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Abstract: The safety and stability of microgrid (MG) operations are closely related to the capacity
of distributed energy resources. A conventional MG model usually adopts investment cost as an
objective function. Recently, the issue of environmental protection has been gradually emphasized.
Therefore, the objective function of the proposed sustainable microgrid (SMG) model in this study
considers the investment cost and environmental protective cost and the decision variable is the
capacity of the distributed power. Moreover, weather and electric power load data from the National
Centers for Environmental Information database (2010) were analyzed in Matlab program for the case
study of Alabaster city, United States of America (USA). For the sake of a stable and economical SMG
operation, this study also attempts to use a multi-objective capacity optimal model for effectively
solving SMG under a multi-population differential evolution (MPDE) algorithm with dominant
population (DP), which can improve the convergence speed in an SMG model. At the same time,
considering that different scheduling strategies will also affect the optimization results, two strategies
are proposed for the priority order of distributed generation sources. The optimization results under
the two scheduling strategies show that the validation of the MPDE algorithm in SMG capacity
optimization problems can economize investment costs and enable an environmentally friendly
power supply.

Keywords: sustainable; individual greedy strategy; microgrid capacity optimization;
multi-population difference evolution algorithm

1. Introduction

Energy is among the crucial basic materials for developing a national economy and improving
people’s living standards. Due to both population increases and modern economic development,
overall energy demand has increased and caused a depletion of traditional fossil fuel reserves,
which can lead to energy shortages. In addition, pollution from the utilization of traditional fossil fuels
is also becoming more serious, leading to acid rain, the greenhouse effect, increased concentrations of
Particulate Matter (PM2.5), and haze. Therefore, the development and utilization of renewable energy
is imperative. In 2002, CERTS (Consortium for Electric Reliability Technology Solutions) proposed the
microgrid (MG) concept, which has been closely examined by governments and laboratories because
of its flexible control and high power supply reliability [1–3]. MGs cover a variety of Distributed
Generation (DG) systems, both uncontrollable power sources (such as wind turbines (WT) and
photovoltaics (PVs)) and controllable power supply sources such as diesel generators. MGs are
regarded as platforms for clean energy to access the power grid and can also lead to the flexible and
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economically improved operation of a power system. MGs can make a large power grid become more
economical and stable [4,5]. Therefore, it is of great significance to optimize the capacity of DG for the
sake of safe and stable MG operation [6]. The common methods to optimize the capacity of MG systems
are as follows: using HOMER software Pro Version 3.9.1 (HOMER Energy, Boulder, CO, USA) [7],
using a mixed integer linear programming (MILP) model [8], or using optimization algorithms, such as
particle swarm optimization (PSO), a genetic algorithm (GA), a differential evolution (DE) algorithm,
etc. Using HOMER software to solve the problem is simple and convenient but the regional adaptive
ability is poor, so it cannot be widely promoted. As a classical programming model, the MILP model
is theoretically suitable for solving arbitrary integer programming problems, however, its design is
cumbersome and computationally expensive, and it will consume too many computing resources.
The various optimization algorithms proposed in recent years have shown good performance in solving
complex problems but the defects of the algorithms are inevitable. So it is necessary to improve the
algorithms according to different application scenarios. For the operation scenarios of an MG system
in different seasons, an improved DE algorithm is proposed in this paper and analyzed according to
how different scheduling strategies use it, in order to grasp the internal rules of each device running
state in various scenarios.

The optimization of microgrid DG capacity allocation is a typical optimization problem [9–11].
According to the parameters and structure of the model, most of the investigations in the literature have
used optimization algorithms, which can be roughly divided into genetic algorithms (GA) and particle
swarm optimization (PSO) algorithms. The authors in [12] proposed an improved PSO algorithm:
weights and learning factors change with respect to iteration numbers in order to solve the capacity
distribution problem of an MG containing wind turbines, PV, diesel generators, diesel generators,
and electric vehicles (EV). The EV in the MG of [12] was used as a portable energy storage device.
However, the EV, as an uncontrollable energy storage device, is greatly affected by user behavior
and cannot stably supply power like batteries. Reference [13] established a dynamic multi-objective
optimization model to reduce MG costs and pollution emissions and used the PSO algorithm combined
with quorum sensing (QS). The influence of climatic conditions on the optimization results was not
considered and the calculation of real-time dynamic scheduling was too large. Reference [3] discussed
a real-time energy management system, optimizing MG real-time performance and applied the binary
PSO algorithm for optimization. The authors in [14] used the PSO algorithm to solve the optimal power
dispatch problem considering load uncertainties and the probabilistic modeling of generated power.
However, the objective function does not take into account environmental costs. Reference [15] raised
a dynamic economy and control method for an islanded microgrid in which a diesel generator and
energy storage battery acted as the main power source with respect to the system power fluctuation
and a GA was used to solve the problem. The original GA encoding and decoding process takes
a lot of time and is not suitable for solving dynamic economic dispatch problems. Reference [16]
combined the GA and bacterial foraging algorithm (BFA) to solve the problem of dynamic economic
allocation. The GA was applied in the behavioral tendency stage of the BFA to modify the parameters.
The objective was to minimize the overall production cost and verify the effectiveness of the algorithm
in different test systems. But this literature does not consider renewable sources and does not
fit the current development of energy. However, these methods are not limited to only the PSO
algorithm and GA. For example, in order to address the uncertainty of renewable energy and MG
demand, a model predictive control (MPC) strategy was proposed in [17]. However, the existing
algorithms are mainly applicable to slow dynamic process and environments, which limits their
promotion in a wider range of applications and applications. Hourly planning ahead was formulated
according to not only weather forecasting information but also to grid network topology and power
flow constraints. As an evolutionary algorithm, the DE algorithm has advantages of less adaptive
parameters, easier programming, and a faster convergence rate [18]. The variation and cross-operation
of the standard DE algorithm are all stochastic and easily fall to the local optimal point when the
dimension of variable decisions is high. Here, there still exists the potential to improve the DE algorithm
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in aspects of convergence speed and local optimum avoidance. To overcome these shortcomings,
some researchers carried out improvement strategies for the DE algorithm. For example, the authors
in [19] proposed a new crossover strategy based on eigenvector decomposition. They decomposed
the correlation coefficient matrix of individuals to obtain the eigenvectors and eigenvalue matrix.
The individuals who go through the crossover operation are multiplied by eigenvectors according to the
method of probability selection. In [20], the efficiency of the DE algorithm was improved by monitoring
the midpoint of population. In this paper, the improvement of the DE algorithm proceeds mainly from
the following aspects: parameter control strategy, new crossover strategy, elite retention strategy [21],
and multi-population strategy. Simulation results showed that the improved DE algorithm not only
improved the convergence speed but also greatly improved the precision, minimizing the impact of
stochastic factors.

In most of the existing literature, despite so much research having dealt with solutions, there is
little research on scheduling strategies, so this paper studies the impact of different scheduling
strategies on the capacity optimal allocation of grid-connected MG. There are both energy storage
and grid in an existing grid-connected MG. So when the energy generation sources are not enough
to meet the demand of power load, giving priority to the grid or energy storage is a problem
to be studied. In this paper, the scheduling strategies of wind-PV-energy storage-grid-diesel and
wind-PV-grid-energy storage-diesel are proposed in view of the priority of the grid and energy storage
and the optimization results of the two strategies under four typical days in four seasons are analyzed.
At the same time, a SMG model which considers the total investment cost and environment protective
cost as the objective function is established and the constraints of each DG operation in SMG are fully
considered to guarantee the proper, safe, and economical operation of SMG. The MPDE with dominant
population (DP) was adopted to improve the convergence speed of the algorithm.

The main objectives of the work can be outlined as follows:

1. Optimal design and planning of a renewable energy based MG considering various
renewable energy technology options and with realistic inputs on their physical, operational,
and economic characteristics.

2. An MPDE algorithm based on multi-species and multi-optimization strategies is proposed and
applied to the SMG model.

3. Two MG scheduling strategies are proposed and the capacity optimization results of the four
typical days in four seasons under two strategies are analyzed.

The rest of the article is arranged as follows: Section 2 models and analyzes DG in the SMG and
Section 3 analyzes the economics of the SMG operation. Section 4 introduces the proposed algorithm
and compares it with some other algorithms. Section 5 presents an example verification to solve the
DG capacity allocation and Section 6 offers a conclusions.

2. Distributed Power Output Model

The SMG model established in this study was a grid-connected SMG made of wind turbines, PV,
diesel generators, storage batteries, and loads.

2.1. Wind Turbine Model

The wind turbine output power is affected by the wind speed, its own power rating and other
factors. The specific relationship is shown as follows [22]:

Pw =


0, 0 ≤ v(t) ≤ vin

PN
W

v(t)−vin
vN−vin

, vin ≤ v(t) ≤ vN

PN
W , vN ≤ v(t) ≤ vout

0, vout ≤ v(t)

(1)
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where t represents the time and vin, vN, and vout represent cut-in wind speed, rated wind speed,
and cut-out speed, respectiely. PN

W indicates the rated power of the wind turbine.

2.2. PV Model

The output power of the PV is affected by factors such as temperature and light radiation
degree [23–25], and its equation can be briefly written as [22]:

Ppv = PN
pv

G(t)
GSTC

[1 + k(T(t)− TSTC)] (2)

where PN
pv is the rated output power at standard test conditions (STC) (GSTC = 1000 W/m2,

TSTC = 25 ◦C), G(t) is the actual degree of optical radiation, T(t) is the ambient temperature, and k is
the temperature coefficient of the power, taken as −0.0047.

2.3. Diesel Generation Model

Diesel generator consumption is a function of output power and the specific relationship can be
written as follows [22]:

Ff uel = a · PN
die + b · Pdie (3)

where Ffule is the diesel consumption when the diesel generator output power is Pdie. a is taken as
0.0815 and b is taken as 0.2461.

2.4. Energy Storage Battery

The battery used in this paper was a lead-acid battery; the relation between the capacity and
temperature is as follows:

Ec(t) = ESTC[1 + δB(Tbat(t)− TSTC)] (4)

where Ec(t) represents the actual capacity at moment t, ESTC is the capacity under standard capacity,
δB is the temperature coefficient and Tbat(t) is the surface temperature at moment t, which is
approximately equal to the abovementioned ambient temperature T(t).

The battery capacity under the charge and discharge statuses is as follows:

(1) State of charge
Ebat(t) = (1− ε)Ebat(t− 1) + Pc(t)∆tηc (5)

(2) Discharge status

Ebat(t) = (1− ε)Ebat(t− 1)− Pd(t)∆t
ηd

(6)

where Ebat(t) is the remaining capacity at moment t, Ebat(t − 1) is the remaining capacity at
moment t − 1, ε is the self-discharge rate, and Pc and Pd are the charge and discharge power.

3. Economic Model

The objective function of this study is about the overall investment cost, including not only the
value of investment but also environmental punishment costs.

3.1. Equivalent Annual Equipment Investment Costs

The objective function considering the cost of equipment investment, operation and maintenance
costs, replacement costs and operating costs can be expressed as follows:

f1 = CDG + COM + CR + CF (7)
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where CDG is the investment cost, COM is the operation and maintenance costs, CR is the replacement
cost, and CF is the fuel costs. 

CDG =

c(r,l) ∑
i∈NDG

(cixi Pi)

365l

COM =

c(r,l) ∑
i∈NDG

(cOM
i xi Pi)

365l

CR =

c(r,l) ∑
i∈NDG

(cR
i xi Pi)

365l

CF =
T
∑
t

U f Ff uel(t)

(8)

where c(r, l) is the MG depreciation coefficient, r is the power discount rate, l is the equipment lifetime,
NDG is the DG type, ci is the ith DG investment costs, cOM

i is the operation and maintenance costs of
the ith DG, cR

i is the replacement costs of the ith DG, decision variable xi is the number of ith DG, Pi is
the rated power of ith DG, Uf is the diesel price, and Ffuel(t) is the fuel consumption of diesel generator
at the moment t.

3.2. Environmental Penalties

Wind generators and PV are clean energies and have neither pollution emissions nor gas wastage.
Diesel generators will produce CO2, SO2, and NO during operation and these environmental costs
will be included [22].

f2 = ∑
i∈NDG

∑
j∈K

(ujvj)xiPi (9)

where K is the set of exhaust gas species, K = {CO2, NO, SO2}, uj is the fines of the jth exhaust gas and
vj is the emissions of the jth exhaust gas.

3.3. Restrictions



Pw(t) + Ppv(t) + Pd(t) + Pdie(t) + Pbuy(t) = Pload(t) + Psell(t) + Pc(t)
Emin ≤ Ebat(t) ≤ Emax

Pdie(t) ≤ NdiePN
die

Pc(t) ≤ Pc,max

Pd(t) ≤ Pd,max
Pbuy(t) ≤ Pbuy,max
Psell(t) ≤ Psell,max

(10)

where Pload(t) is the load demand for moment t, Psell(t) is the sale of electricity to the grid, Pw(t),
Ppv(t), Pdie(t), Pc(t) and Pd(t) represent the actual output of different DG, and Pbuy(t) is the purchase of
electricity [12,26]. The objective function of this study is about the overall investment cost, including
not only the value of investment but also environmental punishment costs.

4. Solution Method

4.1. Scheduling Strategy

The output power of WT and PV is random and non-dispatchable. The storage battery has two
statuses and plays the role of an energy buffer in the whole system. At the same time, diesel generators
act as an energy supplement in the MG when the batteries cannot satisfy the power shortage.

∆P(t) = Pw(t) + Ppv(t)− Pload(t) (11)

where ∆P(t) is the system power imbalance when the energy storage battery and diesel generator are
not put into operation.
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(1) Strategy I (Wind-PV-Energy Storage-Grid-Diesel)

Under this scheduling strategy, the MG gives priority to the power generated by renewable energy.
If the energy generation sources fail to meet the power load demand i.e., ∆P(t) < 0, the power can be
reasonably allocated according to the state of the energy storage system. If the output of renewable
energy and the energy storage cannot meet the load demand, the MG interacts with the grid, and the
diesel engines acts as the last guarantee to ensure the reliability of the power supply. On the other
hand, if renewable energy output is greater than the power load demand i.e., ∆P(t) > 0, part of the
power will be consumed according the state of the energy storage systems, while the surplus will be
sold to the grid.

(2) Strategy II (Wind-PV-Grid-Energy Storage-Diesel)

Under this scheduling strategy, the MG takes priority over the power generated by renewable
energy. If the output of renewable energy cannot meet the demand of power load i.e., ∆P(t) < 0,
then purchasing electricity from the grid is under the power limit. If renewable energy output and
the grid cannot meet the load demand, the energy storage supplies part of the power according to its
own operating state and the diesel generators serves as a backup to ensure the reliability of the power
supply. On the other hand, if renewable energy output is greater than the load demand i.e., ∆P(t) > 0,
it is preferential to interact with the grid and then consume the residual energy according to the state
of the energy storage system.

4.2. Proposed Algorithm

(1) Initialization

Same as population-based intelligent optimization algorithms, the proposed algorithm also needs
to initialize the population:{

Xi(0)
∣∣∣xL

i,j ≤ xi,j(0) ≤ xU
i,j; i = 1, 2, . . . NP; j = 1, 2, . . . D

}
(12)

where Xi(0) denotes the ith body of the initial population, and j indicates the dimension.

xi,j(0) = xL
i,j + lhsdesign(NP, D)i,j(xU

i,j − xL
i,j) (13)

xL
i,j and xU

i,j are the lower and upper bounds of the jth dimension, respectively, NP is the population
size, and lhsdesign (NP, D)i,j represents the jth element of the ith individual in the matrix of Latin
hypercube sampling (LHS) [27]. As shown in Figure 1, it can be seen that the random numbers
generated by the Rand method (Matlab codes) may not fit in a small interval, which may result in
the inability to include optimal individuals in the initial population, leading to difficulty in searching
for the subsequent crossover operation. However, each individual of the operator (OP) generated by
LHS can be in a uniformly distributed interval to ensure that the OP contains an optimal point and
enhances the algorithm convergence.
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(2) Selection of dominant species

Because the traditional DE method is a single population algorithm, excellent individuals in each
generation may mutate after experiencing mutation and crossover operation and this can make the
algorithm fall into search stagnation, greatly reducing the convergence speed of the DE algorithm.
In this paper, a multi-population strategy was applied to save these excellent individuals in each
generation as a DP. Both DP and OP undergo mutation and crossover operations. The OP through
mutation can increase the diversity of the population, while DP can improve the convergence rate
and prevent the proposed algorithm from falling into search stagnation. The implementation of the
strategy is as follows:

(1) After completion of the population initialization process, the fitness value of each individual is
calculated and sorted in ascending order;

(2) Mitotic size CS individuals are selected to constitute the parent DP, dominant parent population
Af, and the best individuals Gbest of the current iteration time are obtained;

(3) From the concept of cell mitosis, each individual in Af executes the mitosis behavior in order to
assemble DP; the number of mitotic division is CS.

(3) Mutation

The traditional DE algorithm achieves individual variation through differential strategies [26,27],
and the common mutation methods are as follows:

Vi(g) = Xr1(g) + F× (Xr2(g)− Xr3(g)) (14)

Vi(g) = Xr1 + F× (Xr2 − Xr3) + F× (Xr4 − Xr5) (15)

Vi(g) = Gbest(g) + F× (Xr1 − Xr2) (16)

Vi(g) = Gbest(g) + F× (Xr1 − Xr2) + F× (Xr3 − Xr4) (17)

Vi(g) = Xi(g) + F× (Gbest(g)− Xi(g)) + F× (Xr1 − Xr2) (18)

where r1, r2, r3, r4, and r5 are random numbers in the interval [1,NP] and are not equal to each other,
F represents the mutation operators (varies with the number of iterations), Gbest(g) is the optimal
individual of the current iteration number, and g indicates the current iteration number.

λ = e1− Gmax
Gmax+1−g (19)
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F = F0 × 2λ (20)

where F0 is a constant factor, and Gm is the maximum evolution number.
As shown in Formulas (19) and (20), the adaptive mutation operator F has a larger value at the

beginning of the algorithm and keeps the individual diversity. With the progress of the algorithm,
F gradually decreases and the mutation rate is close to F0 at a later period. The mutation operator does
not only preserve good information but also avoids destruction of the optimal individual.

The OP can increase population diversity. The DP can speed up the convergence rate. To maximize
the advantages of OP and DP, the two populations adopt different mutation strategies.

To maximize the advantages of the OP and DP, their mutation strategies are given by Formulas
(21) and (22).

Vi(g) = Xi(g) + F× (Gbest(g)− Xi(g)) + F× (Xr1(g)− Xr2(g)) (21)

Vi(g) = Gbest + F× (At,r1(g)− At,r2(g)) (22)

(4) Crossover

The purpose of the crossover operation is to select individuals at random. Formula (23) is the
mutation modus of the DE algorithm [18].

Ui,j(g) =

{
Vi,j(g)
xi,j(g)

rand ≤ CR
otherwise

(23)

where CR stands for crossover probability. The crossover probability of the DE algorithm is a constant,
usually set to 0.9. In the initial stage of DE, a larger probability can increase the population diversity
but in the later stage, there are many dominant individuals in the population. If the crossover operation
has a constant probability, the dominant individuals may be destroyed and the convergence speed
will be slowed down. A greedy strategy for each individual is adopted in this paper because it can
keep the individuals close to the optimal value and replace the individual far away from the optimal
individual. Formula (24) is the expression.

Ui,j(g) =

{
xi,j(g)
Vi,j(g)

i f
∣∣xi,j(g)

∣∣ < ∣∣Vi,j(g)
∣∣

otherwise
(24)

(5) Elite retention Strategy

Elite retention strategies [21] were used in this paper in order to save the best individuals in each
generation. Its strategy is as follows.

(1) Pick the worst individuals Xbad1 and Xbad2 in OP and DP after the mutation and crossover process;
(2) Use the best individuals Gbest for the current iteration to replace Xbad1 and Xbad2.

(6) Picking

Greedy selection strategy is often used in a DE algorithm.

Xi(g + 1) =

{
Ui(g + 1)
Xi(g)

f (Ui(g)) ≤ f (Xi(g))
otherwise

(25)

In this paper, both OP and DP were selected by the greedy algorithm during the selection process.

(7) Generation of new populations

The fitness of OP and DP are calculated separately and arranged in ascending order. Then, the first
2 CS individuals of each population are selected to form the next population. Mixing to create a new
population does not only preserve the diversity of population but also speeds up convergence.
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The procedures of proposed algorithm can be shown as follows:

Step 1 Initialization parameters: population size NP, mitotic size CS, maximum number of iterations
Gmax, variation constant factor F0;

Step 2 Initialize OP with LHS, calculate the fitness values of each individual and arrange them in
ascending order;

Step 3 Select the best individual Gbest in OP of current iteration times;
Step 4 Select the first CS individuals in ascending order of OP to create dominant parent population

Af ;
Step 5 Af carries out mitosis to make up DP At;
Step 6 The OP and DP execute mutation and crossover steps respectively to obtain the populations

U1 and U2;
Step 7 Replace the worst individuals of the two populations with elite retention strategy;
Step 8 Implement the picking operation to obtain populations Xnext1 and Xnext2 for U1 and U2;
Step 9 Make sure that fitness function values are sorted in ascending order and choose the previous 2

CS individuals to form the next generation of individuals Xnext.

5. Case Study Analysis

Data from National Centers for Environmental Information database (2010) (both the weather
and electric power load) were used for the Alabaster city, USA case study [28]. The relevant data of
distributed generation are shown in Table 1, and the diesel generator emission coefficient and pollution
control costs are shown in Table 2.

Table 1. Distributed generation (DG) costs and related cost factors.

DG Wind PV Diesel Generation Battery

Cost of investment (RMB/kW) 4535 5000 1283 567
Replace cost (RMB/kW) 0 0 1000 453
OM cost (RMB/kW) 35.4 88.7 25.7 5.7
Capacity (kW) 25 15 25 5
Life (year) 20 25 9 2.5

Table 2. Diesel generator emission factor and pollution control costs.

Emission Gases Pollution Coefficient (g/kW) Pollution Control Costs (RMB/kg)

CO2 649 0.210
SO2 0.206 14.842
NO 9.890 62.964

In this study, the maximum annual power failure probability of the system was set to 0.01%.
The initial population size NP of the proposed algorithm was set as 32. The termination condition of
the algorithm is that the total number of iterations reaches 300. The size of parent DP CS equals NP/4.
The penalty function was used to change the multi-objective function to a single objective function i.e.,
f = f 1 + f 2. Tables 3 and 4 show the configuration results of the MG system under the two strategies.
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Table 3. Microgrid (MG) system configuration results under strategy I.

Seasons Spring Summer Autumn Winter

Nwind 300 212 160 272
Npv 90 245 300 300

Ndiesel 10 21 80 97
Nbattery 200 144 60 194
Pwind

N 6 15 12 15
Ppv

N 20 12 10 14
Pdiesel

N 5 11 20 1

Ebattery
N

10 2.5 10 10
Pwaste 0 0 0 0

Pvacancy 0 0 0 0
Costs (RMB) 1517.1 2139.5 8132.1 5804.8

Table 4. MG system configuration results under strategy II.

Seasons Spring Summer Autumn Winter

Nwind 255 120 131 200
Npv 127 160 300 300

Ndiesel 18 14 100 12
Nbattery 168 198 160 200
Pwind

N 10 30 22 20
Ppv

N 7 20 9 13
Pdiesel

N 22 30 2 25

Ebattery
N

9 10 10 6
Pwaste 0 0 0 0

Pvacancy 0 0 0 0
Costs (RMB) 7199.5 4301.2 7284.5 10,830.9

As can be seen from Tables 3 and 4, the average installed capacity of the wind power system,
PV system, diesel generators, and energy storage system under strategy I is 2745 kW, 2985 kW, 494.5 kW,
and 1225 kW·h; Similarly, the average installed capacity of the wind power system, PV system,
diesel generators, and energy storage system under strategy II is 3258 kW, 1775.5 kW, 329 kW,
and 1573 kW·h. Under the two strategies, the loss of power supply probability (LPSP) in the four
typical days is 0, which indicates that the proposed strategy can satisfy the power supply reliability
requirement of the MG.

(1) Selection power limit of the grid

It can be seen from Figure 2 that changing the upper and lower limits of the power of the MG
interacting with the grid will change the cost and the interaction power in one day. If the limit power
is too low, the interaction power in one day may be too low, but the cost is too high. Conversely, if the
limit power is too high, the interaction power is too high in one day, increasing the line loss. As can be
seen from the diagram, when the limiting power is 1000 kW, the cost and the interactive power are at a
better level, so the limiting power is determined to be 1000 kW.
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Figure 2. Comparison result diagram of different power limit of the grid.

(2) Spring results analysis

From Figures 3 and 4, it can be seen that the power sales of strategy I and strategy II are basically
the same in the spring, however, in the case of the power shortage, the energy storage system can fill
in some blanks. Compared with the power purchase of strategy II, the cost of strategy I is slightly
less than that of strategy II. During the period from 1:00–6:00, the output power of the wind power
system cannot meet the load demand at some moments. At this time, the energy storage system under
the operating condition of strategy I discharges, which reduces the power purchasing to the grid.
Under the conditions of strategy II, the capacity of the wind power system is large, and part of the
power can be sold to the grid. But the energy generated from the energy storage system is very small,
so it cannot reduce the power purchasing to the grid.
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(3) Summer results analysis

As can be seen from Figures 5 and 6, in the period 1:00–6:00, the output power of the PV system is
0. The wind power generation system takes the main generation task. Under the conditions of strategy
I, the residual power is given priority to the energy storage system, the other excess energy is sold to
the grid, while the other excess energy in strategy II is sold first to the grid for profit, and the power
that exceeds the grid limit is charged to the energy storage system. During the 7:00–18:00 period,
the surplus energy of strategy I is supplied to the energy storage system within the acceptable range of
the energy storage system, the rest is sold to the grid, while strategy II is almost all sold to the power
grid to obtain benefit. Within the 19:00–24:00 period, the wind power system can basically meet the
demand, the power stored in strategy I cannot produce benefits, while strategy II can sell to the power
grid to generate economic benefits, which is why strategy II is cheaper than the strategy I in summer.
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(4) Autumn results analysis

From Figures 7 and 8, the performance of each device under the two strategies is similar during
the period from 1:00–8:00. During 9:00–16:00, strategy I, while selling more electricity to the grid, has a
smaller capacity due to the small size of the wind power system. At 18:00–24:00, large amounts
of electricity are purchased from the grid, which is slightly higher than the price of electricity
sold, which resulted in the revenue generated during the day being used to compensate for night
consumption. Strategy II sells part of the surplus electricity to the grid at 10:00–17:00. During the
period from 18:00–24:00, the economic burden is reduced by the lower purchase of electricity, as the
wind power system is able to meet the demand on the whole. The economic costs of the two strategies
are similar.
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(5) Winter results analysis

The output of each device in winter under the two strategies is shown in Figures 9 and 10.
During the period from 1:00–7:00, the output power of equipment under the two strategies is essentially
the same, with little output from the wind and PV systems, mostly based on electricity tariffs charged
to the grid. During the 8:00–16:00 period, there is a part of the power allocated to the energy storage
system under strategy I. Under strategy II, only a few electricity energies are allocated to the energy
storage system. From 17:00–24:00, the power purchase of strategy I to the grid is less than of the
strategy II. In strategy I, the energy storage system also undertakes part of the supply task. Compared
to the strategy I, the cost of strategy II will be much lower.
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(6) Comparison analysis

In order to prove the efficiency of the proposed method, MPDE, DE, grey wolf optimizer
(GWO) [29] and cuckoo search (CS) [30] algorithms were applied to solve the same model in the
four seasons, and the results are show in Tables 5 and 6.

Table 5. Comparison results of different algorithms under strategy I.

Seasons Spring Summer Autumn Winter

MPDE 1517.1 2139.5 8132.1 5804.8
DE 3758.1 3302.6 8517.6 6411.7

GWO 1883.2 2377.1 8395.9 6268.3
CS 1599.3 2477.8 8355.9 6207.4

Table 6. Comparison results of different algorithms under strategy II.

Seasons Spring Summer Autumn Winter

MPDE 7199.5 4301.2 7284.5 10,830.9
DE 8010.7 5062.3 7933.3 11,178.3

GWO 8540.5 5568.6 7417.9 10,372.5
CS 7563.3 3779.3 7439.6 10,420.1

From Tables 5 and 6, it can be seen that the MPDE obtained the lowest fitness function value
in the four seasons under strategy I; MPDE obtained the lowest fitness function value in spring and
autumn under strategy II, CS got the lowest fitness value in summer and winter.

The convergence curves of different algorithms are shown in Figures 11 and 12.
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Figure 11. Convergence curves under strategy I.

Figure 12. Convergence curves under strategy II.

As Figures 11 and 12 show, MPDE performs well in terms of convergence speed. This is because
dominant population and elite retention guide the population to approach the optimal value as quickly
as possible.

6. Conclusions and Future Research

Optimizing the capacity of MG is necessary to reduce energy waste, environmental pollution,
and investment costs. By considering meteorological data and load data of the whole year, an SMG
model that considered the total investment cost and environment protective cost as the objective
function was established and the constraints of each DG operation in an SMG were fully considered to
guarantee proper, safe, and economical operation of an SMG. Based on the traditional DE algorithm,
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a multi-population evolution strategy was adopted to protect the population diversity and improve
the convergence speed of the algorithm. Although only one area was analyzed for weather conditions,
the four typical days basically covered all the weather conditions that might be encountered. It is
suitable for the allocation of MG capacity under various weather conditions and can be used with
different scheduling strategies according to the local climate. Under the two scheduling strategies,
the operation status of each device in an MG is different. On the same typical day, when the output
power of the wind power system is not satisfied by the requirements at night and needs to purchase
from grid, the energy storage system in strategy I can fill part of the load vacancy, so the cost of strategy
I will be lower than strategy II. Conversely, when the output power of the wind power system can meet
the demand of the load at night or most of the time it can satisfy the load demand, strategy II will have
to sell excess electricity to the grid for economic gain. In contrast, strategy II will cost slightly less than
strategy I. In different seasons, the equipment capacity allocation will take on certain characteristics
due to the weather. If the radiance resources are abundant, the capacity of the PV system will be more
than that of wind power system in the same region. Similarly, in areas with abundant wind resources,
a wind power system will have more capacity than a PV system. The final simulation results showed
that the proposed algorithm can minimize the investment of economic costs and can be friendlier to
the environment.
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