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Abstract: More well-maintained green spaces leading toward sustainable, smart green cities mean that
alternative water resources (e.g., wastewater) are needed to fulfill the water demand of urban greenery.
These alternative resources may introduce some environmental hazards, such as salt leaching through
wastewater irrigation. Despite the necessity of salinity monitoring and management in urban green
spaces, most attention has been on agricultural fields. This study was defined to investigate the
capability and feasibility of monitoring and predicting soil salinity using proximal sensing and remote
sensing approaches. The innovation of the study lies in the fact that it is one of the first research studies
to investigate soil salinity in heterogeneous urban vegetation with two approaches: proximal sensing
salinity mapping using Electromagnetic-induction Meter (EM38) surveys and remote sensing using
the high-resolution multispectral image of WorldView3. The possible spectral band combinations that
form spectral indices were calculated using remote sensing techniques. The results from the EM38
survey were validated by testing soil samples in the laboratory. These findings were compared to
remote sensing-based soil salinity indicators to examine their competence on mapping and predicting
spatial variation of soil salinity in urban greenery. Several regression models were fitted; the mixed
effect modeling was selected as the most appropriate to analyze data, as it takes into account the
systematic observation-specific unobserved heterogeneity. Our results showed that Soil Adjusted
Vegetation Index (SAVI) was the only salinity index that could be considered for predicting soil
salinity in urban greenery using high-resolution images, yet further investigation is recommended.

Keywords: optical remote sensing; worldview3; EM38; urban green spaces; Adelaide parklands

1. Introduction

Most urban green spaces in arid and semi-arid climates such as South Australia, which are
experiencing hotter and drier summers with more frequent and severe droughts, are facing critical
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challenges in maintaining and expanding their urban green spaces. Increasing urbanization and
shortages in fresh water resources have resulted in introducing alternative water resources, such as
reclaimed wastewater or stormwater as irrigation sources. These alternative irrigation resources,
if uncontrolled, may contribute to salt accumulation and water table elevation that can cause urban soil
salinity and ultimately soil and ground water degradation. In contrast, a balanced salinity management
strategy decreases fertigation costs and ensures environmental protection. In the city of Adelaide,
South Australia, recycled wastewater from the Glenelg to the Adelaide Parklands (GAP) scheme is the
primary irrigation source for the largest public urban greenery, the Adelaide Parklands. This is an area
covering approximately 720 hectares that contains a variety of soils, vegetation, and microclimates.
Destructive soil sampling or leachate collection would not be a practical approach to study the
salinity status in such a vast area. Quite simply, these types of field work at these large scales are
expensive, particularly regarding labor, and the costs involve the leachate water quality analysis.
Considering the capability, availability, and affordability of proximal sensing (near sensing) and remote
sensing approaches, this research was designed to find a simple, practical, and affordable way to
investigate the capability of these methods to map and model soil salinity of urban greenery.

Mapping and modeling of soil salinity are even more of a challenge in the case of non-agricultural
systems, such as urban green spaces, which need to consider the heterogeneity of urban landscapes [1].
These inherent attributes together with the high spatial and temporal variability of urban soils lead
to complexity in mapping soil salinity in urban greenery. Very few studies have investigated the
performance of different approaches to map the soil salinity of urban landscapes.

Mapping spatio-temporal variation of soil salinity is one of the fundamental steps in salinity
management. However, it is not a simple process. Measuring soil salinity is a point measurement in
most field-based studies including proximal sensing approaches, and an appropriate interpolation
method needs to be selected to estimate salinity values for non-sampled positions [2]. Finding a
suitable interpolation method for a proximal sensing approach such as the electromagnetic tool of
EM38 surveys is often not difficult [3], as the method can provide over 5000 salinity point readings in
one hectare compared with destructive soil sampling or leachate collection with an average of fewer
than 50 readings per hectare.

This study aims to map soil salinity from wastewater irrigation in urban parklands. To achieve
this aim, the capability of high-resolution satellite images on soil salinity mapping was investigated.
An extensive literature review of mapping soil salinity using remote sensing techniques showed very
few studies in urban areas [4–6]. Similar studies with lower resolution images reported altered results
for their analysis. As for instance, Whitney et al. [7] stated that the correlation coefficients between soil
salinity and different remote sensing indices such as Normalized Difference Vegetation Index (NDVI)
and the Enhanced Vegetation Index (EVI) were r = 0.644 and r = 0.602, respectively. Dehni et al. [8]
referred to a r = 0.53 coefficient between the salinity index and vegetation in salt-affected soil and a
r = 0.48 coefficient between Salinity Index (SI) and NDVI. Alexakis et al. [9] evaluated the feasibility of
soil salinity mapping using WorldView2 (WV2) and Landsat 8 compared with in situ; they reported a
wide range of correlation coefficients from 0.13 for the SAVI to 0.689 for the SI.

The novelty of this study relies on the potential application of high-resolution multispectral
image of WorldView3 in urban green space. In this research, two approaches of proximal sensing and
optical remote sensing were employed to map and model soil salinity in heterogeneous urban greenery.
This experiment was implemented at Park 21 within the Adelaide Parklands as the experimental site.

2. Study Area

The city of Adelaide sits at an average elevation of 50 m above sea level, and Mount Lofty,
with a maximum elevation of 727 m, is the highest point of the Adelaide plain. Compared with
South Australia, Adelaide’s climate is known as atypical, because Mt. Lofty is the most influential
topographic feature. According to the Köppen climate classification, Adelaide has a Mediterranean
climate. It has hot, dry summers and mild short winters. The average temperature ranges from 13.7 ◦C
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(56.7 ◦F) in August to 21.2 ◦C (70.2 ◦F) in February. The Adelaide plains receive 95 mm and 19 mm
monthly rainfall in winter and summer, respectively. Soils in the Adelaide region include alluvial
soils, red-brown earth, and brown soil. The Adelaide Parklands are irrigated with the GAP recycled
wastewater (Figure 1). Due to the heterogeneity of species, the source of irrigation, accessibility,
safety, and existing research records, Park 21 was selected as the study site. The southern part of
Park 21, occupying 10.5 hectares, is located between the latitudes of 34◦56′8′′ S and 34◦56′15′′ S and
the longitudes of 138◦35′40′′ E and 138◦36′1′′ E. It has more than 60 different species and types of
landscape trees and shrubs with broad coverage of Kikuyu turf grasses [10]. This heterogeneity helps
to investigate the range of soil salinity tolerance in many species. A regular soil salinity map over the
years will assist in understanding the physical behavior of different species on adapting to temporal
changes of salinity.
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Figure 1. The southern part of Park 21 within the Adelaide Parklands (34◦56′24.5′′ S, 138◦36′08.3′′ E).

3. Material and Methods

3.1. Proximal Sensing and Laboratory

An EM38 instrument, a data logger, and a global positioning system (GPS) were employed
to collect electrical conductivity values and geographical coordinates of points in Park 21,
covering 10.5 hectares of urban vegetation. A total of 52,470 observations were recorded during
the survey day in rows with about 2-m distance. The adopted calibration method used spatial
regression techniques to convert the EM38 readings to soil salinity [11]. Due to a common difficulty
with metadata analysis for some geostatistical software, 25% of the readings were randomly selected
for further analysis. The interpolation of around 1000 points over 1M of pixels might take several
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hours on a standard PC [12]. Negative EM38 readings were considered as outliers and were deleted
from the dataset resulting in 52,096 sample points for data analysis. The statistical distribution of the
data was then tested and was found to follow a normal distribution.

The data collected by EM38 is not continuous but can be mapped to create a continuous
surface if a suitable method of interpolation is adopted [13–15]. Because traditional methods of
soil salinity measurements are mostly point-based, labor-intensive, time-consuming, and costly,
electromagnetic induction technology has spread rapidly [16–20]. This non-invasive proximal sensing
technology provided a series of point measurements easily and quickly compared with traditional
methods [13,14,21]. A set of point observations (often thousands of points) can provide a good
representation of the heterogeneous nature of some soil properties in an urban green space. It can
also provide a high-accuracy soil salinity map [13,22]. However, electromagnetic induction technology
is site-specific and cannot entirely replace traditional methods [23]. Field or ground-truthing is still
crucial to validate EM38 observations [22,24].

To create a continuous surface map of soil salinity, spatial interpolation techniques were used
after data cleaning. Although there are several interpolation methods to measure non-sampled
variables, previous research studies have shown that there is no single most appropriate method for
the interpolation [25–28]. From two major groups of interpolation techniques, namely deterministic
and geostatistical approaches, the four most common methods in hydrological and soil studies [29,30],
including Inverse Distance Weighting (IDW), spline, and kriging (simple and ordinary), were examined
in the experimental site [31–33]. To select the most appropriate interpolation method for the EM38
readings, the IDW, spline, and kriging (simple and ordinary) techniques were compared [29,30,34–36].
The soil salinity map of Park 21 was developed from the EM38 readings using these four interpolation
methods. Two common diagnostic statistics, namely the root-mean-square error (RMSE) and
the standardized RMSE, were calculated to assess the accuracy of these interpolation approaches.
The results showed IDW (Power 2) as the most appropriate interpolation method for this study.

A total of 23 topsoil samples were collected from Park 21 and were sent to the laboratory to
validate the electrical conductivity readings from the EM38 survey. These 23 sampling points were
randomly selected from two salinity zones delineated by ArcGIS techniques [1]. Because the salinity
range of the soil was less than 2.2 dS/m, which considers a low salinity range (non-saline), we limited
salinity zoning into 2 zones of less than 1.2 dS/m and 1.2–2.2 dS/m. The sampling points were
positioned using a handheld GPS.

Standard methods were followed for sample preparation, packaging, labeling, and storage.
Soil (Electrical Conductivity (EC) was measured in a 1:5 soil-to-water suspension after shaking and
was adjusted based on the room temperature. To have a precise measurement, each sample was tested
three times to report the average value.

To investigate the relationship between soil electrical conductivity values from the EM38 survey
and destructive soil samples, a linear regression analysis was undertaken.

3.2. Optical Remote Sensing

Extensive research studies have been conducted over the last few decades to map soil salinity
using remote sensing data from various sensors and platforms [11,37–41]. For this study, a recently
launched advanced high-resolution satellite imagery of WorldView3 (WV3) acquired on 21 March 2015
was employed to assess the feasibility of soil salinity studies in urban vegetation. The WV3 provides
the appropriate spatial resolution for urban mixed vegetation landscapes with spectral bands that
previous studies have shown are suitable for salinity mapping [42]. This satellite image has eight
multispectral bands in the near-infrared and visible spectra and eight bands in the shortwave infrared.
This study is limited to the panchromatic and visible/near-infrared bands with spatial resolution of
0.31 m and 1.24 m, respectively. These eight multispectral bands include coastal (B1, 400–450 nm),
blue (B2, 450–510 nm), green (B3, 510–580 nm), yellow (B4, 585–625 nm), red (B5, 630–690 nm), red-edge
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(B6, 705–745 nm), near-IR1/NIR1 (B7, 770–895 nm), and near-IR2/NIR2 (B8, 860–1040 nm). The satellite
imagery of WV3 presently has the highest spatial and spectral resolution among optical satellites.

Although the soil spectrum might be presumed uninflected, it can provide valuable information
about soil properties. Several studies have investigated optimal spectral bands from airborne and
space-borne sensors for mapping salt-affected areas [11,43]. The most common spectral indices—listed
in Table 1—were extracted from a WV3 image of Park 21 using image processing and statistical
techniques. This image has been cropped to only-vegetation pixels by hand-digitizing and has
been pre-processed by the ordinary adjustments, such as atmospheric corrections, orthorectification,
format conversion, masking, sun glint removal, and geo-referencing; these steps were described in
detail by Nouri et al. [44].

Table 1. Spectral indices used for soil salinity modeling.

Indices Equation Ref.

1 Normalized Differential Vegetation Index NDVI = (B4 − B3)/(B4 + B3) [45]
2 Enhanced Vegetation Index EVI = 2.5× (B4 − B3)/(B4 + (C1× B3)− (C2× B1) + L) [46]
3 Soil Adjusted Vegetation Index SAVI = (B4 − B3)× (1 + L)/(B4 + B3 + L) [47]
4 Ratio Vegetation Index RVI = B4/B3 [48]
5 Normalized Differential Salinity Index NDSI = (B3 − B4)/(B3 + B4) [49]

6 Brightness Index BI =
√

B2
2 + B4

2 [50]
7 Salinity Index SI =

√
B1 × B3 [49]

8 Salinity Index SI1 =
√

B2 × B3 [50]

9 Salinity Index SI2 =
√

B2
2 + B3

2 + B4
2 [51]

10 Salinity Index SI3 =
√

B2
2 + B3

2 [51]
11 Salinity Index SI_1 = B5/B7 [52]
12 Salinity Index SI_2 = (B4 − B5)/(B4 + B5) [52]
13 Salinity Index SI_3 = (B5 − B7)/(B5 + B7) [53]
14 Soil Salinity and Sodicity Indices SSSI-1 = (B5 − B7) [53]
15 Soil Salinity and Sodicity Indices SSSI-2 = (B5 × B7 − B7 × B7)/B5 [53]
16 Salinity Index S1 = B1/B3 [53]
17 Salinity Index S2 = (B1 − B3)/(B1 + B3) [53]
18 Salinity Index S3 = (B2 × B3)/B1 [53]
19 Salinity Index S5 = (B1 × B3)/B2 [54]
20 Salinity Index S6 = (B2 × B4)/B2 [54]

21 Salinity Index ISK =
(√

(B3 − B2)× (B3 + B2)
)

/(
√

B3
2 + B2

2) [55]

22 Salinity Index TSAVI = (a× (B4 − (a× B3 + b))/(B3 + a× (B4 − b)
+ 0.08

(
1 + a2) [56]

23 Perpendicular Vegetation Index PVI = (B4 − (a× B3 + b))/
√

1 + a2 [56]
24 Salinity Index Int1 = (B2 + B3)/2 [57]
25 Salinity Index Int2 = (B2 + B3 + B4)/2 [57]
26 Salinity Index WDVI = B4 − a× B3 [58]
27 Salinity Index DVI = B4 − B3 [58]
28 Salinity Index AsterSI = (SWIR1− SWIR2)/(SWIR1 + SWIR2) [57]
29 Salinity Index EC = a +

(
b×TM1+c×TM2+d×TM3+e×TM4

f×TM4+g×TM7

)
[59]

30 Salinity Index SI− 11 = SWIR1/SWIR2 [57]
31 Normalized Difference Water Index NDWI = (B2 − B5)/(B2 + B5) [60]
32 Simple Ratio Water Index SRWI = B3860 nm/B31240 nm [61]
33 Soil Surface Moisture SSM = (B6 − B7)/(B6 + B7) [62]
34 Visible Atmospherically Resistant Index VARI = (B4 − B1)/(B4 + B1 − B3) [63]
35 Normalized Difference Infrared Index NDII = (B2 − B6)/(B2 + B6) [64]
36 Aerosol-free Vegetation Index AFRI1.6 = (BNIR − 0.66B1.6)/(BNIR + 0.66B1.6) [65]
37 Aerosol-free Vegetation Index AFRI2.1 = (BNIR − 0.5B2.1)/(BNIR + 0.5B2.1) [65]
38 Land Surface Water Index LSWI = (NIR − SWIR)/(NIR + SWIR) [66]

39 Normalized Multi-band Drought Index NDMI = [B3860 nm− (B31640 nm− B32130 nm)]/
[B3860 nm + (B31640 nm− B32130 nm]

[67]

40 Gypsic Index (B5 − B7)/(B5 + B7) [68]
41 Similarly Index (B5 − B4)/(B5 + B4) [68]
42 Salinity Index (B4 − B5)/(B4 + B5) [69]
43 Salinity Index SI-1(2) =

√
B2 × B3 [20]

44 Salinity Index SI-2(2) =
√

B2
2 + B32 + B4

2 [20]

45 Salinity Index SI-3(2) =
√

B22 + B32 [20]
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A set of eight variables (eight bands of WV3) were chosen as predictors of soil salinity. The remote
sensing software ENVI was employed to extract values from all eight bands for each pixel from the
WorldView3 image of Park 21.

Various spectral indices were calculated using two or more bands for differentiation between
salinity features Nouri et al. [44].

3.3. Modeling Soil Salinity Using Proximal and Remote Sensing Data

Statistical exploration (data preparation and data analysis) was carried out to investigate the
relationship between spectral indices driven from a high-resolution satellite image of WV3 together
with a proximal sensing method of an EM38 survey.

The Stata 13 statistical package was employed for data analysis over 52,479 observations on
31 variables including 8 bands of WV3 and 23 salinity/vegetation indices. We excluded system
errors, such as EM38 observations, which reported a negative value. The negative values were mainly
recorded due to the presence of magnetic objects in the soil (e.g., lid of food cans). After these
exclusions, our sample comprised at a total of 52,096 observations.

To assess the state of very high intercorrelations or inter-associations among the independent
variables, a set of eight variables—eight multispectral bands of WV3—were assessed for data
multicollinearity. The multicollinearity checked whether one predictor variable could be linearly
predicted from other variables with a substantial degree of accuracy. From each pair of variables with
extreme high correlations (>0.9), one was removed based on the previous literature to resolve the
collinearity problem in the data. Mixed effect modeling was used to investigate the impact of random
effects (e.g., location). The study area was divided into smaller zones defined by buffers, and mixed
effects were tested and reported.

4. Results and Discussion

4.1. Proximal Sensing and Laboratory

The RMSE of the four interpolation methods of simple kriging, ordinary kriging, spline, and IDW
(power 2) were found 20.8, 16.5, 14.7, and 14.2, respectively. Although there is not a large difference in
the RMSE of the different methods, IDW (Power 2) showed the least error for this dataset. Figure 2
shows the salinity map of Park 21 using IDW (Power 2) as the interpolation method.Sustainability 2018, 10, x FOR PEER REVIEW  7 of 15 
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The main statistical parameters for EC data, resulting from laboratory testing, are presented in
Table 2. The EC values vary from 0.2 dS/m to 2.1 dS/m, with an average of 0.54 dS/m and a median
value of 0.4 dS/m. Because the histogram is slightly skewed to the right, the mean value is slightly
greater than the median.

Table 2. Descriptive statistics of laboratory EC measurements (dS/m).

Mean Median Maximum Minimum SD-P SD-S CV (%)

0.537 0.413 2.130 0.203 0.402 0.411 0.748

Based on The Food and Agriculture Organization of the United Nations (FAO) soil salinity
classes [70], the EC values of destructive soil samples were mainly in the non-saline category
(0–2 dS/m). However, a relatively high coefficient of variations of 75% for the EC indicated a high
variation in the measured salinity values in the limited non-saline range.

A correlation analysis between the laboratory results against the EM38 readings from the same
coordinates in the field showed a positive correlation coefficient (p <0.005; r = 0.6343).

4.2. Optical Remote Sensing

Various spectral indices were calculated for each pixel. These calculations were applied to over
50,000 readings (Object ID) on the satellite image; a few of them are reported in Table 3.

Table 3. Spectral indices for different points.

OBJECT_ID 1 2 3 4 5

EM38 22.1 21.9 20.9 19.9 20.4
NDSI (R-NIR)/(R + NIR) −0.677 −0.677 −0.677 −0.656 −0.656

NDVI 0.677 0.677 0.677 0.656 0.656
EVI 2.5(NIR-red)/(NIR + 6red-7.5 blue + 1) −3.08 −3.08 −3.08 −3.198 −3.198

SAVI (NIR-R)/(NIR + R + L) (1 + L) 0.501 0.501 0.501 0.485 0.485
RVI (NIR/R) 5.193 5.193 5.193 4.806 4.806

BI (R2 + NIR2)1/2 602.876 602.876 602.876 608.763 608.763
SI (blue × red)1/2 159.085 159.085 159.085 168.143 168.143

SII (green × red)1/2 167.463 167.463 167.463 178.863 178.863
SI2 (G2 + R2 + NIR2)1/2 651.134 651.134 651.134 661.178 661.178

SI3 (G2 + R2)1/2 271.131 271.131 271.131 286.252 286.252
S1 (blue/red) 1.947 1.947 1.947 1.839 1.839

S2 (blue-red)/(blue + red) 0.321 0.321 0.321 0.295 0.295
S3 (G × red)/blue 126.324 126.324 126.324 140.316 140.316
S4 (blue × red)1/2 102.878 102.878 102.878 109.581 109.581

S5 (blue × red)/green 102.878 102.878 102.878 109.581 109.581
S6 (red × NIR)/green 274.341 274.341 274.341 286.45 286.45

DVI1 (NIR1-red) 478 478 478 472 472
DVI2 (NIR2-red) 292 292 292 287 287

DVI3 (NIR1-redEdge) 286 286 286 283 283
DVI4 (NIR2-redEdge) 100 100 100 98 98
GDVI1 (NIR1-green) 346 346 346 338 338
GDVI2 (NIR2-green) 160 160 160 153 153

4.3. Modeling Soil Salinity Using Near and Remote Sensing Data

The multicollinearity of eight bands from WV3 and EM38 were checked and reported in Table 4.
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Table 4. Correlation matrix of EM38 and predictors of soil salinity.

EM38 B1
Coastal

B2
Blue

B3
Green

B4
Yellow

B5
Red

B6
Red-Edge

B7
NIR1

B8
NIR2

EM38 1
B1Coastal 0.0559 1

B2Blue 0.0792 0.9463 1
B3Green 0.1043 0.8284 0.9163 1
B4Yellow 0.0865 0.8783 0.9467 0.9636 1

B5Red 0.0607 0.8891 0.9555 0.9040 0.9647 1
B6Red-Edge 0.0995 0.5384 0.6426 0.8576 0.7839 0.6508 1

B7NIR1 0.084 0.3899 0.4807 0.7327 0.6067 0.4595 0.9445 1
B8NIR2 0.0805 0.3968 0.4911 0.737 0.6216 0.4728 0.9517 0.9797 1

It was continued with B1 (coastal blue), B6 (red-edge), and B7 (NIR1) as the major predictor
variables in the model. However, different combinations were also tested. Several regression
models were fitted to the data to explore whether remote sensing can predict the salinity of the
soil. Models were compared, and the best fit was chosen. It was started with simple linear regression
as shown in Table 5 (Model 1).

Table 5. Linear regression of soil salinity, Model 1.

EM38 Coef. P > z

B1 (Coastal Blue) −0.07353 0.009
B6 (Red-Edge) 0.09696 0

B7 (NIR1) −0.02300 0
_cons 98.99310 0
AIC 573,957.7
BIC 574,002

Using the Stata 13 statistical package and mixed effect modeling, a robust model of salinity was fit
to explore whether spectral indices from high-resolution satellite imagery can predict the soil salinity
of urban landscape. Salinity was specified to be a function of a constant term and a set of covariates,
which may be varying based on location (buffers). Unlike ordinary regression analysis of clustered
data, mixed effect regression models do not assume that each observation is independent but do
assume that data within clusters are dependent to some degree. The degree of this dependency is
estimated along with the estimates of the usual model parameters, thus adjusting these effects for the
dependency resulting from the clustering of the data.

In this study, we have considered the clustering of the data, at a location level by including buffers
as random effect factors in the model to divide the area into smaller zones of similar characteristics.
Random effects models handle a very general data structure, in which clusters can be of varying sizes
and covariates can be specific to either the cluster or the individual observation, which is different
from the ordinary regression analysis in which data would be aggregated at the observation level.
For example, observations within areas near a creek might have similar characteristics to each other,
while they are different from observations gathered from an area under the trees. We used mixed effect
techniques to account for systematic observation-specific unobserved heterogeneity. In this model,
we have a hierarchy of levels. At the top level, the units are 25 different areas of the park defined
by buffers. At the lower level, we have repeated measurements of salinity in each of those areas.
We expect that there are various measured and unmeasured aspects of the upper-level units that affect
all of the lower-level measurements similarly for a given unit. Therefore, each area might have its own
trend, and a separate linear regression could be fitted for that area through the introduction of random
effects in the model. The results of this exploratory analysis are presented in Table 6 through Models
2–7. Several combinations of the predictive variables were tested, and the significance of each variable



Sustainability 2018, 10, 2826 9 of 14

was explored in various combinations. Care was taken not to include variables of high correlation with
each other in the same model. The measures of relative quality and model selection of these models
are also provided in order to choose the best fit for the data.

Table 6. Regression results for various models on EM38 by different levels of salinity.

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

EM38v Coef. P > z Coef. P > z Coef. P > z Coef. P > z Coef. P > z Coef. P > z

B1 (Coastal Blue) 0.6 0.283 −0.3398 0.000 0.09947 0.062 −0.3358 0 −0.1099 0.021
B6 (Red-Edge) 0.11027 0.000 0.06795 0.000 0.14895 0.000 0.04417 0

B7 (NIR1) −0.0182 0.000 0.00882 0.000 −0.0053 0.09 0.00714 0
B3 (Green) 0.05588 0.000 0.06524 0
B4 (Yellow) −0.0771 0.000 −0.1078 0.000 0.25464 0.000 0.31922 0
B8 (NIR2) −0.0207 0.000 −0.047 0.000
B5 (Red) −0.3262 0.000 −0.2625 0
B2 (Blue) 0.18741 0.000

_cons 82.1058 0.000 137.835 0.000 76.4472 0.000 53.2329 0.000 136.2 0 99.3143 0
AIC 568,774 568,749 568,732 568,668 568,764 568,708
BIC 568,836 568,811 568,794 568,731 568,826 568,770

However, before deciding on the best fit, the model was improved in one additional step for a
better fit. At this stage, another random effect variable was added to the model to account for the
variety in soil salinity. In this case, the salinity level of the soil was divided into 4 groups of less than
0.5, 0.5–1.2, 1.2–2.0, and over 2.0 for EM38. The results of this set of analyses are presented in Table 7
through Models 8–13.

Table 7. Regression results for various models on EM38 by different levels of salinity.

Model 8 Model 9 Model 10 Model 11 Model 12 Model 13

EM38v Coef. P > z Coef. P > z Coef. P > z Coef. P > z Coef. P > z Coef. P > z

B1 (Coastal Blue) 0.059 0.009 −0.107 0.000 −0.115 0.000 0.039 0.078 −0.039 0.046
B6 (Red-Edge) 0.055 0.000 0.028 0.000 0.025 0.000 0.055 0.000

B7 (NIR1) −0.021 0.000 −0.014 −0.007 0.000 −0.007 0.000
B3 (Green) 0.023 0.000 0.026 0.000
B4 (Yellow) −0.037 0.000 −0.031 0.000 0.139 0.000 0.134 0.000
B8 (NIR2) −0.022 0.000 0.000 −0.030 0.000
B5 (Red) −0.107 0.000 −0.109 0.000
B2 (Blue) −0.005 0.694

_cons 120.474 0.003 143.394 0.000 144.611 0.000 123.262 0.002 131.745 0.001 126.268 0.002
AIC 478,380 478,386 478,378 478,387 478,362 478,366
BIC 478,442 478,448 478,440 478,450 478,424 478,428

All models are compared based on the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) measures (The Akaike information criterion (AIC) is a measure of the
relative quality of statistical models for a given set of data. Given a collection of models for the data,
AIC estimates the quality of each model, relative to each of the other models. Hence, AIC provides a
means for model selection. The Bayesian information criterion (BIC) is a criterion for model selection
among a finite set of models, and the model with the lowest BIC is preferred. It is based, in part, on the
likelihood function and it is closely related to the AIC.). Model 12 shows the smallest combination of
AIC and BIC; therefore, it is the best of the 13 different models. This model suggests that EM38v can
be explained by a range of variables including B1(coastal blue), B7(NIR1), B4(yellow), and B5(red) at a
significance level of 0.05. The model can be used in further research to predict/estimate EM38v based
on the variables stated as significant in this model. Table 6 shows the regression results for various
models on EM38 by different location buffers.

In Table 8, EM38 is reflected as the dependent variable and EVI and SAVI as the predictor variables.
A set of derived variables used in other research papers, such as NDVI, SI, NDSI, and GDVI, were also
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checked as possible predictors; no variable except SAVI was found to be a significant predictor of soil
salinity. Here, only EVI was reported as an example.

Table 8. Mixed effect modeling of soil salinity based on derived variables.

EM38 Coef. Std. Err. z
P > z [95% Conf. Interval]

EVI 0.0004198 0.001419 0.30
0.767 −0.00236 0.003202

SAVI 45.82032 2.641757 17.34
0.000 40.64257 50.99807

_cons 83.14401 5.576818 14.91
0.000 72.21364 94.07437

The last variable (_cons) represents the constant or intercept. Coef. are the values for the
regression equation for predicting the dependent variable of EVI and SAVI from EM38. Std. Err. is the
standard error associated with the coefficient. The z-statistic value tested whether a given coefficient
is significantly different from zero and P > z shows the two-tailed p-values used in testing the null
hypothesis if the coefficient is equal to zero. The results show that the very small coefficient of EVI is
not statistically significant at the 0.05 level, because the p-value is greater than 0.05, while the large
coefficient of SAVI is statistically significant, because its p-value of 0.000 is less than 0.05. This confirms
that “SAVI” can be considered as a predictor for EM38.

5. Conclusions and Recommendations

The potential risk of salt leaching through wastewater irrigation is of concern for most local
governments and city councils. The availability of proximal and remote sensing technologies and
spatial and geostatistical models enabled the prediction of soil properties at different spatial and
temporal scales. This study investigated the capability and feasibility of predicting the soil salinity
status for urban greenery in a semi-arid climate using the two approaches of proximal sensing and
remote sensing.

A mobile EM38 electromagnetic sensing system was employed to obtain soil electrical conductivity
information for a series of 52,096 sampling points in an urban park in Adelaide in South Australia
(Park 21 within the Adelaide Parklands). The data obtained from the EM38 survey were verified
with laboratory data from destructive soil samples taken from the experimental site. The advanced
high-resolution satellite of WorldView3 was selected to assess soil salinity of this urban park using
optical remote sensing. A total of 23 different spectral indices—the most common vegetation and
salinity indices—were extracted from eight different spectral bands of a WorldView3 image. Of all the
spectral indices that were extracted from the WV3 image, only SAVI showed a moderate correlation of
EM38 values. This means that the SAVI index extracted from the high-resolution multispectral WV3
image could be considered as a predictor for soil salinity.

Our results found proximal sensing to be a more practical and feasible predictor of soil salinity in
urban greenery compared with a high-spatial resolution image of optical remote sensing in this study
area, but further investigation is required.
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