costs and 

urban environmental costs. The calculation feasibility shows that the proposed model and algorithm 

are efficient enough to be applied in large-scale networks. A comparative analysis and a sensitivity 

analysis are conducted to test our results. 

The findings of this paper are interesting. Through the comparative analysis, we observe an 

obvious difference between the flow pattern of the network with EVs and that of the network without 

EVs. The results suggest that the existence of EVs does affect drivers’ route choice behavior. 

Moreover, the existence of EVs reduces not only the generalized costs of EV drivers but also those of 

GV drivers. This finding is interesting because it is different from our intuition and is really beneficial 

to promoting EVs. We compare our findings with those in other researches [3–6] which focused on 

travel time costs, monetary costs or operating costs. Most of them did not conduct a similar 

comparison and did not achieve our findings. Through a sensitivity analysis, we further analyze the 

extent where EVs would affect the total environmental costs of the overall traffic network. The results 

suggest that a large number of EVs, a good environmental awareness of people and a low 

contaminant level of EVs can help reduce the environmental costs of the traffic network. 

Our research is useful for practical policy purposes. First of all, since the existence of EVs reduces 

the generalized travel costs for both EV drivers and GV drivers, our research strengthens people’s 

confidence in believing that EVs can benefit their travels. Besides, our research suggests that 

governments pay attention to improving people’s environmental awareness and reducing the 

contaminant of EVs while they are promoting EVs. By doing these things simultaneously, 
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governments will harvest a notable effect on reducing the total environmental costs of the urban 

traffic networks. What is more, according to our research, electric vehicle manufacturers can design 

better products, which are more environmental-friendly and with lower environmental costs, to cater 

to the customers with environmental awareness and the governments. 

Moreover, because we employ the theory of traffic network in this model, some assumptions 

that will make the model more realistic and practical can be considered in the future. For example, 

since the travel distance of EVs is limited by the underdeveloped battery technology and travel 

patterns can change based on changing demands, the assumptions of distance limitation and elastic 

demand may be integrated into our EV network models in future research. In future research, we 

will take distance limitation and elastic demand into consideration. Both can help improve the 

proposed SUE model for EV networks with environmental costs. With their help, the models and 

results will be more practical and realistic. 
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Notations 

The following notations are used in the paper: 

Sets 

𝐴𝑟𝑐 set of links, where 𝐴𝑟𝑐 = {𝑎} 

𝐼 set of vehicles, 𝐼 = {𝑖}, 𝑖 = 𝑒 denotes electric vehicles, 𝑖 = 𝑔 denotes gas vehicles 

𝐾𝑟𝑠 set of route between origin-destination (OD) pairs 𝑟𝑠, 𝐾𝑟𝑠 = {𝑘} 

𝑁𝑜𝑑𝑒 set of nodes, where 𝑁𝑜𝑑𝑒 = {𝑛} 

𝑅𝑆 set of OD pairs, 𝑅𝑆 = {𝑟𝑠}, 𝑟, 𝑠 ∈ 𝑁𝑜𝑑𝑒 

Parameters 

  

𝐴 environmental awareness 

𝑐𝑘,𝑖
𝑟𝑠  travel cost of vehicle 𝑖 on path 𝑘 between OD pairs 𝑟𝑠 

𝐶𝑎 capacity of link ⁡𝑎 

𝑑𝑎 physical length of link 𝑎 

𝐸 contaminant of EVs 
𝑃𝑘,𝑖
𝑟𝑠 probability for vehicle 𝑖 to choose route 𝑘 between OD pairs 𝑟𝑠 

𝑞𝑖
𝑟𝑠 traffic demand of vehicle 𝑖 between OD pairs 𝑟𝑠 

𝑟𝑎𝑡𝑖𝑜 ratio of the number of EVs to that of all vehicles in the network 

𝑡𝑎,𝑖 generalized costs of vehicle 𝑖 on link 𝑎 

𝑢𝑖
𝑟𝑠 utility of OD pair 𝑟𝑠 for the vehicle 𝑖 

𝜃𝑖  travel cost perception of vehicle 𝑖 

𝛿𝑎,𝑘
𝑟𝑠  

link-path incidence parameter, where 𝛿𝑎,𝑘
𝑟𝑠 = 1 if link 𝑎 is contained by path 𝑘 between OD pairs 

𝑟𝑠, and 𝛿𝑎,𝑘
𝑟𝑠 = 0, otherwise 

Variables 

𝑓𝑘,𝑖
𝑟𝑠 path flow of vehicle 𝑖 on path 𝑘 between OD pairs 𝑟𝑠; 𝒇 = {𝑓𝑘,𝑖

𝑟𝑠} 

𝑥𝑎,𝑖 link flow of vehicle 𝑖 on link 𝑎; 𝒙𝒂 = {𝑥𝑎,𝑒 , 𝑥𝑎,𝑔}, 𝒙 = {𝒙𝒂} 
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