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Abstract: Solid oxide fuel cells (SOFCs) are promising electrochemical devices which translate chemical
energy directly into electric energy with high efficiency and low pollution. However, the control
of the output voltage of SOFCs is quite challenging because of the strong nonlinearity, limited fuel
flow, and rapid variation of the load disturbance. Nowadays, proportional-integral-derivative (PID)
controllers are commonly utilized in industrial control systems for their high reliability and simplicity.
However, it will lead to overshoot and windup issues when used in the wide-range operation of SOFCs.
This paper aims to improve the PID controller performance based on fuzzy logic by (1) identifying
a linear model based on the least squares method; (2) optimizing the PID parameters based on the
generated linear model; and (3) designing a fuzzy adaptive PID controller based on the optimized
parameters. The simulation results of the conventional PID controller and the fuzzy adaptive PID
controller are compared, demonstrating that the proposed controller can achieve satisfactory control
performance for SOFCs in terms of anti-windup, overshoot reduction, and tracking acceleration.
The main contribution of this paper can be summarized as: (1) this paper identifies the SOFC model
and uses the identified model as a control object to optimize conventional PID controllers; (2) this paper
combines a fuzzy logic control scheme and PID control scheme to design our proposed fuzzy adaptive
PID controller; and (3) this paper develops an anti-windup structure based on a back-calculation
method to reduce saturation time and overshoot.

Keywords: solid oxide fuel cell (SOFC); PID control; fuzzy control; anti-windup

1. Introduction

A fuel cell is an efficient electrochemical device which translates chemical energy into electrical
energy [1]. It is widely used as a power supply for vehicles and large power plants [2,3]. Because of
its high efficiency and low emission, it is likely to replace conventional fossil energy [4]. Solid oxide
fuel cells (SOFCs) are the most popular type of fuel cells because they have high energy efficiency and
long-term stability [5,6]. Additionally, SOFCs are cost efficient because they do not require precious
metals [6].

Although SOFCs have many notable advantages, many challenges still exist. To get a high-quality
power supply from SOFCs, the output voltage must be accurately controlled. However, due to the
nonlinearity, slow dynamics, and limited constraint of SOFCs [7], controlling the output voltage can be
extremely hard. Furthermore, actuator saturation may occur due to limited fuel flow, and improper
control may cause the fuel utilization to fall out of the operating threshold [8]. As a result, an efficient
control scheme for the output voltage of SOFCs has become a primary focus for fuel cell research.
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Conventional proportional-integral-derivative (PID) controllers dominate in power plant control
systems because of their reliability and simplicity [9,10]. A new survey of over 100 boiler-turbine
units in Guangdong Province, China shows that over 90% use PID controllers [10]. However, studies
have shown that conventional PID controllers are not suitable for the control of SOFCs [11], and a
comparable H∞ control strategy [12] has also shown to be unsatisfying. To deal with the control
difficulties of SOFCs, more advanced control strategies should be applied. With the characteristics of
high robustness and satisfying control performance in nonlinear systems, model predictive control
(MPC) strategies are drawing more and more attention from researchers. Various MPC strategies
based on different models [13–15] have been developed for the control of SOFCs, and they all have
satisfactory simulation results. However, to apply MPC methods, a huge amount of calculation is
required, which will lead to the demand of high-performance computers. This adds to the difficulty of
realizing this type of control scheme.

Considering the drawbacks of the MPC strategy, we choose to focus on fuzzy logic control.
Fuzzy logic control (FLC) is a kind of control scheme based on the fuzzy logic rules created by experts
in the field. Fuzzy logic control is robust, easy to tune, and can control multiple input and output
sources [16]. In addition, with a series of well-designed fuzzy logic rules, FLC can reach a good
control performance with a small amount of calculation. For these reasons, fuzzy logic control schemes
are commonly used for nonlinear systems such as fuel cells [16,17] and wind turbine systems [18].
The proposed controller combines the FLC and PID controls, and the role of the fuzzy controller is
to modify the proportion gain Kp and the integral gain Ki, at the same time. Due to the constraint
of the fuel flow rate, an anti-windup structure based on the back-calculation method [19] is applied
to attenuate the phenomenon of actuator saturation. In addition, the proposed controller applies a
differential forward algorithm to reduce the “snap back” phenomenon of the derivative action and to
improve the robustness of the controller at the same time [20].

To summarize, this paper (1) identifies the SOFC model and uses the identified model as a control
object to optimize conventional PID controllers; (2) combines a fuzzy logic control scheme and a PID
control scheme to design our proposed fuzzy adaptive PID controller; and (3) develops an anti-windup
structure based on a back-calculation method to reduce saturation time and overshoot. This paper is
organized as follows: In Section 2, the model of the SOFC system is demonstrated. Section 3 identifies
the original model, and tunes the parameter of the PID controller. The designing of the fuzzy controller
is described in Section 4. Section 5 compares the results of the dynamic response of normal PID
controller and the proposed controller, and conclusions are drawn in Section 6.

2. SOFC Model Description

2.1. Operation Principle of SOFC

Like other fuel cells, SOFCs convert chemical energy into electric energy. On the anode, there is a
continuous fuel flow such as H2, CH4, and as for the cathode, there is a continuous flow of O2 or air.
The O2 gets the electron and becomes O2, and creates a concentration gradient. The O2− is delivered
from the cathode to the anode, and then reacts with the fuel to transport the electron [21]. In this way,
a circuit loop is formed. The formulas of the electrochemical reactions are given as follows:

Reaction on the anode: 2H2 + 2O2− → 2H2O + 4e−

Reaction on the cathode: O2 + 4e− → 2O2−

Overall reaction: 2H2 + O2 → 2H2O

2.2. Model Description

The dynamic model of SOFC we explored in this paper is derived from Reference [22], which is
also applied by other scientists in the study of SOFCs [23,24]. This model takes both the electrochemical
and the thermal aspects into account. Its structure is shown in Figure 1. Figure 2 shows the detailed
structure of the thermal block.
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Figure 2. The block diagram of the thermal block of the SOFC.

The controlled variable of the system is the output voltage of the SOFC Vfc (V), the manipulate
variable of the system is the fuel flow rate qf (mol/s), while the disturbance variable is the current
of the external load Ifc (A). Tout is the output temperature, qin

O2
(mol/s) is the flow rate of the oxygen,

qH2 (mol/s) is the flow rate of the hydrogen, and pH2 (Pa), pH2O (Pa), pO2 (Pa) represent for the partial
pressure of the hydrogen, steam, and oxygen, respectively. The other parameters of the model are
listed in Table 1.
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Table 1. Nominal parameters of the SOFC system.

Parameter Representation Value Parameter Representation Value

Kr Reaction constant 0.993 × 10−3 mol/(s A) Eact Activation energy 120 kJ/mol

KH2 Valve molar constant for hydrogen 0.843 mol/(s atm) A Pre exponential factor 101.2 kA/cm2

KH2O Valve molar constant for steam 0.281 mol/(s atm) α Ohmic resistance constant 0.2 Ω

KO2 Valve molar constant for oxygen 2.52 mol/(s atm) β Ohmic resistance constant −2870 K

τH2 Response time for hydrogen flow 26.1 s T0 Constant temperature 973 K

τH2O Response time for steam flow 78.3 s η Efficiency 0.8

τO2 Response time for oxygen flow 2.91 s he f f Thickness 10−3 m

τf Fuel processor response time 5 s λs Thermal conductivity 2 W/(m K)

F Faraday’s constant 96,486 C/mol t Relaxation time 200 s

R Gas constant 8.31 J/(mol K) ρ Density 6600 kg/m3

E0 Ideal standard potential 1.1 V cp Heat capacity 400 J/(kg K)

N Number of cells in stack 384 Tint Initial temperature 1273 K

The partial pressures can be estimated by the electrochemical relationships as follows [25]:

pH2 =
1/KH2

1 + τH2 s

(
1

1 + τf s
q f − 2Kr I f c

)
(1)

pO2 =
1/KO2

1 + τO2 s

(
1/rH_O
1 + τf s

q f − Kr I f c

)
(2)

pH2O =
1/KH2O

1 + τH2Os
2Kr I f c (3)

V0 (V) is the voltage of the electricity generated by the transport of the electron in the cell, it is
calculated with the Nerst’s equation:

V0 = N0

(
E0 +

RT
2F

ln
pH2 p0.5

O2

pH2O

)
(4)

Using the activation loss, concentration loss, and the ohmic loss, the output voltage can be
calculated as:

Vf c = Vo −Vact −Vohm −Vconc (5)

where Vfc (V) stands for the output voltage of SOFC, Vact (V), Vohm (V), Vconc (V) is the activation
voltage loss, the ohmic voltage loss and the concentration voltage loss, respectively. They can be
represented as a function of temperature by the following equations:

Vact =
RT
F

(
z +
√

1 + z2
)

z = I f c/2I0

I0 = A · exp(−Eact/RT)

(6)

Vohm = α · exp
[

β

(
1
T0
− 1

T

)]
I f c (7)

Vconc =
RT
2F

ln
(

1−
I f c

iL

)
(8)

where T (◦C) denotes the temperature of the fuel cell.
The Fourier number Fo and the source term number S0 are the two major parameters to

demonstrate the thermal equations in a dimensionless form [23]. They are expressed as:
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Fo =
λst(

ρcp
)
h2

e f f
(9)

S0 =
1− η

η
·

Vf c I f c

λs∆T/he f f
(10)

where t (s) denotes the relaxation time which represents the time for the system to attain 90% of the
new steady-state value. ∆T(◦C) denotes the temperature change during the period of relaxation time.
The relationship between Fo and S0 can be defined as [23]:

Fo = 0.72S0
−1.1 (11)

Based on Equations (9)–(11), the expression of Tout can be modified as follow:

Tout = T +

(
Tint + ∆T − T

t

)
dt (12)

where T (◦C) is the current temperature of the fuel cell, Tint (◦C) is the initial temperature of the fuel
cell at the time when no load is added, and dt is the step time of Simulink.

Fuel utilization factor uf is also one of the important indicators of SOFC. It reveals the proportion
of the acted fuel flow to the input fuel flow:

u f =
qin

H2
− qout

H2

qin
H2

=
2Kr I f c

qin
H2

(13)

qin
H2

in the input of the fuel flow, and qout
H2

is the output of the fuel flow. Usually, uf is constrained to the
range of 0.7–0.9 for high efficiency and safety.

2.3. Problem Description

The aim of the control design is to maintain the output voltage to keep up with the rated voltage
as accurately as possible, and decrease the voltage variation when the current loads change. The top
three problems in control design are listed below:

• Nonlinearity of the System: owning to Nerst’s equation in (4), the SOFC system is characterized
as nonlinearity [26], and this deteriorates the control performance of the controller when the
working conditions drift off from the ideal working conditions.

• Fuel Flow is Restricted: fuel flow must be restricted between 0 and 2 mol/s, which may cause
actuator saturation and the dynamic property may be deteriorated.

• Hysteresis of the System: the rated voltage and the current load change rapidly, while the effect
of the fuel flow on the output voltage is comparatively slow.

3. System Identification and Controller Tuning

Nowadays, conventional PID controllers are still wildly utilized in the control of industrial process
for their high reliability and simplicity [10]. The block diagram of a conventional PID controller is
shown in Figure 3. The control equation is given as follows:

u(t) = Kpe(t) + Ki

∫
e(t) + Kd

de(t)
dt

(14)

where u(t) stands for the control action, Kp, Ki, and Kd are the proportional integral and derivative
gains. e(t) is the tracking error signal.
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Figure 3. Block diagram of the conventional proportional-integral-derivative (PID) controller.

In this section, we aim to linearize the SOFC model and use the identified model for the purpose
of controller tuning. We will use a conventional PID controller to control the SOFC system, and find
the parameter of the PID controller with the best step response curve.

3.1. System Identification

Given that the SOFC model is a nonlinear system, it’s hard to tune the controller with the original
model. To get the proper parameter of the PID controller, the first step is to linearize the model. We use
the System Identification Toolbox of Matlab to identify the system, and we get the identified model
as follows:

G(s) =
2.417s + 0.8276

s3 + 0.716s2 + 0.1808s + 0.006914
(15)

Figure 4 shows the step response of the original model and the identified model. From the
response curve, we can tell that the identified model behaves remarkably similar to the original model.
Thus, the identification is successful, and we can use the identified model as the linearized model for
the controller tuning.
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Figure 4. Comparison of the step response of the original model and the identified model.

3.2. Controller Tuning

We use the pidTuner Toolbox of Matlab to tune the PID controller and get several groups of
proportional, integral, and derivative gains. Then we apply these parameters to the PID controller and
record the results of the step response of each group of parameters. The simulation results are shown
in Figure 5. It is easy to tell that the overshoot of the output is hard to eliminate with the control of
only a conventional PID controller. If the overshoot is slashed excessively, the settling time will be
improperly long.
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The detailed data of the overshoot and settling time of the step responses are shown in Table 2.
After synthesizing all of the results, we finally set the parameter of the conventional PID controller as
follows to reduce both the overshoot and the settling time:

Kp = 0.3314
Ki = 0.0201
Kp = 0.4632

Table 2. Result of the parameter tuning simulation.

Group Kp Ki Kd Overshoot (%) Settling Time (s)

1 0.0722 0.0072 0.1358 6.63 26.5
2 0.1152 0.0145 0.2182 7.62 19.51
3 0.2354 0.0339 0.3628 9.55 13.64
4 0.3022 0.0459 0.4434 9.85 8.81
5 0.5259 0.0824 0.6488 10.72 5.54
6 0.6666 0.1152 0.7475 11.71 4.82

4. Fuzzy Control Design

The conventional PID controller is ideal for the control of the linear system. However, due to the
nonlinearity of the SOFC system, the control performance will deteriorate with the variation of the
working conditions [18]. To this end, we can use PID controllers with variable parameters to overcome
the change of the operating point. Based on the variable parameters, the proposed fuzzy adaptive PID
controller was designed. The basic block diagram of the system is shown in Figure 6, and the detailed
structure of the controller is shown in Figure 7.

The equation of the fuzzy adaptive PID is designed as follows:

u(t) = Kpe(t) + Ki

∫
[e(t) + Ku2(t)] + Kd

dy(t)
t

(16)

u2(t) = u1(t)− u0(t) (17)

where u(t) stands for the control action, Kp, Ki, and Kd are the proportional integral and derivative
gains. e(t) is the tracking error signal.
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4.1. Fuzzy PI Controller

The input of the controller are error e and the change of error, they are given as follows:

e(k) = r(k)− y(k) (18)

ec(k) = e(k)− e(k− 1) (19)

where r(k) denotes the rated voltage, and y(k) denotes the output voltage.
The outputs are the modifying value of the proportion gain Kp1 and the modifying value of the

integral gain Ki1. The fuzzy controller includes three stages: fuzzification, fuzzy logic judgement,
and defuzzification.

4.1.1. Fuzzification

Fuzzification is the process of transforming crisp sets into linguistic fuzzy sets by using fuzzy
membership functions. To design the fuzzy logic rule, seven fuzzy items are defined: NB, NM, NS,
ZO, PS, PM, and PB, which stands for negative big, negative medium, negative small, zero, positive
small, positive medium, and positive big, respectively. The fuzzy membership function of NB and PB
are Pi type, while the fuzzy membership function for the rest of the fuzzy items are triangular type.
The universe of discourse of e, ec, Kp1 and Ki1 are all [–3, 3], and the gain for e, ec, Kp1 and Ki1 are 0.5,
0.5, 0.1 and 0.04, respectively. The curves are displayed in Figures 8 and 9.
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4.1.2. Fuzzy Logic Judgment

The fuzzy logic judgment is the core of fuzzy control which is based on fuzzy logic rules. To design
the controller, Mamdani Inference Method [27] was applied for the fuzzy judgment. The output
membership value is calculated below:

µKp1

(
cp
)
= µe(e) ∧ µec(ec) (20)

µKi1(ci) = µe(e) ∧ µec(ec) (21)

where cp, ci are the elements in the fuzzy set of Kp1 and Ki1, respectively, and µKp1
(
cp
)
, µKi1(ci) are the

membership degrees of cp and ci , respectively.
The fuzzy rules are established with 49 items, which are listed in Table 3. The rules can be

expressed as “ If e is Ai and ec is Bi, then Kp1 is Ci and Ki1 is Di”, where Ai, Bi, Ci and Di are the fuzzy
items of the universe of discourse of e, ec, Kp1 and Ki1, respectively.

Table 3. The fuzzy logic rules of the controller.

Kp1/Ki1 ec NB NM NS ZO PS PM PBe

NB PB/NB PB/NB PM/NM PM/NM PS/NS ZO/ZO ZO/ZO
NM PB/NB PB/NB PM/NM PS/NS PS/NS ZO/ZO NS/ZO
NS PM/NB PM/NM PM/NS PS/NS ZO/ZO NS/PS NS/PS
ZO PM/NM PM/NM PS/NS ZO/ZO NS/PS NM/PM NM/PM
PS PS/NM PS/NS ZO/ZO NS/PS NS/PS NM/PM NM/PB
PM PS/ZO ZO/ZO NS/PS NM/PS NM/PM NM/PB NB/PB
PB ZO/ZO ZO/ZO NM/PS NM/PM NM/PM NB/PB NB/PB
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4.1.3. Defuzzification

In the process of defuzzification, the weighted mean was utilized to convert the vector into a
single value [28], and then the output of the fuzzy controller was determined.

The calculation of Kp1 and Ki1 are below:

Kp1 =
∑m

i=1 µKp1i

(
cp
)
· cpi

∑m
i=1 µKp1i

(
cp
) (22)

Ki1 =
∑n

j=1 µKi1j(ci) · cij

∑n
j=1 µKi1j(ci)

(23)

With the output of the Fuzzy controller, the proportion gain Kp and the integral gain Ki can be
calculated as follows:

Kp = Kp0 + K1 · Kp1 (24)

Ki = Ki0 + K2 · Ki1 (25)

where Kp0 is the initial value of the proportion gain, Ki0 is the initial value of the integral gain, K1 and
K2 are both constant which denotes the gain of Kp1 and Ki1, respectively.

4.2. The Realization of Anti-Windup

In this paper, the fuel flow rate is limited to between 0 and 2 mol/s. Due to this limitation,
there might be the problem of actuator saturation. To this end, a method based on back-calculation
is applied [19]. As shown in Figure 7, a feedback for the integrator is designed. The input of the
integrator can be calculated as:

e1(t) = e0(t) + K · u2(t) (26)

where e1(t) denotes the input of the integrator, e0(t) denotes the tracking error signal, u0(t), and u1(t)
denotes the controlled signal before and after the saturation block, respectively. u2(t) is the difference
between u1(t) and u0(t) as (17) shows.

From Equations (17) and (26), we can tell that when the controlled signal is above the upper limit,
u1(t) will remain the upper limit, and u1(t) will be smaller than u0(t). This will set u2(t) as a negative
signal to reduce the integral action. On the contrary, when the controlled signal is under the lower
limit, u1(t) will remain the lower limit, and u1(t) will be bigger than u0(t). This will set u2(t) as a
positive signal to increase the integral action. In this way, the controller is able to get rid of the situation
of actuator saturation much faster and reduce the overshoot at the same time.

4.3. Differential Forward Algorithm

Owning to the fact that the differentiator is very sensitive to the variation of the input [20],
the proposed controller applies a differential forward algorithm to overcome the sensibility of the
differentiator. In the conventional PID, the controller differentiates to the tracking error signal e(t),
which is defined in (14). As we can see, when the rated voltage r(t) changes, the output voltage y(t)
still remains the same, which causes a sudden variation of e(t). This will lead to a “snap back” of the
differential action.

On the contrary, the differential forward algorithm differentiates to the output voltage y(t)
directly. Meanwhile, the differentiator applies the first order actual differential algorithm, which can
be expressed as:

GD(s) =
s

0.1s + 1
(27)

In this way, the variation of the rated voltage is not able to affect the differentiator, and because the
output voltage has a relatively slow rate of change, it will not produce a large control value. With this
method, the problem of the “snap back” of the differential action is fixed.
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5. Simulation

In this section, to show the comparison of the robustness of the proposed controller and the
conventional PID controller, simulation of step response and disturbance response based on the tuned
PID controller in Section 3.2 and the proposed controller in Section 4 is implemented, and the results
of the simulation are displayed.

5.1. Simulation of Step Response

During the process of step response, the current is kept at 300 A, the rated voltage begins with 305 V,
and then it is set to increase by 15 V at 50 s, 150 s, 250 s, and 350 s. Then the rated voltage decreases by
30 V at 450 s and 550 s to return to 305 V. The results of the simulation are shown in Figure 10.
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The detailed data of the simulation result are displayed in Table 4.

Table 4. Detailed data of the simulation result of step response.

Conventional PID Fuzzy PID

Number Overshoot (%) Settling
Time (s)

Saturation
Time (s) Number Overshoot (%) Settling

Time (s)
Saturation

Time (s)

1 0.56 30.85 1.58 1 0 9.28 0.53
2 0.66 34.72 3.10 2 0 10.41 2.29
3 0.83 42.91 7.62 3 0 12.23 6.71
4 1.68 78.53 38.55 4 0 22.21 20.04
5 −2.09 62.78 9.63 5 0 18.52 8.62
6 −2.26 57.91 6.72 6 0 20.56 4.68

As we can tell from the results, the control performance of the PID controller deteriorates with
the variation of the working conditions, which is illustrated by the increase of the overshoot and the
settling time. As for the proposed controller, the overshoot keeps at 0 for all the working conditions,
and the settling time is also much shorter than the conventional PID controller. Meanwhile, with the
design of anti-windup structure, there is also a reduction in the saturation time. Especially in working
condition 4, the saturation time of the conventional PID controller is two times bigger than the
proposed controller.

5.2. Simulation of Disturbance Response

During the process of disturbance response, the rated voltage is kept at 305 V, and the current
starts with 300 A, then the current is set to increase by 75 A at 50 s, 100 s, 150 s, and 200 s and then
decreases by 150 A at 250 s and 300 s to return to 300 A. The results of the simulation are shown in
Figure 11.

The detailed data of the simulation result are displayed in Table 5.
Similar to the result of step response, the proposed controller shows a better control performance

in the control of disturbance response. To illustrate, with the variation of the working condition,
the absolute value of the overshoot of the conventional PID controller varies from 0.33 to 1.11, and the
overshoot is kept at 0 for the proposed controller. The settling time of the proposed controller is
much shorter than the conventional PID controller. In addition, the average of the saturation time of
the proposed controller is also shorter than the conventional PID controller. In working condition 4,
especially, the saturation time of the proposed controller is three quarters of the saturation time of
conventional PID controller.

Table 5. Detailed data of the simulation result of disturbance response.

Conventional PID Fuzzy PID

Number Overshoot (%) Settling
Time (s)

Saturation
Time (s) Number Overshoot (%) Settling

Time (s)
Saturation

Time (s)

1 0.33 23.28 1.51 1 0 12.14 1.13
2 0.43 26.02 2.61 2 0 12.71 2.98
3 0.59 30.29 5.23 3 0 13.07 5.09
4 0.82 34.31 12.94 4 0 15.13 9.87
5 −0.79 37.63 5.03 5 0 13.67 5.47
6 −1.11 39.42 5.65 6 0 14.45 5.32
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5.3. Discussion

From the simulation results, we can tell that the proposed controller has the advantage of
no overshoot, less settling time, and less saturation time. Under the shifting working conditions,
the working performance of the PID controller deteriorates significantly, while the proposed controller
is less affected and performs much better than the conventional PID controller.

In conclusion, the proposed controller is able to handle the nonlinearity of SOFC, and it is expected
to be an efficient solution for the problem of controlling the output voltage of SOFCs.
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6. Conclusions

The nonlinearity, slow dynamics, and limited constraint make the voltage regulation of SOFCs
challenging and adds to the difficulty of the utilization of SOFCs. Inspired by the application of
fuzzy control on nonlinearity systems and the advantages of PID controller, this paper designed
a fuzzy adaptive PID controller for voltage regulation of SOFCs. With the effect of the fuzzy
controller, the parameters of the PID controller coordinate with the change in the working conditions,
which overcomes the nonlinearity of SOFCs and brings a better control performance. At the same
time, the back-calculating method based on an anti-windup structure enables the controller to shorten
the saturation time of the actuators and reduce the overshoot. In addition, the differential forward
algorithm was applied to help the controller reduce the “snap back” phenomenon of the derivative
action and improve the robustness of the controller at the same time. The simulation results in
Section 5 illustrate that a fuzzy adaptive PID control has the advantages of (1) no overshoot; (2) less
settling time; (3) no oscillation, and (4) less saturation time. Compared to the conventional PID
controller, the proposed controller has a more robust control property for the change of the rated
voltage and current disturbance, and possesses a better control performance. With these characteristics,
the proposed controller can be an ideal alternative for the control of SOFCs.

Supplementary Materials: The MATALB/SIMULINK files are available online at http://www.mdpi.com/2071-
1050/10/7/2438/s1.
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