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Abstract: Error propagation properties of integration algorithms are crucial in conducting
pseudodynamic tests. The motivation of this study is to investigate the error propagation properties
of a new family of model-based integration algorithm for pseudodynamic tests. To develop the
new algorithms, two additional coefficients are introduced in the Chen-Ricles (CR) algorithm.
In addition, a parameter—i.e., degree of nonlinearity—is applied to describe the change of stiffness
for nonlinear structures. The error propagation equation for the new algorithms implemented in
a pseudodynamic test is derived and two error amplification factors are deduced correspondingly.
The error amplification factors for three structures with different degrees of nonlinearity are calculated
to illustrate the error propagation effect. The numerical simulation of a pseudodynamic test for a
two-story shear-type building structure is conducted to further demonstrate the error propagation
characteristics of the new algorithms. It can be concluded from the theoretical analysis and numerical
study that both nonlinearity and the two additional coefficients of the new algorithms have great
influence on its error propagation properties.
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1. Introduction

In the field of civil engineering, experimental studies are crucial to investigate and enhance the
sustainability and resilience of civil infrastructures in the event of extreme loads, such as earthquakes.
The experimental approaches of studying the seismic performance of building structures include
the quasi-static tests, shake table tests, pseudodynamic tests, and real-time hybrid simulations.
Among them, the pseudodynamic tests, also known as on-line tests or hybrid simulations, have
been paid great attention for decades [1,2].

In conducting a pseudodynamic test, two types of errors—i.e., displacement control error and
restoring force measurement error—introduced in each time step will be propagated and accumulated
owing to a feedback procedure [1,2]. This feedback procedure roots from the use of an integration
algorithm to conduct the step-by-step integration during the pseudodynamic test. Therefore, it is
crucial to investigate the error propagation of an integration algorithm because the errors from the
pseudodynamic test must be controlled within certain limits to obtain reliable test results.

An integration algorithm can be labeled as explicit or implicit depending on its formulation of
displacement. Traditional explicit algorithms, such as the Newmark explicit algorithm, are always
conditionally stable, which requires a very severe limitation on the integration time step if the
tested structure system has high frequency modes [3]. For the past decade, researchers developed
several innovative integration algorithms which are both explicit and unconditionally stable.
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The representative algorithms include the Chang algorithm [4], the Chen-Ricles (CR) algorithm [5], and
the Kolay-Ricles-α (KR-α) algorithm [6]. These algorithms are nominated as model-based integration
algorithms [7]. When using these algorithms, the algorithmic parameters, which are functions of
the complete model of the system, have to be calculated. The model-based algorithms can achieve
unconditional stability within the framework of an explicit formulation. On the contrary, there is no
need to calculate the model-based parameters for the conventional integration algorithms such as
the well-known Newmark algorithms, so they are called model-independent algorithms. Although a
number of studies [8–15] have been conducted for the error propagation of the model-independent
integration algorithms, there is very limited research with regard to the error propagation of the
model-based integration algorithms.

In addition, most of the previous work [8–12] on the error propagation of the integration
algorithms were conducted for linear elastic systems. Only a few research [13–15] were aimed at
nonlinear structures. It should be noted that most of the pseudodynamic tests were carried out in
nonlinear range of behavior as pseudodynamic tests are mainly used to investigate the nonlinear
behavior of the structures subjected to seismic excitations [2,16]. Therefore, it is much more meaningful
to perform the nonlinear error propagation analysis. To take the nonlinearity into consideration,
the degree of nonlinearity, which was adopted in [13–15], is introduced in this study. Furthermore,
the influence of viscous damping, which is a critical structural parameter, on the error propagation
characteristics have not been considered in the previous studies [13–15].

The motivation of this study is to investigate the error propagation properties of a new family
of model-based integration algorithm for pseudodynamic tests of nonlinear systems by considering
the influence of viscous damping. The new family of model-based integration algorithms is firstly
introduced in Section 2. The procedure of using the new algorithms in pseudodynamic tests is then
presented in Section 3. The error propagation equation and two error amplification factors for the
new algorithms are derived in Section 4 (Appendix Figure A1 shows flowchart of calculating the
error amplification factors). To further illustrate the influences of the degree of nonlinearity, viscous
damping, and two additional coefficients of the new algorithms, the error amplification factors derived
from Section 4 for three structures with different degrees of nonlinearity are obtained to demonstrate
the error propagation effect in Section 5. Finally, the numerical simulations of pseudodymamic tests for
a two-story shear-type building are also conducted to further illustrate the error propagation properties
of the new algorithms in Section 6.

2. A New Family of Model-Based Integration Algorithm

In implementing a pseudodynamic test, the structure must be idealized as a discrete model,
whose equation of motion can be written as

M
..
Xi+1 + C

.
Xi+1 + KXi+1 = Fi+1 (1)

where M, C, and K are mass, damping and stiffness matrices, respectively; Xi+1,
.

Xi+1, and
..
Xi+1 are

displacement, velocity, and acceleration vectors at the (i + 1)th time step, respectively; and Fi+1 is the
external force vector at the (i + 1)th time step.

The integration algorithms can be used to solve the equation of motion (Equation (1)) in
conducting a pseudodynamic test. Recently, the authors [17] proposed a new family of explicit
integration algorithm, which was a generalized version of the CR algorithm [5], which was proposed
by Chen and Ricles and has been successfully implemented in a series of real-time hybrid simulation
tests. The new family of algorithms is named ‘generalized CR algorithm’ and is abbreviated as ‘GCR
algorithm’ in this paper. The formulation of the GCR algorithm is inherited from the CR algorithm
and expressed as

.
Xi+1 =

.
Xi + ∆tα1

..
Xi (2a)

Xi+1 = Xi + ∆t
.

Xi + ∆t2α2
..
Xi (2b)
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where ∆t is the time step; α1 and α2 are the integration parameter matrices

α1 =
[
M + κ1∆tC + κ2∆t2K

]−1
M; α2 = (1/2 + κ1)α1 (3)

where κ1 and κ2 are two additional coefficients controlling the numerical characteristics of the GCR
algorithm. The CR algorithm is the special case of the GCR algorithm with κ1 = 1/2, κ2 = 1/4.

It can be concluded from the preliminary study [17] that the subfamily of the GCR algorithm
with κ1 = 1/2, 2κ2 ≥ κ1 has no numerical damping, while the subfamily of the GCR algorithm with
κ1 > 1/2, κ2 ≥ (κ1 + 1/2)2/4 has numerical damping. The GCR algorithm is superior to commonly
used integration algorithms due to its explicit expressions and unconditionally stability. In addition,
the numerical characteristics of the GCR algorithm are identical with the well-known Newmark
algorithm. Therefore, the GCR algorithm can be easily adopted in solving the equation of motion in
the pseudodynamic tests and other structural dynamic problems.

For the brevity of mathematics, the following derivations are only considered for a
single-degree-of-freedom (SDOF) system. As for the SDOF system, all the matrices and vectors
in Equations (1)–(3) become scalars.

The degree of nonlinearity used in [13–15] is introduced to evaluate the change of stiffness for the
nonlinear system and defined as

δi+1 =
ki+1

ki
(4)

It should be noted that δi+1 = 1 means the stiffness remains unchanged during the (i + 1)th time
step, while δi+1 > 1 and 0 < δi+1 < 1 can be used to represent the nonlinear system with stiffness
hardening and the stiffness softening during the (i + 1)th time step, respectively.

3. Pseudodynamic Test Procedure

Because there are possible variations in the changes of stiffness and the resulting complicated
eigendecomposition, it is almost impossible to conduct the error propagation analysis for the whole
step-by-step integration procedure. Therefore, only a specific time step is analyzed for the error
propagation analysis of a nonlinear system [13].

It should be noted that the GCR algorithm is a dual-explicit algorithm, which means it is explicit
for both displacement and velocity, so the pseudodynamic test procedure is much easier and more
direct compared to the pseudodynamic test using the Newmark explicit algorithm [13], the subfamily
of Hilber-Hughes-Taylor-α (HHT-α) algorithm [14] or the constant average acceleration method [15].

The step-by-step integration procedure for the GCR algorithm can be written in a recursive matrix
form. It is

Xi+1 = Ai+1Xi + Li+1Fi+1 (5)

where Xi+1 = [xi+1, ∆t
.
xi+1, ∆t2 ..

xi+1]
T . The amplification matrix Ai+1 and the load vector Li+1 for the

(i + 1)th time step are

Ai+1 =

 1 1 α2

0 1 α1

−Ω2
i+1 −

(
Ω2

i+1 + 2ξΩi+1
)
−
(
α2Ω2

i+1 + 2α1ξΩi+1
)
 (6)

Li+1 = [0, 0, ∆t2/m]
T

(7)

where Ωi+1 = ωi+1∆t and ωi+1 =
√

ki+1/m is the natural frequency of the system at the end of the
(i + 1)th time step. ξ = c/(2mω0) is the equivalent viscous damping ratio, where ω0 is the initial
natural frequency of the system. Differing from the work conducted by other researchers [13–15],
the influence of viscous damping is also taken into consideration in this study.
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After the eigendecomposition of the matrix Ai+1, its characteristic equation can be obtained by
the equation of |Ai+1 − λI| = 0 and expanded as

|Ai+1 − λI| = λ
(

λ2 − 2A1λ + A2

)
= 0 (8)

where I is the identity matrix of dimension 3 × 3; λ is the eigenvalue of the matrix Ai+1;
A1 =

(
2− α2Ω2

i+1 − 2α1ξΩi+1
)
/2; A2 = (α1 − α2)Ω2

i+1 − 2α1ξΩi+1 + 1. It is apparent that there are
three eigenvalues and one of them is zero, so the above equation can be further simplified as

λ2 − 2A1λ + A2 = 0 (9)

There are two eigenvalues λ1,2 = A1 ±
√

A1
2 − A2. According to [17], the condition of the

unconditionally stable GCR algorithm can be derived

2κ2 ≥ κ1 ≥ 1/2 (10)

Therefore, the error propagation characteristics of the subfamily of the unconditionally stable
GCR algorithm is investigated in the following content.

4. Derivation of Error Propagation Equation

In conducting a pseudodynamic test, control and measurement errors are unavoidable and are
introduced at each time step. Firstly, it is very difficult to exactly impose the computed displacement
on the specimen because of the displacement control error. Secondly, the restoring force actually
developed in the specimen may not be correctly measured. These errors are carried over to the
subsequent time steps and exhibit a cumulative effect from the beginning to the end of the test.

The equation of motion of a nonlinear SDOF system is

m
..
xi+1 + c

.
xi+1 = Fi+1 − ri+1 (11)

where ri+1 is the restoring force at the (i + 1)th time step. The displacement and velocity calculated
from the SDOF formulation of Equation (2) are accurate values, and the corresponding restoring force
obtained by state determination is also accurate and without error.

The below two equations define the actual displacement and restoring force during a
pseudodynamic test [13]:

xa
i+1 = xe

i+1 + ex
i+1 (12)

ra
i+1 = re

i+1 + er
i+1 (13)

where xa
i+1 and ra

i+1 are the actual displacement and restoring force at the (i + 1)th time step, respectively,
including the effects of errors at previous steps and the current step; xe

i+1 and re
i+1 are the exact

displacement and restoring force at the (i + 1)th time step, respectively, including the effects of errors
at previous steps; ex

i+1 and er
i+1 are the displacement error and the restoring force error at the (i + 1)th

time step, respectively.
The restoring force error at the (i + 1)th time step er

i+1 can be further expressed as [13]

er
i+1 = ki+1erx

i+1 (14)

where erx
i+1 is the displacement error corresponding to the restoring force error er

i+1. According to
the above definition and the formulations of the GCR algorithm, the following relationships can
be obtained

.
xe

i+1 =
.
xe

i + ∆tα1
..
xe

i (15a)

xe
i+1 = xe

i + ∆t
.
xe

i + ∆t2α2
..
xe

i + ex
i (15b)
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m
..
xe

i+1 + c
.
xe

i+1 + re
i+1 + er

i+1 = Fi+1 (16)

It should be noted that re
i+1 = ki+1xe

i+1, so the aforementioned equations can be reformulated in a
recursive matrix form [13]

Xe
i+1 = Ai+1Xe

i + Li+1Fi+1 + Mi+1ex
i −Ni+1erx

i+1 (17)

where Xe
i+1 =

[
xe

i+1, ∆t
.
xe

i+1, ∆t2 ..
xe

i+1

]T
; Mi+1 =

[
1, 0,−Ω2

i+1
]T ; Ni+1 =

[
0, 0, Ω2

i+1
]T .

Subtracting Equation (5) from Equation (16), the following error propagation equation can
be obtained

Xe
i+1 −Xi+1 = Ai+1(Xe

i −Xi) + Mi+1ex
i −Ni+1erx

i+1 (18)

Define εi+1 = Xe
i+1 −Xi+1, then the error propagation equation can be rewritten as

εi+1 = Ai+1εi + Mi+1ex
i −Ni+1erx

i+1 (19)

The error cumulative vector εi+1 can be explicitly expressed as

εi+1 =

 ε1
i+1

ε2
i+1

ε3
i+1

 =


xe

i+1 − xi+1

∆t
( .

xe
i+1 −

.
xi+1

)
∆t2
( ..

xe
i+1 −

..
xi+1

)
 (20)

It is obvious that ε1
i+1 = xe

i+1 − xi+1 = ex
i+1 is the cumulative displacement error for the (i + 1)th

time step. When the specimen enters into a nonlinear range, the amplification matrix Ai+1 and vectors
Mi+1 and Ni+1 are varied for each time step, so it is almost impossible to calculate the cumulative
displacement error ex

i+1 for a complete pseudodynamic test such as that developed by Shing and
Mahin [11] for a linear elastic system. Even so, if the error propagation for a specific time step is
thoroughly studied, some useful information can still be acquired. Therefore, the error propagation
from the previous one and two time steps to the current time step is derived as follows.

After the repeated substitutions of εi−1 and εi into εi+1 using Equation (20), the following
cumulative equation can be acquired

εi+1 = Ai+1AiAi−1εi−2 +
(
Ai+1AiMi−1ex

i−2 + Ai+1Miex
i−1 + Mi+1ex

i
)

−
(
Ai+1AiNi−1erx

i−1 + Ai+1Nierx
i + Ni+1erx

i+1
) (21)

It is assumed that εi+1 is mainly affected by εi and εi−1, while less affected by εi−2, then the item
of Ai+1AiAi−1εi−2 can be omitted and the cumulative equation can be further simplified as

εi+1 = εx
i+1 − εr

i+1 (22a)

εx
i+1 = Ai+1AiMi−1ex

i−2 + Ai+1Miex
i−1 + Mi+1ex

i (22b)

εr
i+1 = Ai+1AiNi−1erx

i−1 + Ai+1Nierx
i + Ni+1erx

i+1 (22c)

where εx
i+1 and εr

i+1 are the cumulative error vector caused from the displacement feedback errors and
restoring force feedback errors.

Substituting the amplification matrix into Equation (22), the cumulative displacement error for
the (i + 1)th time step can be expressed as

ex
i+1 =

(
Diex

i + Di−1ex
i−1 + Di−2ex

i−2
)
−
(

Rierx
i + Ri−1erx

i−1
)

(23)
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As the coefficients Di, Di−1, Di−2, Ri, and Ri−1, of Equation (23) are so complicated, they are
not exhibited in the paper. However, it is very convenient to numerically calculate them by using
MATLAB [18]. Equation (23) can be further expressed as

ex
i+1 = Ex∑i−1

k=i cos
[
(i− k)Ωi+1 + αi+1

]
ex

k + Di−2ex
i−2 − Er∑i−1

k=i sin
[
(i− k)Ωi+1 + βi+1

]
erx

k (24)

where αi+1 and βi+1 are the phase angles, Ex and Er are the displacement and restoring force error
amplification factors arising from the previous one and two steps to the cumulative displacement error,
respectively. These two amplification factors are all dimensionless and widely used to evaluate the error
propagation properties of the integration algorithms in pseudodynamic tests [10–15]. The expressions
of the two factors for the GCR algorithm are

Ex =

√√√√(Di)
2 +

(
Di−1 − Di cos Ωi+1

sin Ωi+1

)2

(25)

Er =

√√√√(Ri)
2 +

(
Ri−1 − Ri cos Ωi+1

sin Ωi+1

)2

(26)

5. Examples for Error Propagation Effect

The aforementioned two error amplification factors, i.e., the displacement error amplification
factor Ex (Equation (25)) and the restoring force error amplification factor Er (Equation (26)), are used
to illustrate the error propagation effect of the GCR algorithm. The degree of nonlinearity is used to
define three cases as:

(1) Case 1: nonlinear structure with stiffness softening, δi−1 = δi = δi+1 = 0.5
(2) Case 2: linear elastic structure, δi−1 = δi = δi+1 = 1.0
(3) Case 3: nonlinear structure with stiffness hardening, δi−1 = δi = δi+1 = 1.5
Figures 1 and 2 show the two error amplification factors, i.e, Ex and Er, with respect to the initial

Ω0 = ω0∆t, respectively.
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It can be seen from Figures 1 and 2 that both amplification factors xE  and rE  increase with 0
. This result is in consistent for those of other integration algorithms [10–15]. Besides, both 
amplification factors increase with the degree of nonlinearity δ, which is in line with the observations 
from [13–15]. It indicates that the degree of nonlinearity has a significance influence on the error 
propagation properties of the GCR algorithms. More specifically, the nonlinear structures with 
stiffness hardening possess the most errors, while the nonlinear structures with stiffness softening 
have the lowest errors. As for the viscous damping, it has a positive effect on reducing the errors. 
Therefore, it is conservative to ignore the influence of viscous damping. Both the two additional 
coefficients—i.e., 1  and 2 —of the GCR algorithms have great impact on the error propagation 

Figure 1. Variations of displacement error amplification factor Ex with respect to Ω0: (a) κ1 = 1/2, ξ = 0;
(b) κ1 = 1, ξ = 0; (c) κ1 = 1/2, ξ = 0.1; (d) κ1 = 1, ξ = 0.1.
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Figure 2. Variations of restoring force error amplification factor Er with respect to Ω0: (a) κ1 = 1/2, ξ = 0;
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It can be seen from Figures 1 and 2 that both amplification factors Ex and Er increase with Ω0.
This result is in consistent for those of other integration algorithms [10–15]. Besides, both amplification
factors increase with the degree of nonlinearity δ, which is in line with the observations from [13–15].
It indicates that the degree of nonlinearity has a significance influence on the error propagation
properties of the GCR algorithms. More specifically, the nonlinear structures with stiffness hardening
possess the most errors, while the nonlinear structures with stiffness softening have the lowest errors.
As for the viscous damping, it has a positive effect on reducing the errors. Therefore, it is conservative
to ignore the influence of viscous damping. Both the two additional coefficients—i.e., κ1 and κ2—of
the GCR algorithms have great impact on the error propagation property. With the increasing of κ1,
the errors increase, while both amplification factors Ex and Er increase with the decrease of κ2. In
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terms of error propagation, it is recommended to select the GCR algorithms with a small value of κ1

and a large value of κ2. For instance, it is superior to use the GCR algorithm with κ1 = 1/2, κ2 = 1/2
than the original CR algorithm with κ1 = 1/2, κ2 = 1/4 in a pseudodynamic test, especially for
the nonlinear structures with stiffness hardening. Taking the structure of Case 3 without viscous
damping (ξ = 0) as an example, the displacement amplification factors Ex of the GCR algorithm with
κ1 = 1/2, κ2 = 1/2 and the original CR algorithm with κ1 = 1/2, κ2 = 1/4 are 2.43 and 4.33 (=1.78
× 2.43), respectively, for Ω0 = 2, and are 3.56 and 32.91 (=9.24 × 3.56), respectively, for Ω0 = 10
(Figure 1a). The restoring force amplification factors Er of the GCR algorithm with κ1 = 1/2, κ2 = 1/2
and the original CR algorithm with κ1 = 1/2, κ2 = 1/4 are 4.69 and 14.76 (= 3.15 × 4.69), respectively,
for Ω0 = 2; are 11.55 and 251.80 ( = 21.80 × 11.55), respectively, for Ω0 = 10 (Figure 2a). It can be
clearly seen that the differences between the two specific algorithms rapidly increase with Ω0.

6. Numerical Simulation of Pseudodynamic Testing

A two-story shear-type building structure is taken as the numerical simulation example of the
pseudodynamic testing. The lumped masses of the two stories are m1 = 103 kg and m2 = 5× 102 kg,
respectively. The initial stiffness of the two stories are k1,0 = 107N/m and k2,0 = 104 N/m, respectively.
The damping matrix for the substructure is based on using Rayleigh proportional damping [19], with a
damping ratio of 0.02 in both the first and second modes. The natural initial circular frequencies for
the first and second modes are found to be ω1,0 = 4.47 rad/s and ω2,0 = 100.05 rad/s, respectively.
The first two order of initial frequencies are f1,0 = 0.7114 Hz and f2,0 = 15.9235 Hz, respectively.
The structure is subjected to the 1940 El Centro NS earthquake ground motion.

In order to take the influence of error into consideration, displacement error is introduced to the
displacement response at each story. Assume the displacement error is a random variable which obeys
the truncated normal distribution with the probability density function as [20]

f (x) =
1.00135
σ
√

2π
exp

[
− (x− µ)2

2σ2

]
, x ∈ (µ− 3σ, µ + 3σ) (27)

where µ and σ are the mean value and the standard deviation of the displacement error x, respectively.
In conducting the pseudodynamic testing, it is assumed that µ = 0 and σ = tol/3 = 10−5 m. tol is the
tolerance error and assigned as 3 × 10−5 m in this paper. It denotes that the maximum displacement
error of each time step is 3× 10−5 m. By using the MATLAB software [18], a series of random numbers
conforming the aforementioned distribution can be generated and used as the displacement errors.

Numerical simulation of two situations—i.e., without displacement error and with random
displacement error—using the GCR algorithm are conducted. The time step ∆t is assigned as 0.01 s.
As a result, Ω1,0 = 0.04 and Ω2,0 = 1. Figures 3–5 show the displacement response, displacement error
at each time step, and cumulative displacement error of each story, respectively. The numerical results
using the Newmark explicit algorithm with the time step of 0.001 s are used as references.
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It can be seen from Figure 3 that the displacement response at the first story is significantly
disturbed by the error. On the contrary, the influence of error on the displacement response at the
second story is inconspicuous. The main reason is that the displacement at the second story is mainly
contributed by the first order modal response, while the displacement at the first story is, to some
extent, contributed by the second modal response, whose value of Ω is larger than that of the first
modal response and therefore exhibits a higher error propagation result.

Although the cumulative displacement error can be significantly reduced with the increase of κ2,
the accurate displacement response at first story is still overlapped by the error (Figure 5a,c). As for
κ2 = 1/2, the displacement at the second story is in good agreement with the reference value and less
affected by the displacement error (Figure 3b). As for κ2 = 1, the displacement at the second story
is also less affected by the displacement error, but the accuracy of the numerical result is impaired
due to the existing of numerical damping of the integration algorithm (Figure 3d). The maximum
displacement (0.094 m) at the second story calculated using the GCR algorithms with κ2 = 1 are 83% of
the reference value (0.113 m).

Figure 6 shows the spectral characteristic of the displacement by conducting fast Fourier transform
(FFT) of the displacement response shown in Figure 3.
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Figure 6a are identical with those in Figure 6b; the legends in Figure 6c are identical with those in
Figure 6d.

Figure 6a implies that the displacement at the first story is contributed by the first and second
order of modal responses. The first order frequency obtained by several GCR algorithms are very close
and approximately 0.7060 Hz, which is slightly smaller than the first order frequency of the structure,
i.e., 0.7114 Hz. This is due to period elongation [19] of the integration algorithm. However, there exists
obvious difference of the second order frequency between the calculated value by using several GCR
algorithms and the actual frequency as period elongation increases with the increase of Ω. In Figure 6c,
the first order response is obvious, while the second order response is less obvious. The reason
for this is the numerical damping and the random displacement error. By comparing Figure 6b,d,
the displacement at the second story is only contributed by the first order modal response, which
further explains the phenomenon shown in Figure 3. In addition, due to the existing of numerical
damping, the spectral amplitude of κ2 = 1 is less than that of κ2 = 1/2, which is consistent with the
displacement response indicated in Figure 3.

7. Conclusions

This paper presents a new family of model-based GCR integration algorithm. The error
propagation equation for the GCR algorithms implemented in a pseudodynamic test is derived.
The error amplification factors for three structures with different degrees of nonlinearity are calculated
to illustrate the error propagation effect. The numerical simulation of a pseudodynamic test for a
two-story shear-type building structure is conducted to further demonstrate the error propagation
characteristics of the new algorithms. The original contributions of this study are to investigate the
error propagation properties of the GCR algorithms for pseudodynamic tests of nonlinear systems
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by considering the influence of viscous damping. The following conclusions can be drawn from the
examples and numerical simulations in Sections 5 and 6:

(1) Both amplification error factors, i.e., Ex and Er, increase with Ω0 = ω0∆t.
(2) Both amplification factors, i.e., Ex and Er, increase with the degree of nonlinearity δ, so it is crucial

to take the degree of nonlinearity δ into consideration.
(3) As for the viscous damping, it has a positive effect on reducing the errors, so it is conservative to

ignore the influence of viscous damping.
(4) Both the two additional coefficients, i.e., κ1 and κ2, of the GCR algorithms have great impact

on the error propagation property. With the increasing of κ1, the errors increase, while both
amplification factors Ex and Er increasing with the decrease of κ2.

(5) The original CR algorithm with κ1 = 1/2, κ2 = 1/4 has a relatively large error propagation
property, especially for the nonlinear structures with stiffness hardening. The two amplification
error factors, i.e., Ex and Er, of the GCR algorithm with κ1 = 1/2, κ2 = 1/2 are only 10.8%
and 4.6% of those of the original CR algorithm with κ1 = 1/2, κ2 = 1/4 when Ω0 = 10 for
the nonlinear structure with stiffness hardening of Case 3 without viscous damping. Therefore,
the GCR algorithm with κ1 = 1/2, κ2 = 1/2 is a superior alternative of the original CR algorithm
with κ1 = 1/2, κ2 = 1/4.

(6) The displacement response at the first story is significantly disturbed by the error, whereas the
influence of error on the displacement response at the second story is inconspicuous. The main
reason is that the displacement at the second story is mainly contributed by the first order modal
response, while the displacement at the first story is, to some extent, contributed by the second
modal response.

(7) The maximum displacement at the second story obtained by using the GCR algorithms with
κ2 = 1 are 83% of the reference value. It means that the accuracy of the numerical result is
impaired by excessive numerical damping for the high frequency response, thus the numerical
dissipation characteristics of the GCR algorithms should be optimized in the future.
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Appendix A: Notations

M: Mass matrix
C: Damping matrix
K: Stiffness matrix
Xi+1: Displacement vector at the (i + 1)th time step
.

Xi+1: Velocity vector at the (i + 1)th time step
..
Xi+1: Acceleration vector at the (i + 1)th time step
Fi+1: External force vector at the (i + 1)th time step
∆t: Time step
α1 and α2: Integration parameter matrices
κ1 and κ2: Additional coefficients of the GCR algorithm
δi+1: Degree of nonlinearity
Ai+1: Amplification matrix at the (i + 1)th time step
Li+1: Load vector at the (i + 1)th time step
ωi+1: Natural frequency of the system at the (i + 1)th time step
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ω0: Initial natural frequency of the system
Ωi+1: The product of natural frequency ωi+1 at the (i + 1)th time step multiplies time step ∆t
Ω0: The product of initial natural frequency ω0 multiplies time step ∆t
ξ = c/(2mω0): The equivalent viscous damping ratio
I: Identity matrix of dimension 3 × 3
λ: Eigenvalue of the matrix Ai+1
ri+1: Restoring force at the (i + 1)th time step
xa

i+1: Actual displacement at the (i + 1)th time step, including the effects of errors at previous steps and
the current step
ra

i+1: Restoring force at the (i + 1)th time step, including the effects of errors at previous steps and the
current step
xe

i+1: Exact displacement at the (i + 1)th time step, including the effects of errors at previous steps
re

i+1: Exact restoring force at the (i + 1)th time step, including the effects of errors at previous steps
ex

i+1: Displacement error at the (i + 1)th time step
er

i+1: Restoring force error at the (i + 1)th time step
erx

i+1: Displacement error corresponding to the restoring force error er
i+1

εi+1: Error cumulative vector at the (i + 1)th time step
Di, Di−1 and Di−2: Coefficients for the displacement feedback errors
Ri and Ri−1: Coefficients for the restoring force feedback errors
αi+1 and βi+1: Phase angles
Ex: Displacement error amplification factor
Er: Restoring force error amplification factor
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Appendix B

Figure A1. Flowchart of calculating the error amplification factors.
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