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Abstract: Freight transport policies have been developed to reduce air pollution in China. This paper
aims to evaluate the impact of a freight modal shift on PM2.5 concentrations using the panel data
of 30 provinces in China over the period 1999–2016. The direct and spillover effects of a freight
modal shift on PM2.5 concentrations in China, as well as the effects of other socioeconomic factors,
were estimated by employing spatial dynamic panel data models. In particular, the channel through
which the freight modal shift might be beneficial in reducing PM2.5 concentrations was examined.
The results show that PM2.5 concentrations in China do not only decrease with a modal shift of freight
from road to rail in a province, but also and to a larger extent with that in neighboring provinces.
However, there exist heterogeneous effects across different regions of China. The interaction between
a freight modal shift and energy efficiency may lead to a decrease in the PM2.5 concentrations, but only
in the central and western regions. These findings provide suggestions for government policies
directed to sustainable development.

Keywords: freight transport; freight modal shift; PM2.5 concentrations; spatial dynamic panel; spatial
effects; spatial dependence; heterogeneity

1. Introduction

Air pollution, especially fine particulate air pollution, has become one of the major environmental
issues in China. The extremely severe haze events that occurred in the first quarter of 2013 affected
about 13.5% of the land area and 800 million people in China [1]. The particulate matter pollution
threatens air quality, climates and human health. Fine particulate matter, which can easily enter the
lungs and even the blood, is responsible for adverse health effects, including an increased risk of
premature mortality and higher rate of adverse respiratory health indicators [2]. The adverse effect of
particulate matter pollution causes substantial economic losses. It is estimated that without a pollution
control policy, the particulate matter pollution in China will lead to a 2% GDP loss and 25.2 billion
USD in health expenditure in 2030 [3]. A number of plans and policies have been implemented to
deal with the air pollution. China’s State Council released the “Air Pollution Prevention and Control
Action Plan” in September 2013, which set several milestones for reducing PM2.5 concentrations in the
Beijing-Tianjin-Hebei region, Yangtze River Delta region, and Pearl River Delta region.

The transportation industry has experienced rapid growth in recent years and has contributed
to industrialization and urbanization in China. According to China’s National Bureau of Statistics
(NBS), the freight transport volume in China increased from 4.4 trillion ton-kilometers (tkm) in 2000
to 19.6 trillion tkm in 2017, with an annual growth rate of 9.2%. However, as shown in Figure 1,
there were significant changes in the shares of the five freight transport modes in China (i.e., road,
railway, waterway, aviation, and pipeline). In 1985, the shares in road, railway, waterway, aviation and
pipeline were 14.6%, 62.34%, 18.41%, 0.03% and 4.63%, respectively. In 2017, these shares became 47.3%,
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19.12%, 30.04%, 0.17% and 3.37%, respectively. Road freight transport has become the dominant freight
transport mode. While the rapid development of freight transport contributed to China’s economic
growth, the increase of road freight transport resulted in a higher energy consumption and air pollutant
emissions. In particular, the fossil fuel consumption in the road transport sector contributed to the
particulate matter pollution. A latest source apportionment analysis of the PM2.5 concentrations in
China’s 15 cities indicated that the proportion of mobile sources (e.g., vehicles) ranged from 13.5% to
52.1% in 2017. Motor vehicle emission has been one of the major PM2.5 sources [1]. Buses, taxis and
inter-city coaches are responsible for traffic-related particulate matter emissions, although the major
contributor is road freight transport [4].
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(Source: Raw data on the freight transport volume were collected from China’s National Bureau of
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For sustainable economic development in China, it is necessary to develop an environmentally
friendly transport system. Particulate pollutant mitigation, especially in the transportation industry,
is becoming the most important agenda in China. However, a prerequisite for effective mitigation
strategies is the identification of the factors contributing to particulate matter pollution. Many existing
studies have focused on the identification of the chemical composition and characteristics of
PM2.5 [1,5,6]. A growing number of studies investigated the relationship between socioeconomic
factors and environmental pollution [7–11]. Industrialization, urbanization, energy consumption and
vehicle population are identified as major socioeconomic factors contributing to China’s particulate
matter pollution [12–14]. Decomposition analysis, including index decomposition analysis (IDA) [15]
and structural decomposition analysis (SDA) [16], were employed to identify the socioeconomic factors
driving particulate pollution. Guan et al. [17] measured the magnitudes of different socioeconomic
factors in driving the primary PM2.5 emission in China between 1997–2010 using a structural
decomposition analysis. PM2.5 concentrations in one unit exhibit a positive relationship with PM2.5

concentrations in its neighboring units [18]. Therefore, spatial correlations in the particulate matter
pollution of geographically nearby units should be considered to avoid biased and inconsistent
estimations. Spatial econometric models considering the spatial interactions among geographical
units were used to analyze the impacts of socioeconomic factors on air pollutant emissions [19–21].
Fang et al. [22] quantitatively estimated the impacts and spatial variations of urbanization on China’s
air quality by employing the spatial lag model (SLM) and the geographically weighted regression.
The spatial lag model and spatial error model (SEM) were utilized by Hao and Liu [23] to investigate
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the impacts of socioeconomic development indicators, such as GDP per capita, industry and transport,
on PM2.5 concentrations in China.

The modal shift of freight transport to rail provides a logical solution for air pollution,
originating from long-distance freight transport [4]. Previous studies have estimated the economic
and environmental costs of different freight transport modes [24,25], although the spatial impacts of
a freight modal shift on air pollution, especially on particulate matter pollution, have been paid less
attention. Since 2017, China has intensified the efforts to increase the share of rail freight transport,
as part of the strategy to reduce particulate matter pollution. “Transportation Structure Adjustments
Three Years Action Plan” was proposed in 2018 to promote a road-to-rail freight modal shift and
reduce air pollution. In the action plan, China expects to cut its emission of fine particulate matter by
55,000 tons through transportation structure adjustments over three years. More specifically, from 2018
to 2020 China aims to increase its rail freight volume and waterway freight volume by 1.1 billion tons
and 500 million tons, respectively, and to reduce the road freight volume linked to coastal ports by
440 million tons. However, the effectiveness of a road-to-rail freight modal shift remains unknown.
This paper aims to empirically investigate the spatial effects of socioeconomic factors, in particular a
freight modal shift, on particulate matter pollution, and to provide suggestions for freight transport
policies. The spatial dependence and heterogeneity of PM2.5 concentrations in China were examined
by employing spatial dynamic panel data models. More specifically, we estimated the direct and
spillover effects of a road-to-rail freight modal shift on PM2.5 concentrations in China and examined
whether the shift of freight might interact with energy efficiency and thus affect particulate matter
pollution. The heterogeneity in the interaction effects between a modal shift of freight transport and
energy efficiency across different regions of China was examined as well.

The remainder of this paper is organized as follows. Section 2 describes the variables and data
used in our study; Section 3 presents the spatial dynamic panel data model employed in the empirical
analysis; Section 4 discusses the results of the spatial econometric analysis and robustness checks;
Section 5 provides some concluding remarks.

2. Variables and Data

For the indicator of particulate matter air pollution, the log of the annual average concentration of
PM2.5 (LPM) was used. PM2.5 data were extracted from the global PM2.5 grids (1998–2016) using the
ArcGIS. The PM2.5 grids, provided by the Battelle Memorial Institute and the Center for International
Earth Science Information Network (CIESIN) at Columbia University, consist of annual concentrations
(micrograms per cubic meter) of ground-level fine particulate matter (PM2.5) per 0.01 degree grid
cells. The GEOS-Chen chemical transport model was used to relate the total column measure of
aerosol, obtained from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle
Imaging SpectroRadiometer (MISR), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS),
to near-surface PM2.5 concentrations [26]. China’s PM2.5 concentrations for 1999 and 2016 are shown
in Figure 2.

Three categories of socioeconomic factors were considered: Transportation, economic
development and energy consumption [1,13,23]. The transportation factors include a freight modal
shift and road congestion. The road freight transport of vehicles, in particular diesel freight trucks,
accounts for a large portion of PM2.5 concentrations. Rail freight pollutes the air as well, but its
contribution is much lower [24]. The ratio of rail freight volume to road freight volume (RFV) was
used as an explanatory variable to evaluate the environmental benefits of a road-to-rail freight modal
shift [27]. Road congestion was also considered. In 2017, the number of vehicles registered in China
reached 310 million, with an annual growth of 5.1%, and private cars accounted for two-thirds
of the vehicle population. The rapid growth of the vehicle population had brought about serious
pollution problems. Previous studies showed that nitrogen oxides, organic hydrocarbons, black
carbon, and many other pollutants generated from vehicular gas were the main components of
urban PM2.5 [28,29]. Since low speed driving and transient driving modes are more polluting than



Sustainability 2018, 10, 2865 4 of 16

steady-speed driving [30], PM2.5 concentrations near busy roads could be 30% higher [31]. Therefore,
as another explanatory factor of transportation, road congestion, measured by the number of private
cars per kilometer of road (NC), was used.
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2016. (Source: PM2.5 grids were obtained from CIESIN at Columbia University; http://sedac.ciesin.
columbia.edu/data/sets/).

The economic factors considered in this study are economic growth and trade openness.
The Environmental Kuznets Curve (EKC) hypothesis provides a theoretical basis for the relationship
between GDP per capita and the environment [32]. According to the theory, the positive relationship
between economic growth and environment pollution is reversed when a peak level of emissions is
reached. However, empirical studies showed that the shape of the EKC curve depended on the type
of pollutants [33]. In our study, the log of real GDP per capita (LGDP) was used to account for the
influence of economic development on PM2.5 concentrations. Meanwhile, previous studies showed
that trade openness contributed substantially to air pollution [34,35]. Guan et al. [17] demonstrated
that export was responsible for 10% of China’s primary PM2.5 emissions. However, the influence
of trade on air pollution is obscure in theory. The Pollution Haven Hypothesis (PHH) provides
a theoretical explanation for the positive relationship between trade openness and air pollution.
In Grossman and Krueger [36], however, the relationship between trade openness and environment
was more complicated. According to the techniques effect, one of the three independent effects
proposed in their study, liberalized trade might bring about environmentally beneficial production
techniques and reduce air pollution. In our study, trade openness was measured as the share of trade
(exports plus imports) in GDP (STG). To test the robustness of our analysis, we employed urbanization
and industrialization as two additional variables. The former was measured by the share of urban
population (SUP), while the latter was measured by the share of secondary industry in GDP (SSG).

Energy consumption, especially fossil fuel consumption, is a major source of fine particulate matter
in China [6,37,38]. As main energy sources leading to particulate matter pollution, coal combustion
and transport fuels contributed to 25% and 4% of the total primary PM2.5 emissions in China in 2010,

http://sedac.ciesin.columbia.edu/data/sets/
http://sedac.ciesin.columbia.edu/data/sets/
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respectively [17]. Implementing energy efficiency measures in the industrial production process,
especially in the iron and steel industry, would reduce greenhouse gas emissions and air pollutants
in China [39]. Improving energy efficiency offers an excellent opportunity to mitigate transport air
pollutants as well. Using alternative transport fuels for vehicles, especially for diesel freight trucks,
would increase energy efficiency and improve air quality. Moreover, it is possible to improve the
energy efficiency of freight transport by shifting from less efficient road freight to more efficient rail
freight [40]. In this study, energy efficiency, measured as the ratio of real GDP to energy consumption
(RGE), was used.

To examine the heterogeneous impacts of the freight modal shift on PM2.5 concentrations across
China’s four economic zones, the panel data used in this study were divided into four subsamples.
The four economic zones are the Bohai Rim region (BR), the Yangtze River Delta and Pearl River Delta
region (YRD-PRD), the Central Plain region (CP) and the Western region (W). The adjacent neighbors
of a province may not be in the subsample, but the spillover effects of their PM2.5 emissions on the
sampled provinces still exist. To deal with this issue, we controlled for the (log of the) average of the
non-sampled adjacent neighbors’ PM2.5 concentrations (LPMN). The sample consisted of 30 mainland
provinces (excluding Tibet) and ran over the period 1999–2016, during which we gathered raw data
on the explanatory variables from the China Statistical Yearbook and provincial statistical yearbooks.
Descriptive statistics for the full sample and the four subsamples were calculated. The means and
standard deviations of our major variables are presented in Table 1.

Table 1. The means and standard deviations of the variables.

Variable Acronym Full Sample BR YRD-PRD CP W

The log of the annual average
concentration of PM2.5

LPM 3.233
(0.633)

3.810
(0.332)

3.371
(0.491)

3.582
(0.293)

2.784
(0.581)

The ratio of rail freight volume
to road freight volume RFV 1.833

(0.836)
2.783

(2.127)
0.431

(0.407)
2.168

(5.318)
1.961

(1.576)

The ratio of real GDP to
energy consumption RGE 0.844

(0.388)
0.936

(0.447)
1.260

(0.235)
0.827

(0.308)
0.624

(0.266)

The number of private cars per
kilometer of road NC 2.318

(1.131)
3.442

(1.055)
2.908

(1.143)
1.935

(0.820)
1.791

(0.793)

The log of real GDP per capita LGDP 0.542
(0.746)

1.035
(0.650)

1.012
(0.627)

0.277
(0.611)

0.259
(0.682)

The share of trade in GDP STG 0.312
(0.390)

0.560
(0.461)

0.760
(0.435)

0.095
(0.035)

0.110
(0.058)

The share of urban population SUP 0.478
(0.157)

0.592
(0.193)

0.553
(0.163)

0.411
(0.087)

0.431
(0.123)

The share of secondary
industry in GDP SSG 0.389

(0.083)
0.408

(0.107)
0.387

(0.109)
0.414

(0.062)
0.372

(0.062)

Note: Standard deviations are given in parentheses. The units of LPM, RGE, NC, and LGDP are µg/m3,
ten thousands yuan/tce, No. of cars/km, and ten thousands yuan/person, respectively. Source: PM2.5 grids
were obtained from CIESIN at Columbia University (http://sedac.ciesin.columbia.edu/data/sets/); raw data on
the explanatory variables were gathered from the China Statistical Yearbook and provincial statistical yearbooks.

3. Methodology

3.1. Moran’s I

As a step preceding a more advanced quantitative analysis, the detection of spatial autocorrelation
is necessary. Global and local Moran’s I indices [41] were used to investigate the spatial autocorrelation
of PM2.5 concentrations. The Global Moran’s I is

I =
N∑N

i=1 ∑N
j=1 wij(yi − y)

(
yj − y

)
S∑N

i=1(yi − y)2 , (1)

http://sedac.ciesin.columbia.edu/data/sets/
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where yi and yj are the values of the observed variable at provinces i and j; wij is the element in the
spatial weight matrix; and S is the sum of all the elements of the weight matrix. A positive spatial
autocorrelation is represented by a value of the Global Moran’s I statistics that is greater than zero and,
inversely, a negative autocorrelation corresponds to a value less than zero.

The local version of Moran’s I was utilized to detect the local patterns of spatial autocorrelation.
The Local Moran’s I is

Ii =
(yi − y)

σ2

N

∑
j=1,j 6=i

[
wij

(
yj − y

)]
, (2)

where yi is the value of the observed variable at province i; yj is the value of the observed variable at
all the other provinces; σ2 is the variance of the variable y; and wij is the element in the spatial weight
matrix. Spatial clusters and outliers of PM2.5 concentrations are identified by significant positive local
Moran’s I and negative local Moran’s I, respectively.

3.2. Spatial Dynamic Panel Model

The concentration of PM2.5 in a province will be determined by the PM2.5 concentrations in
neighboring provinces, and probably other variables in these provinces. Spatial econometric models
deal with these co-determinants in the PM2.5 concentrations, the explanatory variables and/or the
error term from neighboring provinces [42]. This study employed the dynamic spatial Durbin models
(SDM), including the temporal and space-time lags of the dependent variable. The dynamic spatial
Durbin model is as follows:

Yt = τYt−1 + ρWYt + ηWYt−1 + Xtβ + WXtθ + Ztγ + µ + ξt + ut, (3)

where Yt is a N × 1 vector of the dependent, that is, the log of the PM2.5 concentrations for every
province in the sample during time period t (t = 1, . . . , T); Xt denotes the N × K matrix of the
explanatory variables that will be spatially lagged; β is the associated vector of coefficients; Zt denotes
the N ×M matrix of the explanatory variables that will not be spatially lagged; γ is the associated
vector of coefficients; W is a N × N spatial weight matrix; and WYt and WXt denote the endogenous
spatial lag and the exogenous spatial lags, respectively. The strength of these spatial lags are measured
by the scalar ρ and the vector θ. Yt−1 is the temporal lag of the dependent variable and WYt−1 is the
one-period lag in the spatially lagged dependent variable. The scalars τ and η measure the strength of
internal and external habit persistence. Furthermore, µ is a vector of spatial specific effects, ξt (t = 1,
. . . , T) denotes time-period specific effect, and ut is a vector of error terms. Two different spatial weight
matrices were constructed. The first one is a binary contiguity matrix (Wbin), where the elements of
the matrix would be 1, in the case of two provinces in contact, or otherwise 0. The other one is an
inverse-distance weight matrix (Wdis), where the elements of the matrix would be the inverse of the
distance of two provinces. Both types of matrices were row normalized. Model specifications were
statistically tested by the (robust) Lagrange Multiplier (LM) tests and the likelihood ratio (LR) tests.

Departing from the above dynamic spatial Durbin model, the long-term impacts on the dependent
variable, if the kth explanatory variable changes, are given by the N × N matrix:[

∂E(Y)
∂x1k

· · · ∂E(Y)
∂xNk

]
= [(1− τ)I − (ρ + η)W]−1[βk IN + θkW] (4)

The direct effect of a change to the kth explanatory variable is defined as the average diagonal
element of the matrix and the indirect effect (or spillover effect) is the average row or column sum of
the off-diagonal elements [43]. Furthermore, by setting τ = η = 0, we can get the short-term direct and
indirect effects.
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4. Results

The purpose of our paper is to examine the spatial dependence and spatial heterogeneity of PM2.5

concentrations in China. In particular, we estimated the spatial effects of a freight modal shift and
investigated the channel through which a road-to-rail freight modal shift may be beneficial for the
environment. More specifically, we examined whether the freight modal shift might interact with
energy efficiency and thus affect PM2.5 concentrations.

4.1. Spatial Autocorrelation of PM2.5 Concentrations

The bivariate Moran scatterplots of the PM2.5 concentrations in China are displayed in Figure 3.
For simplicity, only the scatterplots of PM2.5 concentrations for the years 1999 and 2016 are shown.
In each scatterplot, the X axis represents the original variable PM2.5, and the Y axis represents the
spatially lagged variable WPM2.5. The upper right (high-high clusters) and lower left (low-low
clusters) quadrants indicate positive spatial autocorrelation, while the upper left (low-high clusters)
and lower right (high-low clusters) quadrants indicate negative spatial autocorrelation. As shown
in Figure 3, there is a significant and positive spatial autocorrelation for PM2.5 concentrations, with
the global Moran’s I equaling 0.579 and 0.660 in 1999 and 2016, respectively. Cluster maps, showing
the clusters and outliers of PM2.5 concentrations for 1999 and 2016, are given as well (see Figure 4).
High-high clusters are located in the Bohai Rim region, the Yangtze River Delta region, and parts of the
Central Plain region. Low-low clusters are located in the western part of China. The scatterplots and
cluster maps confirm the existence of spatial autocorrelation. Therefore, spatial econometric models,
considering spatial lags, should be employed.
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4.2. Main Results of Spatial Econometric Analysis

Correct specification is crucial, since each spatial specification produces rather different
interpretations. Diagnostic tests were used to select the preferred specification. The spatial
dependences, in the form of a spatially lagged dependent variable or spatial error autocorrelation,
were diagnosed by Lagrange multiplier tests [44]. Meanwhile, spatial and/or time specific effects were
considered in different specifications. As shown in Table 2, the results obtained for the two weight
matrices show strong spatial dependence, regardless of whether spatial and/or time specific effects
are involved. Almost all of the (robust) Lagrange Multiplier tests for spatial lag and error dependence
reject the null hypothesis of no spatial dependence, which points to the spatial Durbin model as the
favorite specification [43].
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Table 2. LM and robust LM tests for the spatial lag model and spatial error model.

Test Matrix Ordinary Least-Squares
Regression

Spatial
Specific Effect

Time Specific
Effect

Spatial and Time
Specific Effect

LM test for
SLM

Wbin
239.997 ***

[0.000]
435.172 ***

[0.000]
155.377 ***

[0.000]
166.011 ***

[0.000]

Wdis
105.332 ***

[0.000]
1114.720 ***

[0.000]
19.519 ***

[0.000]
55.217 ***

[0.000]

Robust LM test
for SLM

Wbin
63.845 ***

[0.000]
126.061 ***

[0.000]
147.067 ***

[0.000]
10.040 ***

[0.002]

Wdis
0.093

[0.761]
433.374 ***

[0.000]
34.245 ***

[0.000]
17.246 ***

[0.000]

LM test for
SEM

Wbin
178.141 ***

[0.000]
351.054 ***

[0.000]
49.768 ***

[0.000]
159.082 ***

[0.000]

Wdis
124.955 ***

[0.000]
801.318 ***

[0.000]
1.908

[0.167]
50.552 ***

[0.000]

Robust LM test
for SEM

Wbin
1.989

[0.159]
41.943 ***

[0.000]
41.459 ***

[0.000]
3.110 *
[0.078]

Wdis
19.715 ***

[0.000]
119.971 ***

[0.000]
16.634 ***

[0.000]
12.581 ***

[0.000]

Note: p–values are given in brackets. *** significant at 1%; ** significant at 5%; * significant at 10%.

The testing procedure in Yesilyurt and Elhorst [42] was used to identify the weight matrix that
best fits the data. The binary contiguity matrix was identified as the most likely spatial weight matrix
in our study. Since the dynamic spatial Durbin model produces the global spillover effects of PM2.5

concentrations, it is more likely to occur in combination with a sparse weight matrix with only a limited
number of non-zero elements. Our analysis concentrates on the estimation results of the dynamic
spatial Durbin model in combination with the binary contiguity matrix. The inverse-distance weight
matrix was used to check the robustness of our estimation results.
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The estimation results of the dynamic SDM in combination with the binary contiguity weight
matrix are reported in Table 3. The estimates of the coefficients are given in columns 2 and 4. Estimates
of the direct effects and spillover effects, as well as the total effects, are given in columns 5–10.
The coefficient of the endogenous spatial lag is 0.614 and is significant at the 1% level. There exist
strong global spillover effects—that is, the PM2.5 concentration in a province is positively affected by
the PM2.5 concentrations in other provinces, even if they are not neighbors. This can be explained
by the long-range transmission of particulate matter. The estimates of coefficients show significant
internal habit persistence. The PM2.5 concentration depends on its value in the previous year; the
coefficient τ accounts for 0.364 and is highly significant. There is strong evidence of external habit
persistence as well; the coefficient of the PM2.5 in neighboring provinces in the previous year takes
a value of −0.266 and is also significant at the 1% level. To investigate whether the dynamic SDM
could be replaced by a simpler model (dynamic SLM, dynamic SEM or static SDM), likelihood ratio
tests were performed. The results indicate that the null hypothesis of a dynamic SLM (LR = 15.47,
with 5 degrees of freedom [df], p = 0.009) or a dynamic SEM (LR = 18.76, 5 df, p = 0.002) is rejected.
The hypothesis that the coefficients of internal and external habit persistence are jointly insignificant is
rejected as well (LR = 79.97, 2 df, p = 0.000).

Table 3. Results of the dynamic SDM for the full sample, with the binary contiguity matrix.

Variable Coef. Variable Coef.
Short-Term Effects Long-Term Effects

Direct Spillover Total Direct Spillover Total

WYt
0.614 ***
(0.040)

Yt−1
0.364 ***
(0.041)

WYt−1
−0.266 ***

(0.065)

RFV −0.006
(0.005) WRFV −0.020 **

(0.010)
−0.011 **

(0.006)
−0.058 ***

(0.022)
−0.069 ***

(0.026)
−0.016 *
(0.008)

−0.077 **
(0.031)

−0.093 ***
(0.035)

RGE −0.009
(0.035) WRGE −0.089

(0.071)
−0.029
(0.034)

−0.218
(0.153)

−0.248
(0.165)

−0.040
(0.053)

−0.294
(0.211)

−0.334
(0.226)

NC 0.006
(0.021) WNC 0.052

(0.041)
0.018

(0.022)
0.139

(0.091)
0.158

(0.102)
0.025

(0.033)
0.187

(0.125)
0.212

(0.139)

LGDP −0.027
(0.038) WLGDP −0.227 ***

(0.069)
−0.077 **

(0.041)
−0.579 ***

(0.154)
−0.656 ***

(0.175)
−0.106 *
(0.062)

−0.776 ***
(0.215)

−0.882 ***
(0.243)

STG −0.021
(0.039) WSTG −0.028

(0.065)
−0.030
(0.047)

−0.090
(0.160)

−0.120
(0.188)

−0.045
(0.070)

−0.117
(0.214)

−0.162
(0.253)

R2 0.194

Obs. 510

Note: Standard errors are given in parentheses. *** significant at 1%; ** significant at 5%; * significant at 10%.

The direct effects of the freight transport variable are negative and significant both in the short
term and long term, implying that PM2.5 concentrations decrease with the modal shift of freight
from road to rail. The direct effects of the log of real GDP per capita are negative and significant
as well. PM2.5 concentrations decrease with economic growth in a province. When a quadratic
term of the log of real GDP per capita was added to the model, the coefficient of the quadratic
term was insignificant. It indicates that there is no evidence of a nonlinear relationship between
PM2.5 concentrations and economic growth. The results of this specification are not given, since the
coefficients of other variables remain almost unchanged. The spillover effects of the freight transport
variable and the GDP per capita is negative and significant at the 1% level in the short term, but their
magnitudes are larger than the direct effects. The spillover effects of the two explanatory variables
exhibit similar significance levels in the long term. The PM2.5 concentrations do not only decrease with
the road-to-rail freight modal shift and the level of GDP in a province, but also and to a larger extent
with those in neighboring provinces. The directions of the effects of other explanatory variables are
in line with our expectation. The short-term and long-term spillover effects of road congestion are
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positive and weakly significant (p < 0.15), implying that road congestion in a province contributes to
other provinces’ PM2.5 concentrations. As another contributing factor, energy efficiency has negative
and weakly significant spillover impacts (p < 0.15). The direct and spillover effects of trade openness
are negative but insignificant.

The specification, shown in column 2 of Table 4, replaces the freight transport variable by the
product between the modal shift of freight transport and energy efficiency. The coefficient of the
interaction term is negative (−0.010) and significant at the 5% level. The coefficient of the spatially
lagged interaction term takes a negative value of −0.005 but is insignificant. This specification yields
negative and significant coefficients for the spatially lagged energy efficiency and (log of) real GDP
per capita. The significance of the interaction term may be the result of the omission of other relevant
factors, in particular, the freight transport variable by itself. Therefore, it is necessary to include the
freight modal shift and energy efficiency individually alongside their product. The results of this
specification, given in column 3 of Table 4, show that the coefficient on the modal shift of freight
transport is positive but insignificant, while the coefficient on the interaction term is negative and
significant. The results indicate that the interaction between a road-to-rail freight modal shift and
energy efficiency leads to a decrease of PM2.5 concentrations in a province. The coefficient of the
spatially lagged modal shift of freight transport is negative and highly significant at the 1% level.
However, the coefficient of the spatially lagged interaction term is positive and insignificant.

Table 4. Results of the dynamic SDM with an interaction term between a freight modal shift and
energy efficiency.

Variable
Full Sample

BR YRD-PRD CP W
(1) (2)

WYt
0.618 ***
(0.040)

0.616 ***
(0.040)

0.230 *
(0.135)

0.005
(0.102)

0.034
(0.118)

0.441 ***
(0.064)

Yt−1
0.361 ***
(0.041)

0.359 ***
(0.041)

−0.216 **
(0.095)

−0.075
(0.088)

−0.017
(0.072)

0.265 ***
(0.061)

WYt−1
−0.252 ***

(0.065)
−0.264 ***

(0.065)
−0.428 **

(0.204)
−0.186
(0.137)

0.134
(0.132)

−0.201 **
(0.090)

RFV 0.007
(0.008)

−0.045 **
(0.018)

−0.703 ***
(0.259)

−0.027
(0.038)

0.054 ***
(0.020)

RFV*RGE −0.010 **
(0.005)

−0.016 **
(0.008)

0.047 ***
(0.017)

0.663 **
(0.269)

0.002
(0.043)

−0.111 ***
(0.036)

RGE 0.033
(0.041)

0.050
(0.045)

−0.148
(0.095)

−0.158
(0.185)

0.138
(0.131)

−0.073
(0.103)

NC 0.001
(0.021)

0.001
(0.021)

0.097 *
(0.053)

−0.039
(0.059)

0.145 **
(0.063)

0.060
(0.041)

LGDP −0.040
(0.037)

−0.026
(0.038)

0.302 ***
(0.093)

−0.249 *
(0.147)

0.242 *
(0.143)

−0.245 ***
(0.079)

STG −0.011
(0.040)

−0.002
(0.040)

−0.077
(0.056)

−0.225 **
(0.090)

−1.084 **
(0.520)

0.134
(0.199)

LPMN 0.501 ***
(0.068)

0.088
(0.108)

0.893 ***
(0.101)

0.385 ***
(0.080)

WRFV −0.035 ***
(0.013)

−0.002
(0.038)

−0.515
(0.441)

0.255 ***
(0.080)

0.083
(0.054)

WRFV*RGE −0.005
(0.010)

0.018
(0.013)

0.011
(0.036)

0.762 *
(0.470)

−0.260 ***
(0.090)

−0.225 **
(0.091)

WRGE −0.151 **
(0.078)

−0.168 **
(0.081)

−0.032
(0.168)

0.157
(0.279)

0.154
(0.372)

0.448 **
(0.221)

WNC 0.020
(0.041)

0.065
(0.044)

0.122
(0.105)

0.179 *
(0.093)

−0.143
(0.124)

0.085
(0.089)

WLGDP −0.182 ***
(0.067)

−0.223 ***
(0.069)

−0.193
(0.247)

−0.681 **
(0.294)

−0.644 *
(0.364)

−0.574 ***
(0.177)

WSTG −0.015
(0.068)

−0.074
(0.071)

−0.161
(0.113)

−0.290 *
(0.163)

−0.629
(0.743)

0.187
(0.479)

R2 0.156 0.196 0.298 0.288 0.252 0.106

Obs. 510 510 85 102 102 221

Note: Standard errors are given in parentheses. *** significant at 1%; ** significant at 5%; * significant at 10%.
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To investigate whether the spillover effects of the interaction term were influenced by the
heterogeneity in the exogenous spatial dependence across different regions of China, the panel data
used in this study were divided into four subsamples (i.e., the BR region, the YRD-PRD region, the CP
region and the W region). The dynamic spatial Durbin models, incorporating the temporal and
space-time lags of the dependent variable, were employed for the subsamples. The estimation results
are reported in columns 4–7 of Table 4. As shown in columns 4 and 5, significant changes occur
in the BR and the YRD-PRD subsamples. The coefficients of the interaction term are positive and
significant. In the YRD-PRD subsample, the coefficient of the spatially lagged interaction term is
positive and significant as well. The results indicate that the interaction between a road-to-rail freight
modal shift and energy efficiency may lead to an increase in the PM2.5 concentrations in the BR and
YRD-PRD regions. The descriptive statistics, given in Table 1, offer clues to these findings. Due to the
lower energy intensities in these two regions, especially the YRD-PRD region, a road-to-rail freight
modal shift cannot reduce energy consumption anymore. The estimation results for the CP and the W
subsamples are given in columns 6 and 7. The coefficients of the spatially lagged interaction term in
these two subsamples are negative and highly significant. Moreover, the results for the W subsample
indicate a negative and significant coefficient of the interaction term. The interaction between a freight
modal shift and energy efficiency leads to a decrease in the PM2.5 concentrations in these two regions,
especially in the W region. The coefficients of the spatially lagged (log of) real GDP per capita are
negative and significant in three of the subsamples, indicating that PM2.5 concentrations decrease with
the economic growth of other provinces in the region. The coefficients of the log of real GDP per capita
are negative and significant in the YRD-PRD and W subsamples, but are positive and significant in the
BR and CP subsamples. The heterogeneous effects of economic growth across different regions may be
the reason for the insignificant coefficient in the full sample.

4.3. Robustness Checks

We report and discuss the results of three robustness checks. The first check replaced the spatial
weight matrix by the inverse-distance matrix and re-estimated the dynamic SDM, where an interaction
term between a freight modal shift and energy efficiency was included. Estimations for the full sample
are given in column 2 of Table 5. The coefficients of the interaction term and the spatially lagged
interaction term are insignificant.

To further check the robustness of the heterogeneous impacts of the freight modal shift,
we re-estimated the dynamic SDM for the four subsamples using the inverse-distance matrix.
The results were summarized in columns 3–6 of Table 5. As expected, the coefficients of the interaction
term, as well as the coefficients of the spatially lagged interaction term, are negative and significant in
the CP and W subsamples. In these two regions, shifting from road to rail freight transport interacts
with energy efficiency to reduce PM2.5 concentrations. However, in the BR and YRD-PRD regions,
there is no evidence that through the energy channel the modal shift of freight from road to rail may
be beneficial for the environment [45]. In our second robustness check, we divided the full sample into
two subsamples characterized by the average value of energy efficiency and re-estimated the dynamic
SDM using the binary contiguity matrix. The estimation results for the lower energy efficiency (LE)
subsample, which includes provinces with an average energy efficiency lower than 0.844, are shown in
column 7 of Table 5. The coefficient of the interaction term is −0.110 and significant, and the coefficient
of the spatially lagged interaction term is negative (−0.163) and significant as well. The estimation
results for the higher energy efficiency (HE) subsample, which includes provinces with an average
energy efficiency greater than 0.844, are shown in the last column of Table 5. The coefficients of the
interaction term are positive and insignificant. The heterogeneity in the exogenous spatial dependence
is confirmed by the finding that provinces with higher energy intensities gain more environmental
benefits from the interaction between a freight modal shift and energy efficiency.
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Table 5. Results of the robustness checks, with the inverse-distance weight matrix and subsamples
characterized by the average value of energy efficiency.

Variable
Wdis Wbin

Full Sample BR YRD-PRD CP W LE Subsample HE Subsample

WYt
0.639 ***
(0.077)

0.416 **
(0.201)

0.479 **
(0.197)

0.809 ***
(0.253)

0.394 ***
(0.122)

0.444 ***
(0.063)

0.307 ***
(0.064)

Yt−1
0.405 ***
(0.044)

−0.294 ***
(0.099)

−0.048
(0.101)

−0.021
(0.081)

0.275 ***
(0.061)

0.285 ***
(0.061)

0.190 ***
(0.055)

WYt−1
−0.991 ***

(0.244)
−0.398
(0.445)

−0.335
(0.347)

0.115
(0.459)

−0.479 *
(0.248)

−0.123
(0.085)

−0.197 **
(0.089)

RFV −0.002
(0.010)

−0.015
(0.028)

−0.671 *
(0.357)

0.067
(0.043)

0.088 ***
(0.025)

0.066 ***
(0.019)

−0.037 **
(0.015)

RFV*RGE −0.005
(0.009)

0.035
(0.029)

0.622 *
(0.387)

−0.155 ***
(0.045)

−0.179 ***
(0.042)

−0.110 ***
(0.035)

0.020
(0.013)

RGE −0.036
(0.046)

−0.325 *
(0.180)

0.204
(0.269)

−0.149
(0.246)

0.045
(0.119)

0.007
(0.103)

0.010
(0.067)

NC 0.028
(0.023)

0.041
(0.072)

0.011
(0.074)

−0.048
(0.105)

0.083
(0.054)

0.086 *
(0.048)

0.007
(0.028)

LGDP −0.089 **
(0.043)

0.079
(0.154)

0.139
(0.211)

0.344
(0.253)

−0.508 ***
(0.117)

−0.097
(0.073)

−0.017
(0.056)

STG −0.025
(0.048)

−0.182
(0.131)

−0.402 ***
(0.125)

−1.598 **
(0.741)

0.303
(0.247)

0.113
(0.250)

−0.059
(0.043)

LPMN 0.526 ***
(0.063)

0.200 **
(0.098)

0.854 ***
(0.086)

0.493 ***
(0.085)

0.288 ***
(0.081)

0.276 ***
(0.064)

WRFV −0.057
(0.058)

0.121
(0.106)

−0.365
(1.243)

0.719 ***
(0.223)

0.356 ***
(0.133)

0.085 **
(0.041)

0.020
(0.024)

WRFV*RGE 0.042
(0.047)

−0.065
(0.105)

0.486
(1.437)

−0.965 ***
(0.242)

−0.703 ***
(0.209)

−0.163 **
(0.079)

0.003
(0.019)

WRGE −0.576 *
(0.299)

−0.414
(0.503)

1.365
(0.861)

−0.989
(1.135)

0.789
(0.591)

0.256
(0.179)

−0.114
(0.117)

WNC 0.471 **
(0.185)

−0.109
(0.172)

0.295
(0.259)

−0.689 *
(0.405)

0.155
(0.316)

0.106 *
(0.065)

0.043
(0.047)

WLGDP −1.187 ***
(0.302)

−0.618
(0.557)

0.410
(0.647)

−0.023
(1.161)

−1.843 **
(0.723)

−0.064
(0.087)

−0.027
(0.102)

WSTG −0.470
(0.298)

−0.282
(0.366)

−1.007 **
(0.426)

−3.350
(2.551)

1.631
(1.356)

0.561
(0.441)

−0.129 **
(0.062)

R2 0.324 0.409 0.084 0.168 0.136 0.260 0.511

Obs. 510 85 102 102 221 238 272

Note: Standard errors are given in parentheses. *** significant at 1%; ** significant at 5%; * significant at 10%.

Finally, we tested whether the results for the four subsamples were robust in changing the
set of explanatory variables. Urbanization or industrialization was incorporated into the dynamic
SDM. The results of these two specifications for the four subsamples are summarized in Table 6.
The coefficient estimates of other explanatory variables, and especially those of the interaction term,
change only slightly. Again, the results confirm the spatial heterogeneity in the interaction effects
between the modal shift of freight transport and energy efficiency.



Sustainability 2018, 10, 2865 13 of 16

Table 6. Results of robustness checks, with additional variables.

Variable
BR YRD-PRD CP W

(1) (2) (1) (2) (1) (2) (1) (2)

WYt
0.236 *
(0.134)

0.230 *
(0.132)

0.005
(0.102)

0.009
(0.102)

0.011
(0.119)

0.021
(0.119)

0.457 ***
(0.064)

0.435 ***
(0.064)

Yt−1
−0.210 **

(0.094)
−0.237 ***

(0.090)
−0.075
(0.089)

−0.066
(0.087)

0.017
(0.071)

0.029
(0.077)

0.249 ***
(0.062)

0.252 ***
(0.062)

WYt−1
−0.434 **

(0.203)
−0.450 **

(0.193)
−0.187
(0.140)

−0.095
(0.145)

0.224 *
(0.139)

0.115
(0.143)

−0.174 *
(0.091)

−0.208 **
(0.090)

RFV −0.055 ***
(0.019)

−0.055 ***
(0.017)

−0.688 **
(0.290)

−0.703 ***
(0.257)

−0.024
(0.037)

−0.016
(0.038)

0.052 **
(0.021)

0.054 **
(0.021)

RFV*RGE 0.054 ***
(0.018)

0.042 ***
(0.016)

0.646 **
(0.303)

0.670 ***
(0.267)

0.008
(0.042)

−0.002
(0.043)

−0.108 ***
(0.036)

−0.108 ***
(0.036)

RGE −0.109
(0.097)

−0.078
(0.092)

−0.155
(0.188)

−0.215
(0.194)

0.126
(0.128)

0.177
(0.132)

−0.060
(0.104)

−0.125
(0.114)

NC 0.100 **
(0.052)

0.146 ***
(0.053)

−0.041
(0.062)

−0.006
(0.061)

0.127 **
(0.062)

0.175 ***
(0.066)

0.061
(0.042)

0.043
(0.043)

LGDP 0.290 ***
(0.091)

0.360 ***
(0.089)

−0.245 *
(0.150)

0.071
(0.244)

0.276 **
(0.140)

0.153
(0.189)

−0.266 ***
(0.087)

−0.258 **
(0.108)

STG −0.060
(0.056)

−0.040
(0.053)

−0.222 **
(0.093)

−0.249 ***
(0.091)

−0.766
(0.523)

−1.143 **
(0.522)

0.100
(0.200)

0.149
(0.199)

SUP 0.430
(0.303)

0.016
(0.124)

0.611
(0.449)

−0.064
(0.108)

SSG −0.707 ***
(0.238)

−0.868
(0.572)

0.015
(0.222)

−0.064
(0.277)

LPMN 0.506 ***
(0.067)

0.519 ***
(0.064)

0.089
(0.110)

0.077
(0.107)

0.852 ***
(0.100)

0.928 ***
(0.102)

0.368 ***
(0.085)

0.370 ***
(0.083)

WRFV −0.011
(0.038)

−0.013
(0.036)

−0.480
(0.544)

−0.570
(0.441)

0.322 ***
(0.086)

0.248 ***
(0.083)

0.080
(0.054)

0.098 *
(0.056)

WRFV*RGE 0.017
(0.035)

−0.006
(0.034)

0.725
(0.582)

0.818 *
(0.475)

−0.321 ***
(0.095)

−0.226 **
(0.093)

−0.228 **
(0.091)

−0.240 ***
(0.092)

WRGE 0.031
(0.171)

0.090
(0.162)

0.168
(0.301)

−0.031
(0.336)

0.403
(0.374)

0.266
(0.376)

0.500 **
(0.231)

0.539 **
(0.259)

WNC 0.103
(0.104)

0.244 **
(0.107)

0.177 *
(0.095)

0.207 **
(0.102)

−0.106
(0.122)

−0.075
(0.136)

0.102
(0.090)

0.059
(0.095)

WLGDP −0.130
(0.245)

−0.392
(0.260)

−0.676 **
(0.297)

−0.172
(0.417)

−0.900 **
(0.368)

−1.129 **
(0.530)

−0.610 ***
(0.186)

−0.470 **
(0.198)

WSTG −0.107
(0.119)

−0.153
(0.106)

−0.284 *
(0.170)

−0.410 **
(0.178)

−0.926
(0.731)

−0.772
(0.755)

0.196
(0.480)

0.121
(0.490)

WSUP 0.459
(0.437)

0.022
(0.225)

2.387 **
(0.975)

0.330
(0.263)

WSSG −1.246 **
(0.617)

−0.826
(0.724)

0.857
(0.709)

−0.662
(0.531)

R2 0.414 0.178 0.290 0.109 0.555 0.091 0.115 0.104

Obs. 85 85 102 102 102 102 221 221

Note: Standard errors are given in parentheses. *** significant at 1%; ** significant at 5%; * significant at 10%.

5. Conclusions

In this study, we have sought to gain a better understanding of the spatial dependence and
heterogeneity of PM2.5 concentrations. The impacts of a road-to-rail freight modal shift on PM2.5

concentrations were estimated by employing the dynamic spatial Durbin model. The spillover effects
of the freight modal shift, as well as the direct effects, exist both in the short and long term. PM2.5

concentrations do not only decrease with a modal shift of freight from road to rail in a province,
but also and to a larger extent with that in neighboring provinces. The estimates of coefficients
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show significant internal and external habit persistence, as well as endogenous spatial dependence.
To investigate the channel through which the modal shift of freight transport might be beneficial for
the environment, we enriched the specification by including the interaction term between freight
modal shift and energy efficiency. However, results show that there is heterogeneity in the exogenous
spatial dependence across different regions of China. The modal shift of freight from road to rail
interacts with energy efficiency to reduce the PM2.5 concentrations, but only in the central and western
regions. The heterogeneity in the interaction effects between a freight modal shift and energy efficiency
could be explained by the different energy intensities in these regions. The findings are confirmed
by three robustness checks. Economic growth has significant impacts on PM2.5 concentrations as
well. Generally, PM2.5 concentrations decrease with the real GDP per capita in neighboring provinces,
although the direct effects of real GDP per capita are different across China’s four economic zones.
However, EKC does not exist since there is no evidence for the nonlinear relationship between PM2.5

concentrations and economic growth. Further studies are needed to explore the heterogeneous effects
of economic growth on PM2.5 concentrations.

From the perspective of government policies directed toward sustainable development, the results
suggest important determinants to focus on. Specifically, the government must act on the modal shift of
freight transport, which might generate both direct and spatial spillover effects on PM2.5 concentrations.
It is essential because the environmental benefits of a freight modal shift are partly transferred to
neighboring provinces. In the central and western regions of China, provinces that hope to reduce
PM2.5 concentrations should shift freight transport from road to rail and increase the energy efficiency
in the transportation industry. In addition, the improved technology and modal shifting measures
must make absolute reductions in the total energy consumption, rather than merely improve the energy
efficiency of the transport sector. Meanwhile, the transportation energy use of various commodities
should be considered when shifting freight transport modes. The highest priority should be given
to the freight modal shift of long-distance heavy items. Additional polices aimed at reducing road
congestion or promoting trade openness and economic growth are needed as well.
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