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Abstract: This study deals with the peristaltic transport of non-Newtonian Jeffrey fluid with uniformly
distributed identical rigid particles in a rectangular duct. The effects of a magnetohydrodynamics
bio-bi-phase flow are taken into account. The governing equations for mass and momentum are
simplified using the fact that wavelength is much greater than the amplitude and small Reynolds
number. A closed-form solution for velocity is obtained by means of the eigenfunction expansion
method whereby pressure rise is numerically calculated. The results are graphically presented to
observe the effects of different physical parameters and the suitability of the method. The results for
hydrodynamic, Newtonian fluid, and single-phase problems can be respectively obtained by taking
the Hartmann number (M = 0), relaxation time (λ1 = 0), and volume fraction (C = 0) as special cases
of this problem.

Keywords: bi-phase flow; peristaltic transport; non-Newtonian Jeffrey fluid; magnetohydrodynamics;
rectangular duct; eigenfunction expansion method

1. Introduction

The transport of fluid due to wave propagation along the flexible wall of a channel, duct, or
pipe is called peristalsis. Peristalsis is naturally found in the food or blood transport in living bodies.
Inspired by this phenomenon, many engineering appliances in medical and other fields use peristalsis.
Most of the fluid flowing has solid, liquid, or gaseous impurities that hinder the accurate calculation
of results. The theory of particulate suspension has adequately described biological flows, like blood
and food through the oesophagus. Moreover, in biological systems such as blood, particles in the
respiratory tract, and transport of proteins and microorganisms in liquids are some cases where
the assumption of multiphase liquids is effectively described. Other areas in which such flows are
similarly helpful and have significant importance are lunar ash flows, powder innovation, burning,
fluidization, filtration with aerosol, and rock sedimentation. If liquids have addons or impurities,
traditional modelling may also not result in accurate or close-to-accurate outcomes. Hence, considering
its applications and significance, the field is actively pursued by scientists and engineers. Ishii and
Mishima [1] presented a two-fluid model for biphase fluids. They described the model time and
area average and introduced an interfacial term to develop the link. Dukowicz [2] developed a new
numerical model for particle fluids in liquid sprays. The model is also useful for general incompressible
flows containing particles or droplets. The numerical scheme used a fully interacting combination of
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Eulerian fluid and Lagrangian particles. Tsuji et al. [3] compared the discrete particle model versus the
two-fluid model. They also simulated the discrete model using Monte Carlo Simulations. Results show
that the cluster population was much larger in the discrete particle model than in the two-fluid
model. While discussing the peristaltic transport, Srivastava and Srivastava [4] devoted their efforts on
identical rigid spherical particles suspended uniformly in a viscous fluid. They found the perturbation
solution of the problem. Further, Misra and Pandey [5] reported a study on two-phase solid–liquid
fluid flowing through a barrel-shaped cylinder. Bhatti et al. [6] discussed heat transfer in two-phase
liquids with nonconducting solid spherical particles. They concluded that heat transfer would reduce
with the inclusion of particles. Mekheimer et al. [7] worked with solid particles through a uniform
channel. They found an analytic solution using the perturbation method. Many more significant
studies on particle–fluid and peristaltic flows can be seen in References [8–12].

Utilization of non-Newtonian liquid in industry and engineering appliances spurred researchers
around the globe to find new properties and the rheology of such fluids. A living body is made of
different organic liquids that proliferate through its entirety. The transport of such fluids is usually
performed by the process of peristalsis. Peristalsis is the automatic contraction and unwinding of
smooth muscles. In the mechanical industry, the systems that develop the inspiration from such
biological propulsion models are at present attracting a lot of interest, resulting in the development of
machines like the heart–lung machine, roller pumps, and finger pumps [13]. Likewise, in different
commercial ventures, pumping liquids is roused by this procedure. More importantly, human
operating systems, like the digestive, circulatory, excretory, and even the reproductive system of both
men and women, employ the concept of peristalsis at different stages of transport [14]. The importance
of peristalsis in humans can be observed by the fact that one of the factors for infertility in human is a
nonuniform peristaltic wave [15]. Peristalsis is also seen in the locomotion of earthworm, spermatozoa,
snakes, and microorganisms [16]. An excellent summary of the mechanism of the peristaltic wave in
fluid mechanics was reviewed by Fung [17]. Magnetohydrodynamics (MHD) is the flow of conducting
liquid through an applied external magnetic field. The idea of MHD is very important in biomedical
engineering. These days, an important development in drugging is the concept of targeted drugging;
such drugs are controlled using a magnetic field that is helpful in cancer treatment. MRI is another
application of MHD in biomedical engineering. Scientists effectively combined MHD and peristalsis to
reap the advantages of their combined effects. For example, Kothandapani and Srinivas [18] probed the
influence of MHD on the peristaltic transportation of viscous fluid through a porous channel. They also
discussed heat transfer and the effects of elastic walls. Tripathi and Bég [19] studied the peristaltic
transport of nanofluid through uniform transverse magnetic field. The Buongiorno formulation was
assumed and results showed good agreement with Shapiro et al. [20]. A few other studies on the said
area in the existing literature can be found in References [21–32].

Keeping in mind the applied nature of the study, MHD peristalsis flow of Jeffrey fluid with
suspended particles in a rectangular duct is discussed.

Motivated by the developments in the present article, the influence of a magnetic field has been
studied on the laminar, incompressible peristaltic driven flow of a non-Newtonian Jeffrey fluid with
solid particles through a rectangular duct. The fluid is electrically conducting, and a constant static
magnetic field is applied transverse to the flow direction. The governing flow problem was described
using continuity and momentum equations with appropriate boundary conditions which are simplified
with the assistance of long wavelength and low Reynolds number approximations. The boundary
value problem was then reduced using nondimensional variables and the resulting system of reduced
ordinary differential equations is solved analytically. The subsequent mathematical statements for the
fluid and particulate phases were diagnostically analysed. A closed-form solution was obtained while
the graphical results were displayed and examined in detail.
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2. Modelling

Consider a rectangular duct, saturated by particle-laden Jeffrey fluid. The flow was induced
due to a symmetric peristaltic wave transmitted in a positive x-axis, while walls in the xz-plane were
stationary, as shown in Figure 1. The speed of the wave is “c”, wave length “Λ” with an amplitude of
“b” units.
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Figure 1. Schematic diagram for peristaltic flow in rectangular duct.

The wave propagation in the wall as displaced in Figure 1 can be mathematically expressed
as [33]:

Z = H(X, t) = ±a± b cos
[

2π

Λ
(X− ct)

]
(1)

The flow is governed by the law of conservation of mass and momentum, along with the Lorentz
force as a constant, and a transverse magnetic field is applied on the perpendicular to the flow direction.
The flow velocities of fluid and particle phase are (Uf(X,Y,Z,t),0, Wf(X,Y,Z,t)) and (Up(X,Y,Z,t),0,
Wp(X,Y,Z,t)). Consequently, the governing equations take the following form:

∂U f

∂X
+

∂W f

∂Z
= 0 (2)

(1− C)ρ f

(
∂U f
∂t + U f

∂U f
∂X + W f

∂U f
∂Z

)
=

−(1− C) ∂P
∂X + (1− C)µs

(
∂

∂X TXX + ∂
∂Y TXY + ∂

∂Z TXZ

)
+ CS′

(
Up −U f

)
− σB2

0U
(3)

(1− C)ρ f

(
∂W f

∂t + U f
∂W f
∂X + W f

∂W f
∂Z

)
=

−(1− C) ∂P
∂Z + (1− C)µs

(
∂

∂X TZX + ∂
∂Y TZY + ∂

∂Z TZZ

)
+ CS′

(
Wp −W f

) (4)

∂Up

∂X
+

∂Wp

∂Z
= 0, (5)

Cρp

(
∂Up

∂t
+ Up

∂Up

∂X
+ Wp

∂Up

∂Z

)
= C

∂P
∂X

+ CS′
(

U f −Up

)
(6)

Cρp

(
∂Wp

∂t
+ Up

∂Wp

∂X
+ Wp

∂Wp

∂Z

)
= C

∂P
∂Z

+ CS′
(

W f −Wp

)
(7)



Sustainability 2018, 10, 2671 4 of 17

Equations (2)–(4) are describing continuity and momentum equations for the fluid phase, whereas
Equations (5)–(7) are for the solid phase. It was assumed that all the particles had the same average
size and shape. The distribution of the particles was also uniform. The drag coefficient S′ can be
described as

S′ =
9µ0

2ǎ2 D̃(C) (8)

D̃(C) =
C + 1.33 +

√
C(8− 3C)

3(0.67− C)2 (9)

The viscosity of the suspension µs expressed by the relation

µs = −
µ f

∆C− 1
(10)

∆ =
7

1000
exp(

249
100

C +
1107

T
exp(−169

100
C)) (11)

For Jeffrey base fluid tensor T in Equations (2) and (3) is [34]

T =
µ f

1 + λ1

( .
γ + λ2

..
γ
)

(12)

Using Galilean principal variables in fixed frame are transformed to wave frame by taking velocity
of wave frame equals to “c” moving horizontally in x-axis direction. The involved velocities and
pressure become

u = U − c, w = W, p(x, z) = P(X, Z, t). (13)

Introducing

x = x
λ , y = y

d , z = z
a u = u

c , w = w
cδ , t = ct

λ , h = H
a , ϕ = b

a , p = a2 p
µcλ , δ = a

λ , β = a
d , Re = ρacδ

µ , M1 = S′a2

(1−C)µs
,

M =
√

σ
µ aB0, Txx = a

µc Txx , Txz =
a

µc Txz, Txy = d
µc Txy, Tyz =

d
µc Tyz, Tzz =

λ
µc Tzz, Tyy = λ

µc Tyy.

 (14)

Equations (2)–(7) reduce to the following two nondimensional equations after employing
Equations (13) and (14).

dp
dx

=
β2

1 + λ1

∂2u f

∂y2 +
1

1 + λ1

∂2u f

∂z2 −M2
(

u f + 1
)
+ CM1

(
up − u f

)
(15)

dp
dx

= (1− C)M1(u f − up) (16)

The velocity at all four walls is

u(x, y, z) = −1, at y = ±1,
u(x, y, z) = −1, at z = ±h(x) = ±(1 + ϕ cos 2πx),

(17)

3. Exact Solutions

Eigenfunction expansion method is used to find the solution as defined in [34] to solve the coupled
PDEs in (15) and (16) by taking dp

dx constant.

u f =
A1
M2 −

4Cos(θ2z)Cosh
(

θ1
β y
)(

1+ A1
M2

)
Sech

(
θ1
β

)
Sin(θ2)

(π−2nπ)

(
h+

Sin(2hθ2)
π−2nπ

)
A1 = −M2 −

dp
dx (1−λ1)

1−C +
dp
dx (1−λ1)

1−C Cos(Mz)Sec(hM)

θ1 =
√

M2 + θ22, θ2 = 1
2 (1− 2n)π

(18)
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up =
1

M1(1− C)
dp
dx
− (1− C)M1u f . (19)

The flow rate of fluid and particle are given by

Q f = (1− C)
∫ h

0
u f dy (20)

Qp = C
∫ h

0
updy (21)

and
Q = Q f + Qp (22)

dp/dx is calculated in terms of Q using Equation (22).

dp
dx = A2

M3 (hM− tan(hM)) +
32A2β(2M sin(hθ2)−θ2cos(θ2) tan(hM))
−8Mθ2(M2−θ2

2)
√

θ1(2hθ2+sin(2hθ2))
sech

(
θ1
β

)
A2 = −Q (−1+λ1)

(−1+C)

(23)

The change in pressure ∆P along x-axis can be evaluated numerically using

∆p =

1∫
0

dp
dx

dx. (24)

4. Validation of Results

The obtained results are compared with the existing literature (Ijaz et al [35] and Ellahi and
Farooq [36]) as a limiting case of the reported problem and are found in good agreement as indicated
in Table 1, i.e.,

• the problem under consideration reduces to a hydrodynamic case, if Hartmann number M = 0.
• The results for Newtonian fluid can be recovered if relaxation time λ1 = 0.

This study leads to a single-phase problem if volume fraction C = 0.

Table 1. The comparison between the obtained results with the existing literature [35,36] as a limiting
case of problem under consideration.

z C M β λ1 Ijaz et al. [35] Ellahi and Farooq [36] Present solution

0 0 0 0.2 0 0.4934 0.4788 0.478898
0.5 0.3824 0.3638 0.363826
0 0 0 0.2 5 - 0.3145 0.31468

0.5 - 0.2727 0.272837
0 0 0 0.4 5 - 0.2598 0.259948

0.5 - 0.2476 0.247785
0 0 1 0.4 5 - 0.2293 0.229664

0.5 - 0.2164 0.216551

5. Results and Discussion

The equations describing the particle-laden flow in a rectangular duct are modeled and solved
analytically. The effects of involving parameters, such as aspect ratio of duct β, Jeffrey fluid parameter
λ1, Hartmann number M, concentration of solid particles in fluid C, and drag coefficient M1 are shown
using 2D and 3D plots for velocities of fluid and particles. Some important features of peristaltic
transport were also observed using graphical results of pressure gradient and pressure rise.
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5.1. Velocity Profile

Figures 2–5 are drawn to show variation in the velocity profile for various values of emerging
parameters. The two- and three-dimensional analysis is submitted in these figures for all the observing
parameters β, λ1, M, M1, and C. Each figure contains four subfigures: (a) 3D plot for velocity profiles
in uyz-axis; (b) 2D analysis of velocity profiles vs. z-axis; (c) 2D analysis of velocity profiles vs. y-axis;
and (d) 2D analysis of velocity profiles vs. x-axis. Due to the symmetry of the geometry and flow, we
assume only half channels to show the graphs, and the range for all independent parameters is taken
as x ∈ [0, 2], y ∈ [0, 1], z ∈ [0, h].
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The variation in fluid velocity with respect to different values of aspect ratio of duct β for
Newtonian and non-Newtonian cases is displayed in Figure 2. It is noticed that velocity shows
reductions in the central region of fluid as β tends to 1, i.e., square duct but velocity increases close
to walls for larger values of β. As β displays, the ratio of length to width of the rectangular duct
flow tends to slow down through the centre as duct width is increased. As relaxation time λ1 = 0,
the results reduce to Newtonian fluid case. It is shown that the flow of Newtonian fluid is faster as
compared to non-Newtonian fluid, irrespective of aspect ratio of the duct, because of an increase in
resistance by the non-Newtonian fluid. Figure 3 shows fluid velocity decreases with an increase in
the values of Hartmann number M for both the single- and two-phase model. The flow supresses
as Lorentz force resists the motion of the fluid. Variation in fluid velocity was also observed as the
concentration of particle C changes. If C = 0, then the resulting equations are reduced to a single-phase
model. It is observed that the velocity single-phase fluid is greater than the particle-laden fluid that
has approximately 20% particles. This is due to the fact that particles are heavier and have a tendency
to resist the flow and hence decrease the momentum of the fluid.

The particles are carried to the base fluid; hence, in most cases, particle velocity is proportional to
fluid velocity. Particle velocity inside Newtonian and non-Newtonian base fluid is shown in Figure 4.
Same graphs show the effects of variation of aspect ratio of duct β. Considerably lower velocity of
particles is noticed in non-Newtonian fluids when compared to Newtonian cases, which is evident of
the fact that non-Newtonian fluid offers greater resistance to particle flow. Velocity shows reductions
in the central region of duct for values of β closer to 1. Figure 5 shows that particle velocity displays
minor reduction in MHD vs. hydrodynamic cases. As particles are nonconducting, the reduction
observed here is due to fact that fluid velocity decreases. Again, velocity decreases with the increase of
drag force.

5.2. Pressure Gradient and Pressure Rise

Figures 6 and 7 are drawn to demonstrate the influence of evolving parameters on pressure
gradient along x-axis. It is perceived that the pressure gradient slightly decreases at the endpoint and
achieves maximum value in the middle of the duct. Figure 6 is drawn to identify the variation in
pressure gradient for different values of duct aspect ratio β, for both Newtonian and non-Newtonian
cases. When the value of β increases the pressure, it also rapidly increases along the duct length x.
The pressure gradient attains even higher values for non-Newtonian fluid cases, whereas the behaviour
of pressure gradient reverses as the concentration of particles in fluid C increases (Figure 7). It is due to
that decrease in velocity that pressure is increased. In Figure 7, pressure gradient was also decreasing
for various values of Hartman number M.
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Figures 8 and 9 are drawn to show variation in pressure rise per unit wavelength ∆p against the
mean flux Q. Graphical results are plotted for ∆p against Q. Here, the flow can be classified into three
parts depending on position of graphical results. If the graph is in Quadrant (I), i.e., flow rate Q > 0
and pressure change ∆p > 0, the region is called a peristaltic pumping region; for Quadrant (II), the
flow rate is positive, but pressure rise/loss is negative, and the region is known as an augmented
flow region; and, finally, Quadrant (IV), in which Q < 0 and ∆p > 0, is known as backward pumping.
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If ∆p = 0, it is called free pumping. It is clear that with the increase of flow rate, ∆p decreases as flow
rate is directly related to velocity and an increase in velocity decreases pressure. Figure 8 indicates that
pressure falls as M increases for single- and multiphase fluids. Free pumping is obtained at Q > 0.5.
Same results are obtained for two values of C. It is also seen from Figure 9 that pressure rises for
an increase in various values of λ1 and β. Free pumping in these figures is observed in the varsity
of Q = 0.5.
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6. Conclusions

The magnetodynamics of peristaltic flow of particle–fluid suspension in a rectangular duct is
inspected. The flow problem of particle-laden Jeffrey fluid is solved analytically using eigenfunction
expansion methods. It is assumed that the fluid moves slowly due to the wave on the wall having
a large wavelength as compared to its amplitude. The resulting differential equations are solved
analytically for velocity.

• It is found that velocity of the fluid decreases when the Hartmann number, Jeffreys’ parameter,
and aspect ratio increased.

• Velocity decreases by increasing the value of volume fraction.
• Negative effects are observed on a pressure gradient due to Jeffrey fluid parameter λ1, Hartmann

number M, and concentration fraction C.
• The rise in pressure is observed due to augmentation in aspect ratio.
• A pressure drop is observed for the increasing values of a magnetic field parameter, Jeffrey fluid

parameter, and volume fraction.
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