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Abstract: With the considerable increase in ownership of motor vehicles, traffic crashes have become
a challenge. This paper presents a study of naturalistic driving conducted to collect driving data.
The experiments were performed on different road types in the city of Wuhan in China. The collected
driving data were used to develop a near-crash database, which covers driving behavior, near-crash
factors, driving environment, time, demographics, and experience. A new definition of near-crash
events is also proposed. The new definition considers potential risks in driving behavior, such as
braking pressure, time headway, and deceleration. A clustering analysis was carried out through a
K-means algorithm to classify near-crash events based on their risk level. In addition, a mixed-ordered
logit model was used to examine the contributing factors associated with the driving risk of near-crash
events. The results indicate that ten factors significantly affect the driving risk of near-crash events:
deceleration average, vehicle kinetic energy, near-crash causes, congestion on roads, time of day,
driving miles, road types, weekend, age, and experience. The findings may be used by transportation
planners to understand the factors that influence driving risk and may provide valuable insights and
helpful suggestions for improving transportation rules and reducing traffic collisions thus making
roads safer.

Keywords: K-means; near-crash events; driving risk evaluation; mixed-ordered logit model

1. Introduction

The annual Chinese report on traffic collisions shows that in 2015 the total number of traffic
collisions was 187,788, causing 58,027 deaths, 199,885 injuries, and 1.2 billion Yuan (1 USD equals
6.6 Yuan) in property damage. Among the Chinese cities reported, the city of Wuhan saw a considerably
high number of traffic collisions with a total of 1921 crashes, 344 deaths, and 1932 injuries with a direct
property loss of 60.6 million Yuan [1].

Despite the significant achievements that have been made in the field of traffic safety, the number
of road fatalities is still high, and traffic collisions remain a challenge. To address this problem, many
studies have been conducted over the last few decades. The results are various approaches and methods
that reduce the number of deaths and the severity of injuries caused by traffic collisions. However, the
number of deaths and injuries and the cost of property damage remains unacceptably high.

Various factors contribute to traffic collisions. Previous studies have explored these factors that
influence the risk of driving behavior, weather, road environment, and driver demographics to provide
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suggestions and make recommendations for traffic regulators to make roads safer. Many statistical
models and data mining methods have been developed and implemented to accomplish this goal.

Machine learning techniques, such as support vector machines (SVMs) and regression models,
have been used to evaluate injury severity of crashes. For example, an SVM model was developed and
adopted to identify and predict the injury severity related to individual crashes [2]. The results of the
sensitivity analysis show that using an SVM model can provide better outcomes related to the impact
of various variables on the injury severity of crashes as compared to an ordered probit model. Another
SVM model was adopted to investigate the driver injury severity in rollover crashes on roadways [3].
In addition, a classification and regression model was used to examine the contributing factors for
predicting injury severity. The study found that driving under the influence of alcohol and drugs is an
important factor associated with injuries and fatalities.

Classification and regression trees (CART) have also been used to analyze injury severity and
explore critical factors associated with the severity of crashes. For instance, Iragavarapu et al. [4] used a
CART to examine the influencing and causal factors that contribute to the severity of pedestrian crashes
in Texas, USA. The results indicate that key variables, including weather, road type, traffic light control,
right shoulder width, the involvement of commercial vehicles, the age of pedestrians, and the manner
of the collision, have the greatest impact on the severity of pedestrian crashes. A non-parametric
classification and regression tree (NCART) was used to examine the contributing factors associated
with injury severity [5]. The results show that some key determinants, including drunk-driving, seat
belt usage, type of vehicle, type of vehicle collision, the number of vehicles in the collision, collision
location, and the type of crash, have the most significant influence on injury severity.

Logistic models have also been used to study the severity of collisions and crashes. For instance,
Chen et al. [6] used a hierarchical-ordered logit model to predict the injury severity of rural road
crashes. The study shows that key factors, including the number of vehicles in the collision, severe
damage of vehicle in the collision, motor-cyclists, females, driving experience, alcohol or drugs, and
collision type, greatly affect injury severity. Bogue et al. [7] used a modified-ordered logistic regression
model to examine the order of occupants of injury severity and the actual injury severity. The findings
indicate that key factors, including gender of occupants and speed limit, have the most significant
influence on injury severity.

Traffic crash data are the primary measure of traffic safety, and many studies (as mentioned
above) have highlighted the factors affecting traffic crashes. However, there are limitations in using
the statistics of traffic crash data [8,9]. Firstly, crash data are not open-access data and, therefore, not
readily available. Secondly, crash data include sparse and rare events, which sometimes are not robust
enough for performing data analysis. Thirdly, crash data cannot be collected directly, and as such
researchers have suffered from a lack of detailed driving data (e.g., driving behaviors, such as braking,
speed, and acceleration), which can assist in investigating driving risk. Therefore, the current studies
do not go far enough for reaching statistically significant conclusions.

For such reasons, alternative methods have been proposed using driving data collected from
naturalistic driving experiments in instrumented vehicles. For instance, a project called “100-Car
Naturalistic Driving Study” used a large-scale instrumented vehicle to collect naturalistic driving data
in the US [10,11]. Takeda et al. [12] worked on a collaborative project to collect a large amount of
driving data to examine driver behavior characteristics and explore the crash-causation mechanism.
Discussing and studying sizeable naturalistic driving data can provide insights for improving traffic
safety and regulation.

Many studies have used naturalistic driving data, and new approaches have been proposed to
provide new insights into traffic safety [13–15]. For instance, Wu et al. [13] assessed the factors that
contribute to the high risk of individual drivers using naturalistic driving data and near-crashes as
surrogate measures. Additionally, to evaluate near-crashes, two standards were used: precision and
bias of risk estimation. The results show that using near-crashes as crash surrogates can provide a
clear benefit, especially when data of actual crashes are not available.
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Therefore, researchers have started paying attention to the potentiality of using near-crash data
to study the significant factors related to driving risk to propose suggestions and recommendations
to transportation regulators and enhance traffic safety. Guo and Fang [16] presented a method for
assessing the driving risk of individual drivers using naturalistic driving data. A negative binomial
regression model was used to examine the significant risk factors. The results indicate that key factors,
such as the age of the driver, personality-related factors, and the rate of the critical incident, significantly
affect both crash risk and near-crash risk. Wang et al. [17] proposed a statistical method for driving
risk assessment using a classification and tree-based model on near-crash events. The results show
that key factors, such as velocity during braking, triggering-related factors, the potential object type,
and the possible crash type, contribute to driving risk.

However, no comprehensive studies have been conducted to examine and uncover the factors
influencing driving risk in a naturalistic driving environment. There is a need to study the factors
associated with the driving risk of near-crashes. These factors include driving behaviors, near-crash
features, environment, time, demographics, and experience.

Therefore, this study examined the significant risk factors threatening traffic safety by evaluating
the driving risk of near-crashes in the city of Wuhan in China. This study evaluated driving risk by
the contributing factors of near-crash events (similar to Wang et al. [17] and Guo et al. [16]) rather
than analyzing driving risk by crash data (similar to Chang et al. [18]). In crash data, if severity levels
are precise and identified in advance, then one needs only to select the proper regression model and
load the severity of crashes as the dependent variable and other factors as the independent variables.
This study used a similar regression model to obtain the factors that affect near-crash events.

There are three main contributions of this paper: (1) a new definition of near-crash events, which
covers driving behavior as well as describes driving risk; (2) an experiment is presented that analyzed
factors associated with the driving risk of near-crashes, including driving behaviors, near-crash
features, environment, time, demographics, and experience; and (3) an approach for evaluating the
driving risk of near-crashes using a cluster analysis and a statistical mixed-ordered logit model.

This paper is structured into seven sections. Section 2 presents the new definition of near-crash
events. Section 3 presents a description of the naturalistic driving experiment and data preparation.
Section 4 introduces the proposed methodology, and Section 5 provides an explanation of the results.
Section 6 discusses results in further detail. Section 7 summarizes the implications and value of the
findings of driving risk analysis on near-crashes and introduces recommendations for future work.

2. The Definition of a Near-Crash Event

In general, a near-crash implies that a driver makes a rapid evasive action (such as an emergency
braking or a steering operation). In the absence of such an action, a real crash may occur [19–22].
Therefore, previous studies presented different definitions for describing near-crashes. Wu et al. [13]
focused only on braking events and identified a near-crash event where braking is the primary evasive
action. Wang et al. [17] defined a near-crash by reaching a threshold value of vehicle acceleration
(longitudinal: −1.5 m/s2; lateral: −1 m/s2).

In this study, near-crash events are used as surrogate measures for studying traffic safety.
Three indicators were selected to represent a near-crash event: time headway, deceleration, and braking
pressure. Here, it is necessary to mention that deceleration is related to longitudinal deceleration, and
braking pressure is related to longitudinal conflict behavior. Therefore, steering avoidance events were
not included.

Tarko et al. [23] stated that surrogate measures must meet two conditions: first, they should be
associated with a non-crash, and, second, there should be a method for transforming the non-crashes
into a frequency or severity of crashes. In this study, the two conditions of surrogate measures are
considered. For the first condition, braking pressure, time headway, and deceleration represent the
near-crash events, and they were included in previous studies as parameters related to risk and crashes.
By observing these actions, we found that, without them, a crash may have occurred.
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To obtain an accurate dataset, after observing these actions, we filtered them by checking the
corresponding video and removing the actions that were not related to a near-crash. However, for the
second condition, converting the change in braking pressure, time headway, and deceleration to the
change in crash frequencies was difficult, and as such it may be considered in subsequent experiments.
Therefore, we can derive the following definition of a near-crash event.

A near-crash event is an event that reached at least one of the three thresholds of indicators
mentioned above. In this study the threshold values are less than 0.6 s and −0.4 m/s2 for time
headway and deceleration, respectively, and more than 10 mpa for braking pressure. These thresholds
are reasonable and validated by many experiments conducted in related studies, especially in
China [18,20].

Figure 1 shows an example of a near-crash event observed during the naturalist driving experiment.

Figure 1. An example of a near-crash event.

Before the 31-ms time-stamp, which is considered to be the starting point of a near-crash event,
time headway and deceleration decreases gradually until they reached the predefined threshold values:
0.6 s and −0.4 m/s2. Braking pressure increased gradually and reached the corresponding threshold
value of 10 mpa.

3. Experiment Description and Data Preparation

To present a good foundation for assessing the driving risk of near-crashes, two elements are
essential to this study: driving data and experimental design. This section explains the experimental
design and the data preparation. In the experimental description, the equipment, participants, and
scenarios are detailed, while the data collection and preprocessing of the near-crash events are detailed
in the data preparation description.
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3.1. Experimental Description

3.1.1. Experimental Design

To collect near-crash data from naturalistic driving, experiments were undertaken using an
instrumented vehicle on different road types in the city of Wuhan. During the experiments, each
participant was informed to maintain his or her regular driving style as much as possible. In addition,
to ensure that the experiments were standardized and conducted in similar conditions, the participants
were asked to drive on the same routes using the same instrumented vehicle during the same periods.
Experiments were conducted in September, October, and December 2016. Figure 2 shows the view
from the test vehicle and its equipment and surroundings during the naturalistic driving experiment.

Figure 2. A photograph of the experimental vehicle, equipment, and surroundings.

3.1.2. Experiment Vehicle and Equipment

The experiments were conducted using the Trump chi GA3 vehicle model manufactured by
the Trump chi vehicle company. The vehicle was outfitted with different equipment to collect
comprehensive data related to driving behavior and the environmental conditions. The vehicle
equipment is shown in Figure 3.

Figure 3. Experimental vehicle and equipment.
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A GPS/INS was used to obtain the latitude and longitude of the vehicle along with the three-axis
acceleration. Time headway, lane position, and lane departure were recorded by the MobilEye device.
A video camera was used to obtain environmental information during the experiments. The data
for the driving behavior variables (including speed, accelerator pedal, brake pedal, and steering
wheel angle) were collected by a CAN BUS. A LiDAR device was used to collect the target (vehicle)
information (such as distance, velocity, relative velocity, etc.).

During the experiments, the devices collected data through the CAN bus. The experimenters
used a CAN acquisition device to collect all equipment data. The clock of the collection device was set
as the system clock, so all the equipment time was collected synchronously.

3.1.3. Participants

Forty-one people participated in the experiments: thirty male drivers and eleven female drivers.
The drivers were recruited to participate in the experiments through a notice posted at the Wuhan
University of Technology. To ensure the reliability of the experiments, the participants selected for
the experiments were students and university staff, and all of them had a valid driving license (and
driving experience of at least three years). The age of the participants ranged from 22 to 54 years old
(the mean age was 31.85). For more details, see Table 1.

Table 1. Participant information.

Total
Age (by Years) Experience (by Years) Driving Miles

Mean SD Mean SD Mean SD

All 41 31.85 8.23 6.7 4.49 266.44 13.4
Male 30 31.46 8.11 6.2 4.37 302.90 10.9

Female 11 33.00 8.74 8 4.83 158.90 17.2

3.1.4. Experiment Routes

Because different road types have a distinct influence on driving behaviors, the experiments were
conducted on different road types, including urban roads, highways, urban expressways, etc., in the
city of Wuhan. In general, the urban roads consisted of two or three lanes in two directions, on which
the speed limit was between 40 and 60 km/h. The total distance of the urban roads was about 12 km.
The total distance of the expressways was 34 km. Each expressway consisted of three to five lanes
in both directions, on which the speed limit was 80 km/h. The freeways consisted of three or four
lanes in both directions, on which the speed limit was 100–120 km/h, and the total freeway distance
was 45 km. Route guidance was provided to the participants by a navigation map application in the
vehicle during the experiment.

3.1.5. Experimental Scenarios

Each experiment included two parts: the pre-experiment and the main experiment. In the
pre-experiment, the basic courses of the experiments were explained to the participants, and then they
were informed to modify the rearview mirror and the seat to be comfortable and ready to undertake
the experiments. In the main experiment, each participant drove the instrumented vehicle on the
predefined different types of roads, which included 45 km of freeways (40 min), 50 km of expressways
(50 min), and 12 km of urban roads (36 min). Each experiment was undertaken at different times of
day between 18:00 and 24:00.

3.2. Data Preparation

Using the definition of near-crashes introduced above, 1670 near-crashes were observed during
the naturalistic driving experiments. The distribution of the obtained near-crashes on different road
types is shown in Table 2.
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Table 2. Near-crash events on different road types.

Urban Roads City Highways Freeways Ramps Tunnels

Near-Crash Events 694 515 228 191 42

As shown in Table 2, the majority of crash events occurred on urban roads followed by
city highways.

To examine the factors associated with a high risk of near-crashes, this study followed approaches
from previous studies for collecting and obtaining driving data variables [13–15]. This study introduces
a comprehensive database, which includes the majority of factors that may influence the risk of
near-crashes. This database contains driving behaviors, near-crash factors, environment, time,
demographics, and experience.

To guarantee the quality and the accuracy of the near-crash database, the collected data needed to
be filtered. After filtering for the predefined threshold of the three indicators mentioned above, the
initial number of near-crash events was 1934. Then, we filtered again according to a criterion: the
video of each near-crash event was watched and analyzed according to the event time. If the event
was considered a near-crash (the vehicle was about to be in a crash), then this event would be saved in
the database. Otherwise, the event would be excluded and removed from the database. More than
five people participated in the filtering process. After filtering, the near-crash database was ready for
processing using clustering and statistical models. The factors included in the near-crash database are
shown in Table 3.

Table 3. Factors of the near-crash database.

Factor Symbol Data-Type Source Description

Driving Behavior

Starting Speed Be_Sp continuous Signals Speed when a near-crash event begins
(m/s)

Deceleration Average Avr_Dec continuous Signals Average Deceleration (m/s2)

Average Speed Avr_Sped continuous Signals Average Speed (m/s)

Time Headway Average Avr_THW continuous Signals Average Time Headway (s)

Braking pressure Average Avr_Br continuous Signals Average Braking Pressure (MPA)

Min Deceleration Min_Dec continuous Signals Minimum Deceleration (m/s2)

Min Time Headway MinTHW continuous Signals Minimum Time Headway (s)

Max Braking pressure Max_Br continuous Signals Maximum Braking Pressure (MPA)

Energy * Energy continuous Signals Vehicle Kinetic Energy

Near-Crash Factors

Near-Crash Type Cra_ty categorical Video

Potential Crash Type
1. Subject (head)-object (head)
2. Subject (head)-object (tail)
3. Subject (head)-object (side)
4. Subject (side)-object (side)
5. Subject (side)-object (tail)
6. Pedestrian conflict
7. Road parts
8. Others
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Table 3. Cont.

Factor Symbol Data-Type Source Description

Near-Crash Reason NC_reasn categorical Video

Near-crash Cause
1. Head vehicle suddenly stopped
2. Traffic lights
3. Traffic density
4. Road maintenance
5. Road changes
6. Road users
7. Subject vehicle turning
8. Object vehicle turning
9. Others

Environment and Time Features

Wet Wet categorical Video
Road condition
1. Wet
2. Dry

Road Type R_ty categorical Video

Road Types
1. Urban roads
2. City Highways
3. Freeways
4. Ramp
5. Tunnel

Lane Numbers Lane_Nu categorical Video Lane numbers 1.1, 2.2, 3.3, 4.4, 5.5

Speed Limit Sp_lim categorical Video

Speed limit
1. 60
2. 80
3. 100–120

Road Congestion congested categorical Video Is congested? 1. Yes; 0. No

Peak Hour Peak_hrs categorical Video Is it in peak hours (7:30–9:00 am,
4:30–5:30 pm) 1. Yes; 2. No

Weather Weather categorical Video

Weather
1. Sunny
2. Rain
3. Cloud

Light Light categorical Video
Light
1. Light
2. Dark

Weekend Weekend categorical Signals
Weekend
1. Yes
2. No

Time of Day Time_day categorical Signals

Time of day
1. 06–12
2. 12–18
3. 18–24

Driver and Driving Experience Factors

Age Age categorical Questionnaire

Age
1. Less than 23
2. 23–45
3. More than 45

Gender Gender categorical Questionnaire
Gender
1. Male
2. Female

Driving Miles Driving_miles continuous Questionnaire Driving Miles (miles)

Driving Experience Dri_years continuous Questionnaire Driving years with license (years)

Energy * (Vehicle Kinetic Energy) was calculated by the formula: Energy = 1−
[

v1
v2

]2
, where v1 and v2 represent

the highest and lowest speed during a near-crash event.



Sustainability 2018, 10, 2868 9 of 20

4. Methodology

4.1. Identification of Driving Risk of Near-Crash Events

To study the driving risk of near-crashes, it is necessary to provide a method for identifying the
driving risk of near-crash events. To fill this need, a driving risk level for a near-crash event was
determined by three indicators of driving behavior: minimum time headway, minimum deceleration,
and maximum braking pressure, written as follows:

Z = [DECmin, THWmin, Brmax]
T (1)

where DECmin, THWmin, Brmax represent the minimum deceleration, minimum time headway, and
maximum braking pressure, respectively.

Clustering analysis is a valid approach for classifying near-crash events into different levels [24,25].
In this study, the K-means clustering method, which is used widely for cluster analysis in data-mining,
was used to classify the near-crash events into different groups based on the predefined indicators.
Using a predetermined number of clusters, the K-means clustering method partitions near-crash events
into K clusters, where each near-crash event belongs to a cluster whose mean is closer to its value.
The K-means method minimizes the within-cluster sum of squares:

argmin
k

∑
i=1

∑
Xj∈Si

||Xj − ui
2|| (2)

where Z = [Z1, Z2, Z3, . . . , Zn] is a set of the obtained data, which denotes the feature Zi =

[ACCmin(i), THWmin(i), Brmax(i)] in this study; S = [S1, S2, . . . , Si, . . . , Sn] is the set of the K clusters
and i is the mean center of the cluster set Si. Then, the predefined K value for the K means method was
set to three as in [10]. Therefore, the cluster analysis resulted in grouping the near-crash events into
three driving risk groups (levels): high, moderate, and low. After that, a mixed-ordered logit model
was used on the derived driving risk groups to assess the driving risk of near-crash events.

4.2. A Mixed-Ordered Logit Model for Driving Risk Levels of Near-Crash Events

The goal of this study was to evaluate the driving risk of near-crashes by exploring the contributing
factors of near-crashes and considering the effect of the ordinal nature of the outcome variables.

Before performing any processes on the statistical model, there was a need to check the collinearity
among the variables.

One of the methods to eliminate collinearity is to use Principal Component Analysis (PCA), as
described in [26]. PCA has been successful in identifying the primary components of driver distraction
to visual-manual tasks from driver performance variables. However, in our case, PCA may not be
a good option as there are two types of variables (continuous and categorical), and we follow the
method provided by Sunghee Park et al. [27] and Chang et al. [18]. PCA is suitable for continuous
variables, such as speed and deceleration, but there are several significant categorical variables (road
type and near-crash causes) in this study, and they could not be included if we used PCA. Therefore,
we used Stata software, in which all variables with collinearity were identified and removed, and the
results in this study have no collinearity at all.

The multiple ordinal levels for the driving risk of near-crashes (i.e., j = “1, 2, and 3”, where 1 is low,
2 is moderate, and 3 is high), which were obtained from the cluster analysis discussed in Section 4.1,
facilitated the application of the ordered logit model as shown in Formula (3) [26]:

y∗i = β′Xi + εi (3)

where y∗i is a latent driving risk level for a near-crash event (i = 1, 2, . . . , n); Xij is a matrix of explanatory
variables (i.e., Xi1, Xi2, . . . , Xim) that affect a near-crash event I; β is the corresponding matrix of the
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coefficients of the regression to be estimated (i.e., β1, β2, . . . , βp); and εi denotes the term of random
error, which must be independently and identically standard for logistic distribution.

To understand the severity of near-crash events and provide clear knowledge for modeling the
severity of near-crash events, here is a definition of the severity index:

The severity of a near-crash event is considered by obtaining a severity index (the latent
driving risk level y∗i , which was mapped to the observed driving risk level yi through the threshold
µk(µ0 = −∞ and µ3 = ∞)), and then each near-crash event is included in one of the three severity
levels as follows:

yi =


1 if −∞ ≤ y∗i ≤ µ1 (low)

2 if µ1 ≤ y∗i ≤ µ2 (moderate)
3 if µ2 ≤ y∗i ≤ ∞ (high)

(4)

where µ1 and µ2 are the threshold values for being estimated together with β.
The severity index would be converted into a number 1, 2, or 3 to import it into the mixed-ordered

logit model.
Severity index number 1 indicates high severity, which may lead to death or incapacitation.

Severity index number 2 indicates moderate severity and may lead to non-incapacitating injury or
possible crash. Severity index number 3 indicates low severity, which can be a light injury or maybe
only property damage or even no crash at all.

We then have the following predicted probabilities [28,29]:

Prob(y1 = 1|Xi) = F(
∧
µ1 − Xi

∧
β)

Prob(y2 = 2|Xi) = F(
∧
µ2 − Xi

∧
β)− F(

∧
µ1 − Xi

∧
β)

Prob(y3 = 3|Xi) = 1− F(
∧
µ2 − Xi

∧
β)

(5)

where F (*) is the cumulative distribution function using the following mathematical formula [30]:

F(z) =
exp(z)

1 + exp(z)
(6)

However, a limitation was detected in the traditional ordered logit model in which the coefficients
of regression are fixed along with the individual observations. To address this, a mixed-ordered logit
model was used to consider the coefficients being randomly distributed with the potential of various
emerging parameters [30] as follows:

βik = βk + ϕik (7)

where ϕik is the random error that follows a normal random parameter. βik is used whenever
∧
δk

is significantly bigger than 0; otherwise, the parameter would be fixed along with all individuals.
Then, the conditional probability of the log likelihood function in Equation (5) would be as follows:

Prob(yi = j
∣∣Xi, βi) = F(j,−, β′iXi) (8)

For selecting and comparing the model, the Akaike Information Criterion was used [29]. AIC took
the goodness of fit (GOF) as well, and the model complexity was found as follows:

AIC = −2 ln(L) + 2L (9)

where L is the maximum value of the likelihood function of the model, and K is the number of the
estimated parameters included in the model.



Sustainability 2018, 10, 2868 11 of 20

5. Results Analysis

5.1. Levels of Driving Risk of Near-Crashes

After implementing the cluster analysis, near-crash events were grouped into three levels based
on their driving risk: low, moderate, or high. Figure 4 shows the clustering results and Table 4 presents
the statistical details of the three risk levels.

Figure 4. Results of the cluster analysis of driving risk for near-crash events.

Table 4. Characteristics of driving risk levels.

Driving
Risk Levels

Events
Number

Percentile
(%)

Mean and SD of Driving Behavior Characteristics

THW_Min (m/s) DEC_Min (m/s2) Br_Max (MPA)

Mean SD Mean SD Mean SD

Low 531 31.8 1.80 1.47 −3.13 0.52 21.28 3.12
Moderate 1087 65 2.32 3.64 −2.15 0.51 13.19 3.27

High 52 3.2 2.05 0.87 −3.83 1.48 41.00 8.46

From the data distribution of clustering the three indicators, we can use them to measure the
severity of a near-crash event. In our study, cluster analysis was performed to classify the events
(by the three indicators) into three clusters (risk levels): high, moderate, and low (Table 4). This is
similar to the study by Wang et al. [17].

In this study, risk levels (groups) were considered as different measures for evaluating near-crash
severity. For instance, in a high-risk level, the standard deviation and average maximum braking
pressure were 8.44 and 41, respectively. The standard deviation and average minimum deceleration
were −3.83 and 14.8, respectively. The total number of events was only 52. We can conclude that
high-risk level events reflect high severity near-crash events and may lead to the high-level severity of
a crash if the events become a real crash. On the other hand, in a low-risk level, the standard deviation
and average maximum braking pressure were 1.8 and 1.47, respectively. The standard deviation and
average minimum deceleration were −3.13 and 0.52, respectively. The total number of events was
531. We can conclude that low-risk level events reflect low severity near-crash events and may lead to
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the low-level severity of a crash if the events become a real crash. Table 5 summarizes the descriptive
statistics of the three driving risk levels.

Table 5. Summary of descriptive statistics of factors.

Factor Events
No

Low Moderate High
Factor Events

No
Low Moderate High

% % % % % %

Crash Type Lane Numbers

1. Subject (head)-object (head) 14 28.5 71.5 0 1. One Lane 91 30.6 65.1 4.3

2. Subject (head)-object (tail) 1053 31.7 65.9 2.3 2. Two Lanes 366 34 63.3 2.7

3. Subject (head)-object (side) 306 33.3 64.7 1.9 3.Three Lanes 780 30 67.1 3.3

4. Subject (side)-object (side) 30 23.3 70 6.6 4. Four Lanes 427 33.4 62.7 4.6

5. Subject (side)-object (tail) 12 16.6 83.3 0 5. Five Lanes 14 28.5 42.85 14.2

6. Pedestrian conflict 28 35.7 64.2 0 Time of Day

7. Road parts 59 35.5 61.0 3.3 1.06–12 743 32.8 64.7 2.4

8. Others 168 30.3 59.5 10.1 2.12–18 888 30.9 65.4 3.6

Near-Crash Reason 3.18–24 39 30.7 64.1 5.1

1. Head Vehicle Suddenly
Stopped 247 31.5 66.3 2.0 Road Congestion

2. Traffic Lights 153 24.8 67.3 7.8 0. No 883 34.8 62.9 2.1

3. Traffic Density 600 35.6 6.2 2.3 1. Yes 787 28.3 67.4 4.1

4. Fixing Road 14 42.8 57.1 0 Peak Hour

5. Road Changes 59 27.1 71.1 1.6 1. Yes 370 30.8 67.2 1.9

6. Road Users 32 37.5 62.5 0 2. No 1300 32 64.4 3.4

7. Subject Vehicle Turning 182 31.3 67.5 1.0 Weather

8. Object Vehicle Turning 222 28.8 68.9 2.2 1. Sunny 1499 32.1 65.3 2.5

9. Others 161 28.5 63.3 8.0 2. Rain 98 31.6 653 3

Road Type 3. Cloudy 73 24.6 60.2 15.2

1. Urban 694 30.2 67.2 2.5 Weekend

2. City Highway 515 33.7 63.8 2.3 0. Yes 429 32.4 65.9 1.6

3. Freeway 228 28.5 64 7.4 1. No 1241 31.5 64.7 3.6

4. Ramp 191 36.7 61.8 1.6 Age

5. Tunnel 42 28.6 66.7 4.7 1. less than 23 176 34.6 61.9 3.4

Wet 2. 23–45 1200 31.4 65.3 3.2

1. Dry 1479 32.1 65.1 2.7 3. More than 45 172 26.7 71.5 1.7

2. Wet 194 28.4 65.6 6.3 Gender

1. Male 1165 33 64.6 2.4

2. Female 505 28.9 66.1 4.9



Sustainability 2018, 10, 2868 13 of 20

5.2. Results of the Statistical Model

To avoid skewed or misleading results, a correlation test was conducted to detect the existence
of collinearity among the variables using Stata software as mentioned in Section 4.2. The variance
inflation factor (VIF) was used, and variables with collinearity were removed. The final results indicate
that the obtained maximum value of the VIF reached 3.3, and this shows that there is no strong
collinearity among the independent variables in our dataset. Besides, the likelihood ratio (LR) test
was used to guarantee that all added variables significantly improved the overall performance of
the model.

For comparison, a mixed-ordered logit model and the original ordered logit model were used.

5.2.1. Comparison of Models

Table 6 summarizes the results of the Good of Fit (GOF) measures of the ordered logit model and
the mixed-ordered logit model. Incorporating the random parameters increased the model complexity
but led to a significant improvement in overall fit as denoted by LL (β). Mainly, the mixed model was
superior concerning AIC statistics (15 points lower).

Table 6. Goodness-of-fit measures for the ordered logit model (basic) and the mixed-ordered
logit model.

Model Statistic Basic Mixed

Observations, n 1670 1670

Significant parameters, k 9 10

Log likelihood at zero, LL (0) −1255.5942 −1255.5942

Log likelihood at convergence, LL (β) −911.19892 −777.880

AIC 1639.761 1625.054

Adj Likelihood ratio index 0.207 0.307

Degree of Freedom 14 14

In addition, the adjusted log likelihood ratio index, in which higher values for a specific model
indicate that this model explains the data better than the other models, of the mixed model was 0.307,
which is higher than that of the basic form (0.270).

The results of the comparison show that the presence of the random parameters highlights the
heterogeneity in the effects of driving risk factors of near-crashes. Therefore, this section presents
explanations of the contributing factors produced by the mixed-ordered logit model.

5.2.2. Model Estimates

Table 7 shows the estimates of factors from the mixed-ordered logit model of the driving risk of
near-crash events. The variables with a significance value above 0.05 or above 0.1 are highlighted.
The other variables were considered insignificant and thus were eliminated from the estimated results.
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Table 7. Estimate results for the mixed-ordered logit model.

Dependent Variable Coefficient Standard Error p > |z| Z-Statistic Mean

Driving Behavior Features

Vehicle Kinetic Energy −4.357163 0.2454721 <0.001 * −17.75 0.40211

Deceleration Average 1.102912 0.0846138 <0.001 * 13.03 −2.042

Near-Crash Features

Near-Crash Reason 4.42814

1. Head Vehicle Suddenly
Stopped −0.4246619 −0.2144163 0.048 * −1.98

2. Traffic Lights 0.543326 0.2551985 0.033 * 2.13

3. Traffic Density a 0 0 0

4. Road Fixing −1.421049 −0.6403748 0.026 * −2.22

7. Subject Vehicle Turning −0.4656817 0.2249775 0.038 * −2.07

Environment and Time

Road Type

1. Urban a 0 0 0 3.07964

2. City Highway −0.6653231 0.1554658 0.008 * −4.28

4. Ramp −0.6350275 0.2075957 0.002 * −3.06

Road Congestion 0.52874

0. Yes 0.2926946 0.1613912 0.094 ** 1.98

1. No a 0 0 0

Time of Day 1.57844

2.12–18 a 0 0 0

3.18–24 1.140956 0.4467025 0.011 * 2.55

Weekend 1.74311

0. No a 0 0 0 0

1. Yes −0.740657 0.3487634 0.081 ** −2.16

Driver Demographic and Driving Experience Features

Age 1.99761

2. 23–45 a 0 0 0

3. More than 45 −0.3049686 0.2429392 −0.084 ** 2.35

Driving Mileages −0.002227 0.0007862 0.005 * −2.83 89948.7

Driving Experience (years) −0.0601705 0.0228715 0.009 * −2.63 6.6

Threshold Coefficient Standard Error

Cut-point 1 (between low
~moderate) −5.727851 0.3434905

Cut-point 2 (between
moderate ~high) −5.524819 0.3411096

* Significant at 5%; ** Significant at 10%; a Base reference of associated categorical variable.

In this Section, we highlight the values and signs of the estimated coefficient β. It is important
to remember that a negative (or positive) value of coefficient βi is related to an increase of the
corresponding variable XI, which may decrease (or increase) the probability of high driving risk
and may increase (or decrease) the probability of low driving risk.
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In this study, the explanatory variables that resulted in coefficients with positive signs were low
deceleration average, traffic lights as a crash cause, road congestion, time of day period between
18:00 and 24:00. In other words, a near-crash event that happens on a congested road or at a traffic
light location or occurs in the period 18:00–24:00 may increase the probability of being in a high
driving risk. In addition, a near-crash event with a low deceleration average is more likely to increase
the driving risk. As shown in Table 5, the two largest positive variables (with a coefficient value
greater than 1) were associated with a time of day 18:00–24:00 followed by the deceleration average.
This means that these variables are the most critical and may significantly increase the driving risk of
near-crashes. By comparing the estimated coefficients of variables in Table 7, we can rank the influence
of all variables on the average driving risk. We found that the variable time of day 18:00–24:00 has the
greatest impact on driving risk (β = 1.140956).

In addition, the variables with negative coefficients included vehicle kinetic energy, near-crash
causes, such as head vehicle suddenly stopped, road maintenance, or subject vehicle turning, road
types, such as city highways and ramps, weekends, drivers older than 45, and drivers who drove
fewer miles and had less driving experience. Moreover, the vehicle kinetic energy was combined
with the largest negative parameter presented in Table 7, which shows that the average driving risk
may decrease significantly if a near-crash has a high negative value of vehicle kinetic energy. As the
vehicle kinetic energy is a driving behavior variable, it is vital to provide suitable regulations for driver
behavior, which in turn enhance traffic safety.

5.2.3. Margin Effects

Interpreting the coefficients is complicated, and they cannot directly represent the magnitude
of the influence of the estimates of the variables; therefore, examining the trends and patterns of the
marginal effects is more insightful and intuitive [30]. Thus, Table 8 summarizes the results of the
marginal effects that could be interpreted as the average percentage (%) change of the probability due
to the difference in the significant factors of the three driving risk levels.

Table 8. Estimate results of marginal effects of driving risk factors.

Dependent Variable Marginal Effects of Risk Levels

Low Moderate High

Driving Behavior Features

Vehicle Kinetic Energy 0.6876918 −0.7180673 0.0303755
Deceleration Average −0.1825126 −0.0080616 0.1905742

Near-Crash Features

Near-Crash Reason

1. Head Vehicle Suddenly Stopped 0.3610219 0.7430515 −0.0328883
2. Traffic Lights 0.2276311 0.0263799 0.6782394

3. Traffic Density a 0 0 0
4. Road Fixing 0.4695475 0.4951566 0.0352959

7. Subject Vehicle Turning 0.0101273 −0.0105746 0.0004473

Environment and Time

Road Type

1. Urban a 0 0 0
2. City Highway 0.3484643 0.6184576 0.0330782

4. Ramp 0.3480709 0.0330646 0.6188645
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Table 8. Cont.

Dependent Variable Marginal Effects of Risk Levels

Low Moderate High

Road Congestion

0. Yes 0.3254279 0.6422137 0.0323583
1. No a 0 0 0

Time of Day

2.12–18 a 0 0 0
3.18–24 0.1775779 0.0233632 0.7990589

Weekend

0. No a 0 0 0
1. Yes 0.3311193 0.6691787 0.032426

Driver Demographic and Driving Experience Features

Age

2. 23–45 a 0 0 0
3. More than 45 0.0327717 0.6128834 0.354345

Driving Mileages −4.10 × 10−7 4.28 × 10−7 −1.81 × 10−8

Driving Experience (years) 0.0093566 −0.0097702 0.0004135
a Base reference of associated categorical variable.

The values of the marginal effects of each variable conform to the previous findings in the
estimated coefficient of high and low driving risk as discussed in Section 5.2.2.

For instance, traffic lights and road maintenance, as near-crash causes, are considered influential
factors. The marginal effects of road maintenance for low and high risk were 0.4695475 and 0.0352959,
respectively, whereas the marginal effects of traffic lights for low and high risk were 0.2276311 and
0.6782394, respectively. Compared with near-crashes that occur due to road maintenance, near-crashes
as a result of traffic lights are more likely to cause a high-risk crash (if it happens). The impact of the
other variables can also be explained in this way.

6. Discussion

Comparing this study to the study by Wang et al. [17], we highlight several similarities and
dissimilarities. Regarding their methodology and results in particular, this study has several differences
and innovations.

Firstly, a comprehensive experiment was conducted on different road types in the city of Wuhan
in China to cover all variables associated with the driving risk of near-crashes. The obtained variables
include driving behavior, near-crash factors, environment, time, demographics, and experience.
In contrast, key variables were not included by Wang et al. [17], such as the maximum and average
braking pressure, the average speed, average and maximum time headway, number of lanes, weekend,
peak hours, time of day, and driving mileage. These variables undoubtedly play a vital role in
evaluating the driving risk of near-crashes, and some of these variables were found to be significant
according to the results of this study.

Secondly, unlike the definition of near-crashes proposed by Wang et al. [17], who only considered
braking variables, this study presents a definition of near-crash events considering three variables: time
headway, braking pressure, and deceleration. These variables provide a more powerful expression of
and meaning behind driving risk of near-crashes.

Thirdly, contrary to the method used by Wang et al. [17], which was a K-means method to
group near-crash events based on driving risk into three levels (high, moderate and low), this study
grouped near-crash events using various variables related to driving behavior, minimum time headway,
minimum deceleration, and maximum braking pressure.
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Finally, Wang et al. [17] adopted a classification and tree regression model (CART) to examine
contributing factors to the driving risk of near-crashes, but this study adopted a mixed-ordered
logit model. The use of the CART model resulted in four significant variables: triggering factors,
velocity when braking, potential object type, and possible crash type. In our study, the use of a
mixed-ordered logit model resulted in more significant variables: vehicle kinetic energy, average
deceleration, near-crash type, near-crash cause, road type, weekend, time of day, road congestion,
driver age, driving miles, and driving experience.

Moreover, this study provides an analysis of the effect of these variables on the three levels of
driving risk, which presents a better and a more comprehensive view of the impact of these variables
on the driving risk of near-crashes.

The driving risk of near-crashes was identified by a clustering method (K-means) to be within one
of three levels (1, high; 2, moderate; and 3, low) as in Wang et al. [17] not considering probability for
specifying risk. The risk level of near-crash events was obtained using a mixed-ordered logit model
to specify the factors (variables) associated with the driving risk of near-crash events. Operating the
mixed-ordered logit model requires uploading the risk levels in ordinal nature (not factual numbers),
and it provides the results automatically.

The significant variables influencing the driving risk of near-crashes were categorized into two
types: continuous variables and categorical variables, as highlighted in Tables 3 and 7. Ten variables
were considered to be significant, including two continuous variables of driving behavior, one
categorical variable of near-crash factors, four categorical variables of environment and time, and
three variables (two continuous and one categorical) of driver demographics and driving experience.
The negativity or positivity of the coefficient indicates the decreasing or increasing effect of the driving
risk of near-crash events. A detailed description of the impact of the variables is next.

The two significant variables regarding driving behavior are vehicle kinetic energy and average
deceleration. Since vehicle kinetic energy represents the upper bound and the lower bound changes
of the vehicle speed, many studies have shown that the higher the value of speed, the higher the
potentiality of being in a crash [31,32]. This indicates that the driving risk of a near-crash event
will increase as the vehicle speed increases. The vehicle deceleration reflects the driver’s control
of operating devices, such as the brake pedal and accelerator pedal. The average deceleration was
considered to be an important variable in this study. Generally, if the driver performed an urgent
brake, then the vehicle may have a very urgent traffic risk situation. In such an emergency, the driver
will avoid a collision by a heavy brake. Many studies support this finding [33–36]. To sum up our
findings, two variables—vehicle kinetic energy and average deceleration—related to driving behavior
are important and conform to those found in previous studies on road safety.

Regarding the near-crash causes, four categorical factors—the head vehicle suddenly stopped,
traffic lights, road maintenance, and subject vehicle turning—were found to be significant factors.
Results shown in Table 7 support the statistical results shown in Table 5. Three factors of near-crash
cause have significant effects on the driving risk of near-crashes. When a head vehicle suddenly stops,
the possibility of being in a crash is higher as the driver of the behind vehicle may not react fast
enough. Additionally, a crash may occur due to: (1) a traffic light change, which may cause a vehicle
to suddenly stop; and (2) a reduction in vehicle speed due to road maintenance. These results also
conform to the previous study [17].

In addition, four variables related to environment and time have a significant impact on driving
risk. These variables are road type, congestion, time of day, and weekend. Regarding road type, two
categorical factors, city highway and ramp, are considered to be significant factors. City highways
and ramps represent two common road types where crashes may occur. These findings conform
with previous studies that examined the impact of road geometries on crash risk [37–39]. The time of
day (18:00–24:00) variable was also found to have a significant influence on driving risk in this study.
The reasons for this may relate to light and visibility conditions, congestion, higher levels of tiredness,
and this result conforms with a previous study [35].
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Three variables of driver demographics and driving experience are significantly correlated with
driving risk, namely age, driving miles, and driving experience. Regarding age, a person who is over
45 years old shows a significantly higher driving risk of near-crash events. This may be due to the
reduced physical and cognitive skills of older drivers. Older drivers have a significantly growing
rate of probability for committing driving errors, and this may lead to high risk and serious crashes.
This conforms to the findings of a previous study [40]. In addition, this study considered driving miles
and experience to be significant variables. This is reasonable as these variables provide measures of
driving ability and experience. Driving experience represents the license period of a driver, whereas
driving miles represent the actual miles driven by a driver. These findings conform with previous
findings [40,41].

7. Conclusions

This study explored the contributing factors associated with driving risk of near-crashes using
a mixed-ordered logit model. In total, 1670 near-crashes were captured in naturalistic driving
experiments conducted by 41 participants on different road types in the city of Wuhan in China.
The experiments found the significant variables influencing driving risk include driver behavior,
near-crash factors, environment, time, demographics, and experience.

This study proposes a new definition of near-crash events by detecting one (or more than one) of
the three thresholds on the following driving behavior factors: (1) the deceleration threshold is less
than −0.4 m/s2; (2) the braking pressure threshold is greater than 10 mpa; and (3) the time headway
threshold is less than 0.6 s.

The K-means method was used to group the near-crash events based on their driving risk using
three variables: minimum deceleration, minimum time headway, and maximum braking pressure.
The K-means method produced three driving risk levels (groups): low, moderate, and high. Then, a
mixed-ordered logit model was used to explore the significant factors associated with the driving risk
of near-crash events.

The results of using the model indicate that ten factors are significant: deceleration average,
vehicle kinetic energy, near-crash causes, congestion, time of day, road type, driving miles, weekend,
driver age, and experience. The findings may be used by transportation planners to understand the
factors that influence the driving risk of road traffic and may provide valuable insights and helpful
suggestions for improving transportation rules and reducing traffic collisions thus making roads safer.

For future work, there is a need to investigate the role of road users (such as pedestrians and
motorcyclists) on driving risk. Integrating crash data of motorcycles on risky intersections in the city
of Wuhan will also be studied. This can provide insights in investigating the contributing factors to
driving risk. In addition, the impact of distractions, such as mobile phones, on driving risk is another
aspect that will be studied in future work.
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