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Abstract: For sustainable management of water resources, adaptive decisions should be determined
considering future climate change. Since decision makers have difficulty in formulating a decision
when they should consider a large number of climate change scenarios, selecting a subset of Global
Circulation Models (GCM) outputs for climate change impact studies is required. In this study,
the Katsavounidis-Kuo-Zhang (KKZ) algorithm was used for representative climate change scenarios
selection and a comprehensive analysis has been done through a national-level case study of South
Korea. The KKZ algorithm was applied to select a subset of GCMs for each subbasin in South
Korea. To evaluate impacts of spatial aggregation level of climate data sets on preserving inter-model
variability of hydrologic variables, three different scales (national level, river region level, subbasin
level) were tested. It was found that only five GCMs selected by KKZ algorithm can explain almost
of whole inter-model variability driven by all the 27 GCMs under Representative Concentration
Pathways (RCP) 4.5 and 8.5. Furthermore, a single set of representative GCMs selected for national
level was able to explain inter-model variability on almost the whole subbasins. In case of low flow
variable, however, use of finer scale of climate data sets was recommended.

Keywords: climate change; scenario selection; global circulation model; Katsavounidis-Kuo-Zhang
algorithm; uncertainty; water resources

1. Introduction

For sustainable management of water resources, future climate change impacts should be assessed
for adaptive decision making. For climate change impact studies, projections driven by a group of
Global Circulation Models (GCMs) are generally used to capture a plausible range of changes in
future climate conditions. Although it is considered desirable to employ as many GCMs as possible
to quantify the inter-model variability (i.e., the variability across all the GCMs outputs), this task
can be complicated due to large computational costs [1]. Further, decision-makers have difficulty in
formulating a decision when they should consider a large number of climate change scenarios [1].
In this regard, a variety of researchers have developed optimum techniques to select a subset of GCMs
for climate change impact studies [2–8]. In this paper, the term “GCMs” is used to synonymous with
“climate change scenarios”.

According to the agreement of many experts, a subset of GCMs should achieve the following:
(1) favor models that accurately reproduce patterns of historical climate (e.g., mean monthly values
and annual cycles) [9,10], thus enhancing the plausibility of results for future projections in the
target regions, and (2) incorporate a potential range of future climate conditions in terms of the key
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variables related to the climate change impact under investigation [3,4,6–8,11,12]. However, it does not
necessarily imply that the GCMs with the optimum performance will provide the most reliable climate
projection [1]. Many researchers have therefore focused on selecting techniques that can capture as an
extensive range of inter-model variability in the future as possible while maintaining the number of
GCMs at a minimum [3,4,6–8,12]. Further, several studies proposed selecting method that considers
both the GCMs performance and the ability to capture inter-model variability [1,2,5]. Nonetheless,
since the worst-performing GCMs might underestimate inter-model variability, it still remains a matter
of debate whether subsets from all available GCMs outputs should be selected [1].

Majority of the previous studies have used clustering-based approaches such as k-mean
clustering [3,13] and hierarchical clustering [6–8] for capturing inter-model variability. However,
Cannon [12] addressed the limitation of the clustering-based approaches and proposed the
Katsavounidis–Kuo–Zhang (KKZ) algorithm [14] for selecting a subset of GCMs that capture a range
of variability in the 27 climate extremes indices. The KKZ algorithm selects members in a recursive
manner that cover a spread of multivariate space comprehensively [1,12]. Cannon [12] and Chen et
al. [15] demonstrated the superiority of the KKZ algorithm over the clustering-based approaches in
terms of preserving the entire inter-model variability by a case study.

Nonetheless, there are a limited number of studies that evaluate the transferability of selected
GCMs to uncertainty in hydrologic impacts studies such as streamflow. Chen et al. [15] analyzed the
capability of selected GCMs to preserve the uncertainty in regional hydrological projections using
the KKZ algorithm. However, they did not consider climate extreme indices for selecting GCMs and
address the dependency between optimal climate indices and the hydrologic variables. Seo et al. [1]
employed the KKZ algorithm to select a subset of GCMs based on climate extreme indices. Further,
they discussed that key climate indices, which are dependent on the hydrologic extremes to be
projected, must be determined prior to the selection of a subset of GCMs. Nonetheless, they have
tested only a few target basins and not addressed potential impacts of different spatial scales of climate
variables on the hydrologic variables.

Though it has been proved that the KKZ algorithm is a strong technique to select a subset of
GCMs for handy climate change impact studies, there has been little efforts on selecting representative
climate scenarios for national-level application. Since decision makers (e.g., government employees)
and stakeholders have difficulties in making decisions pertaining to an ensemble of climate change
scenarios, providing a subset of an ensemble (i.e., representative climate change scenarios) is practically
beneficial for national-wide water resources planning. In this regard, this study aims at selecting
national-level representative climate scenarios. On the other hand, since climate patterns can vary
across all the regions, in-depth analysis on appropriate spatial aggregation level of climate variables
for representative scenarios would be necessary. If a single set of spatially aggregated climate data is
considered for selecting the climate scenarios for the entire country as like United States (US), spatial
heterogeneity of climate pattern would be overlooked. For instance, in the US, it is common practice to
have different models for different regions. On the other hand, if different sets of climate scenarios are
required for each sub-region, it might lead huge confusion to decision makers especially in a small
country, such as South Korea [1,3]. Many decision makers who are not specialized in climate or water
resources field can be frustrated if they are advised to use different sets of climate scenarios for each
region of interest. Hence, appropriate spatial aggregation level for representative scenarios also need
to be analyzed in terms of various climate indicators.

Therefore, the objective of this study is to introduce a selection method for representative climate
scenarios for national-level application. Furthermore, this study also evaluates appropriate spatial
aggregation level for the representative climate scenarios for each group of climate indicators from a
national-level case study.

The rest of this paper is organized as follows. Section 2 describes theoretical background of key
methods. In Section 3, background for a national-level case study is provided along with the details of
the proposed evaluation framework. In Section 4, results of a case study are demonstrated as a form of
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selected climate scenarios and explained uncertainties in hydrologic variables. Finally, discussions and
conclusions are presented in Section 5, respectively.

2. Methods

2.1. Scenario Selection: KKZ Algorithm

The KKZ algorithm is adopted to select the representative climate change scenarios in this study.
Unlike k-mean clustering, the KKZ algorithm recursively selects models that best span the spread of
an ensemble that best characterize high-density regions of multivariate space [1,12]. Given the number
of GCMs, N, and the number of climate variables, P, the KKZ algorithm is applied as follows:

(1) For the first GCM selection, the model that lies closest to the ensemble centroid, i.e., the GCM
with the lowest sum of squared errors (SSE) to the centroid across all the climate variables is
selected, as illustrated in Equation (1).

SSE =
P

∑
p=1

N

∑
i=1

(
yip − y.p

)2 (1)

where yip represents the value of the pth climate variable for the ith GCM, and yp forms the
centroid value of the pth climate variable across all GCMs.

(2) For the second GCM selection, the GCM that lies farthest from the first GCM is selected.
The Euclidean (P-space) distance is applied to calculate the distance, d(i,j), between two GCMs
(the ith and jth GCMs).

d(i, j) =

√√√√ P

∑
p=1

(
yip − yjp

)2 (2)

(3) For the selection of the following GCMs (from the 3rd till the last selection),

(i) the distances from each remaining GCM to the previously selected GCMs are calculated
(“each remaining GCM” becomes from the 3rd till the last selection sequentially);

(ii) only the lowest distance among those calculated in step 3(i) for each remaining GCM
is retained;

(iii) the GCM with the maximum distance among those determined in step 3(ii) is selected as
the next GCM.

(4) Step 3 is repeated until all GCMs have been placed in order.

Figure 1 illustrates an example of the step-by-step procedure with a simple bi-variates case.

2.2. Climate Indices

Seo et al. [1] demonstrated that a group of key climate indices must be determined prior to the
selection of a group of GCMs. Hence, it is not necessary to consider many climate indicators for
selection of representative climate scenarios. Based on dependency of each hydrologic variable to
climate indicators, three different pairs of climate indices were determined for the three hydrologic
variables of interest, annual mean flow, three-day peak flow, and seven-day low flow, which represent
mean, high, and low flow regimes, respectively. Three-day peak flow and seven-day low flow have
been widely used for high-flow and low-flow variables in US [16–19]. Table 1 presents the selected
climate indices. They are applied to this study based on previous study [1]. Changes in these climate
indices for a certain future period are then used as y values in the KKZ algorithm.
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Figure 1. A selection procedure of the Katsavounidis-Kuo-Zhang (KKZ) algorithm with a simple 
example of two climate variables [1]: (a) Step (3)—select 3rd GCM having the longest distance among 
a group of shortest distances to either the 1st or 2nd Global Circulation Model (GCM); (b) Step (4)—
select 4th GCM having the longest distance among a group of shortest distances to among the 1st to 
3rd GCMs; (c) Step (4)—select 5th GCM having the longest distance among a group of shortest 
distances to among the 1st to 4th GCMs. Here, the gray arrows represent GCMs disregarded by the 
algorithm. 

Figure 1. A selection procedure of the Katsavounidis-Kuo-Zhang (KKZ) algorithm with a simple
example of two climate variables [1]: (a) Step (3)—select 3rd GCM having the longest distance among a
group of shortest distances to either the 1st or 2nd Global Circulation Model (GCM); (b) Step (4)—select
4th GCM having the longest distance among a group of shortest distances to among the 1st to 3rd
GCMs; (c) Step (4)—select 5th GCM having the longest distance among a group of shortest distances to
among the 1st to 4th GCMs. Here, the gray arrows represent GCMs disregarded by the algorithm.
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2.3. Explained Variability

To evaluate capability of capturing inter-model variability, “explained variability” is defined as
the proportion of the variability that are identified by the selected GCMs to the entire variability driven
by all the GCMs. For instance, if the “explained variability” of the selected six models among all the
27 models is 1 (i.e., 100%), it means that we do not need to use others than the five models (6/27, 22% of
the entire models) in order to explain all the inter-model variability obtained by all the 27 models.
In this study, explained variability across changes in climate indices is calculated to assess the ability of
the KKZ algorithm for capturing inter-model variability. Furthermore, explained variability in changes
in each hydrologic variable (three categories in Table 1) is also estimated to evaluate transferability of
the selected GCMs to uncertainty in hydrologic variables.

Table 1. Pairs of climate indices for the three hydrologic categories (variables).

Category Index Description Change

mean flow
PRCPTOT Annual total precipitation in wet days %

MEANTEMP Annual mean temperature (◦C)

high flow Rx5day PRCP Annual maximum consecutive 5-day precipitation (mm) %
Rx3day PRCP Annual maximum consecutive 3-day precipitation (mm) %

low flow
DTR Annual mean difference between daily max temperature and

min temperature (◦C)
Rn30day PRCP Annual minimum consecutive 30-day precipitation (mm) %

2.4. Rainfall-Runoff Model: Tank Model

A modified conceptual rainfall-runoff model, Tank model [20] with soil moisture structure,
was used as a hydrologic model for runoff simulation in this study. Having four tanks along with a soil
moisture structure, the model simulates the net stream discharge as the sum of the discharges from the
side outlets of the tanks. Mean areal precipitation, temperature and potential-evapotranspiration series
are inputted into the model to simulate streamflow at outlet. In this study, Penman-Monteith equation
was used to estimate potential-evapotranspiration [21]. Climatological records of solar radiation and
humidity and wind speed are used along with temperature data. In order to consider the snow
accumulation-melting module, the modified Tank model developed by McCabe and Markstrom [22]
was used. Readers are referred to Sugawara [20] and McCabe and Markstrom [22] for details in
terminologies and equations for all the processes. The parameters of the model are estimated using
the shuffled complex evolution algorithm, one of the population-evolution-based global optimization
methods [23]. Figure 2 illustrated the schematic diagram of the Tank model.
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3. Application

3.1. Study Area: South Korea

For a national-level application of the proposed methodology, South Korea was tested. South
Korea covers an area of approximately 100,000 km2 and has a population of almost 52 million.
The climatic conditions of South Korea are dominated by the Asian monsoon; therefore, approximately
two-thirds of annual precipitation and runoff take place during the summer season that spans from
July to September. Monsoons form the major driver behind the timing, magnitude, and distribution of
wet season rainfall, rainfall inter-annual variability, and rainfall extremes in South Korea [5]. As shown
in Figure 3, South Korea includes 5 major river regions and 113 subbasins (except Jeju Province).
For assessment of spatial scale impacts, representative GCMs were selected for South Korea, each river
region, and each subbasin separately. In other words, a single set of GCMs is selected for South Korea,
five different sets of GCMs are selected for each river region, and 113 different sets of GCMs are
selected for each subbasin. Mean areal climate data sets for South Korea, river regions, and subbasins
are applied, respectively.
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3.2. Data Sets

3.2.1. Observed Meteorological Data Sets

Observed meteorological data sets from 1976 to 2015 were obtained. Daily series of mean areal
precipitation and temperature for all the subbasins were calculated using the Thiessen polygons [24]
from 60 of the Korea Meteorological Administration’s Automated Surface Observing System (ASOS)
gauges (https://data.kma.go.kr/data/grnd/selectAsosList.do?pgmNo=34).

3.2.2. GCM Data Sets

Historical simulation (1976–2005) and future projections, 2030s (2016–2045) and 2060s (2046–2075),
of daily precipitation and temperature series were obtained from 27 GCMs of the Coupled Model
Intercomparison Project Phase 5 (CMIP5) with the RCP 4.5 and 8.5 scenarios. As part of a national

https://data.kma.go.kr/data/grnd/selectAsosList.do?pgmNo=34
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Research and Development (R&D) project in South Korea—“Climate Change Adaptation for Water
Resources”—Asia-Pacific Economic Cooperation (APEC) Climate Center provided 27 GCMs data sets
for this study. Table 2 lists the 27 GCMs applied in this study.

Table 2. The list of climate models used in this study: 27 GCMs under Representative Concentration
Pathways (RCP) 4.5 and 8.5.

No. Model Resolution [Degrees] Reference

1 BCC-CSM1-1 2.813 × 2.791 Wu [25]
2 BCC-CSM1-1-M 1.125 × 1.122 Wu [25]
3 CanESM2 2.813 × 2.791 Chylek et al. [26]
4 CCSM4 1.250 × 0.942 Gent et al. [27]
5 CESM1-BGC 1.250 × 0.942 Moore et al. [28]
6 CESM1-CAM5 1.250 × 0.942 Meehl et al. [29]
7 CMCC-CM 0.750 × 0.748 Scoccimarro et al. [30]
8 CMCC-CMS 1.875 × 1.865 Davini et al. [31]
9 CNRM-CM5 1.406 × 1.401 Voldoire et al. [32]

10 FGOALS-s2 2.813 × 1.659 Bao et al. [33]
11 GFDL-ESM2G 2.500 × 2.023 Dunne et al. [34]
12 GFDL-ESM2M 2.500 × 2.023 Dunne et al. [34]
13 GISS-E2-R 2.000 × 2.500 Schmidt et al. [35]
14 HadGEM2-AO 1.875 × 1.250 Collins et al. [36]
15 HadGEM2-CC 1.875 × 1.250 Collins et al. [36]
16 HadGEM2-ES 1.875 × 1.250 Collins et al. [36]
17 INM-CM4 2.000 × 1.500 Volodin et al. [37]
18 IPSL-CM5A-LR 3.750 × 1.895 Dufresne et al. [38]
19 IPSL-CM5A-MR 1.875 × 1.865 Dufresne et al. [38]
20 IPSL-CM5B-LR 3.750 × 1.895 Dufresne et al. [38]
21 MIROC5 1.406 × 1.401 Tatebe et al. [39]
22 MIROC-ESM 2.813 × 2.791 Watanabe et al. [40]
23 MIROC-ESM-CHEM 2.813 × 2.791 Watanabe et al. [40]
24 MPI-ESM-LR 1.875 × 1.865 Giorgetta et al. [41]
25 MPI-ESM-MR 1.875 × 1.865 Giorgetta et al. [41]
26 MRI-CGCM3 1.125 × 1.122 Yukimoto et al. [42]
27 NorESM1-M 2.500 × 1.895 Bentsen et al. [43]

The coarse spatial scale of the GCMs was first interpolated to the resolution of the ASOS
gauges spacing (≈45 km) based on an inverse distance weighting scheme. Mean areal values for the
subbasins were subsequently calculated with the Thiessen polygons as the same as done for observed
meteorological data sets. Systematic biases in these GCMs forcing data sets were corrected with
Quantile Delta Mapping (QDM) approach [44]. Readers should refer to Eum and Cannon [45] for the
specific steps involved in the QDM algorithm implemented for precipitation and temperature series in
this study. Through the implementation of the QDM algorithm, bias-corrected values preserve relative
changes in all quantiles modeled through GCMs.

3.3. Modelling Framework

Climate data sets (27 GCMs) are first pre-processed to obtain mean areal precipitation and
temperature series for the three different spatial scales (national, river region, and subbasin). Then the
rank of GCMs is estimated by the KKZ algorithm using the pair of climate indices for each hydrologic
variable. Next, explained variabilities on climate indicators corresponding to the selected GCMs are
calculated. Impacts of selected GCMs on hydrologic variables are then evaluated for the three different
spatial scales as a form of explained variability of changes in hydrologic variables. Since the KKZ
algorithm gives the rank of GCMs based on selection priority, by increasing the number of GCMs,
corresponding explained variability are estimated. Figure 4 comprises a modelling framework of
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this study that illustrates the way in which the climate indices, KKZ algorithm, GCMs, Tank model,
and hydrologic variables are associated and sequenced in the modelling process.Sustainability 2018, 10, x FOR PEER REVIEW  8 of 18 
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4. Results

4.1. Tank Model Parameter Estimation

Parameters of the Tank model were estimated using the observed data sets from 1976 to 2000,
and the model performance was validated comparing simulated streamflow to the observed streamflow
from 2001 to 2015. Daily observed streamflow (dam inflow) series from 1966 to 2016 at 35 dam sites
were collected from the K-water Institute. These observed dam inflow series were used to calibrate
parameters of the Tank model and the simulated streamflow series driven by the calibrated parameters
were validated by comparing to the observed series. NSE values for the 35 watersheds ranged from
0.68 to 0.91, and Percent BIAS values ranged from −1.57 to 8.93.

To simulate long term streamflow for ungauged watersheds (in other words, to estimate
parameters for ungauged watersheds in which observed streamflow data set does not exist),
multiple regression equations were derived to estimate regional parameters of the Tank Model [46].
The six watershed characteristic factors were used as predictor variables of the regression equations.
The correlation coefficients of the regional regression equations ranged from 0.64 to 0.78 [46]. As a result
of the regionalization, we could be able to obtain the parameter values for all the 113 subbasins.

4.2. Selection of Representative Scenarios

GCMs were placed into different orders by the KKZ algorithm corresponding to the three
hydrologic variables as introduced in Table 1. Further, these GCMs ranks were also placed differently
corresponding to the three different spatial scales of climate data sets as shown in Figure 4. Tables 3
and 4 present the rank from 1st to 5th GCMs for the three different hydrologic variables and two
different spatial scales under RCP 4.5 and 8.5, respectively. Two periods of future projections, 2030s and
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2060s, are presented. The GCMs rank for the subbasin scale is excluded due to difficulty in enumeration
of all the subbasins.

Table 3. The ranks of GCMs selected by the KKZ algorithm for each different hydrologic variable,
spatial scale, and future projection period under RCP 4.5 (the numbers inside the table represents the
ones listed in Table 1).

2030s 2060s

National
Level River Region Level National

Level River Region Level

Rank Korea Han Nak
Dong Geum Seom

jin
Yeong
San Korea Han Nak

Dong Geum Seom
Jin

Yeong
San

M
ea

n
flo

w

1 5 20 2 5 5 5 10 12 9 10 27 27
2 8 8 8 8 8 8 8 8 8 8 8 24
3 16 16 16 16 16 16 23 17 23 23 24 8
4 23 23 17 23 23 23 16 23 17 17 22 13
5 17 17 23 26 14 26 17 16 22 24 13 22

H
ig

h
flo

w

1 13 2 24 24 17 9 5 11 6 14 7 5
2 8 8 8 8 23 16 8 8 8 8 4 4
3 16 16 23 21 8 8 4 21 4 4 8 8
4 10 10 1 23 16 23 13 9 19 23 24 24
5 23 21 16 10 5 5 23 2 23 6 13 26

Lo
w

flo
w

1 9 13 9 1 9 17 5 12 7 10 21 15
2 8 8 8 8 8 8 8 8 24 8 8 24
3 16 16 25 16 23 16 24 16 8 24 24 8
4 24 20 16 19 16 6 16 21 17 19 17 27
5 19 19 24 23 19 19 25 18 25 6 27 19

Table 4. The ranks of GCMs selected by the KKZ algorithm for each different hydrologic variable,
spatial scale, and future projection period under RCP 8.5 (the numbers inside the table represents the
ones listed in Table 1).

2030s 2060s

National
Level River Region Level National

Level River Region Level

Rank Korea Han Nak
Dong Geum Seom

Jin
Yeong
San Korea Han Nak

Dong Geum Seom
Jin

Yeong
San

M
ea

n
Fl

ow

1 12 12 7 21 9 9 6 10 27 6 20 20
2 23 23 6 10 15 15 17 17 17 15 13 13
3 6 26 10 24 24 24 23 23 23 23 23 15
4 10 16 23 23 10 10 13 13 13 13 15 23
5 26 10 26 15 14 19 15 15 3 3 17 17

H
ig

h
flo

w

1 5 25 5 6 7 18 3 12 4 14 12 19
2 23 23 23 21 14 23 17 27 23 23 23 23
3 10 14 19 10 10 10 23 17 17 17 17 17
4 16 16 24 24 24 24 13 7 9 9 13 21
5 15 10 10 15 26 19 9 26 13 13 21 11

Lo
w

flo
w

1 8 4 15 27 4 15 12 7 12 12 5 5
2 24 20 24 24 24 24 19 17 17 17 19 19
3 10 16 19 20 19 19 3 21 3 10 15 27
4 6 24 6 10 6 6 17 18 19 19 17 23
5 19 10 10 11 10 10 23 19 6 15 3 7

In Table 3, bold symbols in the five river regions represent the same GCMs that are also included
in the rank for national level (South Korea). Underline symbols in 2060s represents the same GCMs
that are also included in 2030s. It is found that several GCMs, in general, were overlapped across
different spatial scales and locations. Especially in the 2030s period, three or four out of five GCMs
were overlapped. Thus, it would be anticipated that uncertainties in climate indices of finer spatial
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level (i.e., river region level) can be explained at some extent by the GCMs selected for coarser spatial
level (i.e., national level). This premise is further discussed in Section 4.4.

Table 4 shows the rank from 1st to 5th GCMs under RCP 8.5, which are presented based on the
same fashion in Table 3, but red-colored symbols represent the same GCMs that are also included
under RCP 4.5. Interestingly, only a few GCMs (one or two GCMs out of the five) were overlapped
between RCP 4.5 and 8.5. There was no general agreement on selected GCMs between RCP 4.5 and 8.5.
Given that RCP 8.5 represents the business as usual scenario whereas RCP 4.5 represents the possible
mitigation measure scenario, the selection of representative climate scenarios should be carefully
implemented under various hypotheses on the future adaptation strategies.

4.3. Explained Variability on Climate Indices

Although Tables 3 and 4 only show the selected GCMs to the 5th rank, the KKZ algorithm
makes the entire GCMs ordered according to their priority. Figures 5 and 6 present explained
variability of changes in climate indices for 2030s and 2060s periods under RCP 4.5 and RCP 8.5
scenarios, respectively.

Sustainability 2018, 10, x FOR PEER REVIEW  10 of 18 

4.3. Explained Variability on Climate Indices 

Although Tables 3 and 4 only show the selected GCMs to the 5th rank, the KKZ algorithm makes 
the entire GCMs ordered according to their priority. Figures 5 and 6 present explained variability of 
changes in climate indices for 2030s and 2060s periods under RCP 4.5 and RCP 8.5 scenarios, 
respectively.  

As shown in Figures 5 and 6, it is found that total 80% of explained variability (presented on y-
axis) was quickly arrived by only the three of four GCMs (presented on x-axis). Further, the majority 
(close to 100% of) of explained variability was arrived by the five GCMs in most cases. Thus, the KKZ 
algorithm successfully identified the top five GCMs (among 27) that are able to explain the majority 
of inter-model variability from all the GCMs.  

(a) 

 

(b) 

 

Figure 5. The explained variability of changes in climate indices according to the number of GCMs 
that are ranked by the KKZ under RCP 4.5. The thinner lines of each color are estimated using mean 
areal climate data for each river region, while the thicker lines with markers are estimated using mean 
areal climate data for national level: (a) explained variability of changes in climate indices for 2030s 
period under RCP 4.5; (b) explained variability of changes in climate indices for the 2060s period 
under RCP 4.5. 
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climate data for national level: (a) explained variability of changes in climate indices for 2030s period
under RCP 4.5; (b) explained variability of changes in climate indices for the 2060s period under RCP 4.5.
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As shown in Figures 5 and 6, it is found that total 80% of explained variability (presented on
y-axis) was quickly arrived by only the three of four GCMs (presented on x-axis). Further, the majority
(close to 100% of) of explained variability was arrived by the five GCMs in most cases. Thus, the KKZ
algorithm successfully identified the top five GCMs (among 27) that are able to explain the majority of
inter-model variability from all the GCMs.

4.4. Explained Variability on Hydrologic Variables

Since the majority (more than 80%) of inter-model variability from all the GCMs were successfully
explained under both the RCP 4.5 and 8.5, the results of explained variability on hydrologic variables
under RCP 4.5 are presented in this section. We do not present the results from RCP 8.5 because
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the both RCP 4.5 and 8.5 output very similar results. Figure 7 presents the explained variabilities of
changes in three hydrologic variables (mean flow, high flow, and low flow) in the 2030s period under
RCP 4.5. The explained variabilities were calculated for all the 113 subbasins using the top five GCMs
that are ranked by the KKZ algorithm. The explained variabilities in the figures on the left, middle,
and right were estimated by the GCMs ranked by the national, river region, and subbasin level of
climate data sets, respectively. In other words, the explained variabilities of all the subbasins were
estimated by the same set of top five GCMs ranked by the national level selection (on the left) while
the explained variability of each subbasin was estimated by each set of top five GCMs ranked by the
subbasin level selection (on the right). The explained variabilities of all the subbasins that consist of
the same river region were estimated by the same set of top five GCMs ranked by the river region level
selection (on the middle).

In general, explained variablilities of changes in mean flow (Figure 7a) was well preserved by the
top five GCMs regardless of spatial scale of climate data sets. It is found that only one set of 5 GCMs has
capability of capturing almost the whole inter-model variability driven by the 27 GCMs. In case of high
flow (Figure 7b), although inter-model variabilities were not sufficiently explained by the national level
selection in a few subbasins (on the left), when it comes to the subbasin level selection (on the right),
most of inter-model variabilities were successfully explained. There was similar pattern in Figure 7c
though the explained variabilities were relatively lesser then the above two variables (Figure 7a,b).
Thus, when we used finer scale of climate data sets for the KKZ algorithm, the transferability of the
selected GCMs to uncertainty in hydrological impacts was increased. Nonetheless, note that a single
set of GCMs ranked by the national level selection also has remarkable ability to explain inter-model
variability of changes in hydrologic variables on each subbasin.

Figure 8 shows the explained variabilities of changes in three hydrologic variables (mean flow,
high flow, and low flow) in the 2060s period under RCP 4.5 for the 113 subbasins. Similar to the
2030s period, the explained variabilities of changes in mean flow and high flow (Figure 8a,b) were
well preserved by the top five GCMs regardless of spatial scale of climate data sets except the Han
river region. Nonetheless, explained variabilities of changes in mean flow and high flow in the Han
river region were also well preserved under river region and subbasin level selection. Similarly,
in case of changes in low flow, although explained variabilities were relatively low in the Seomjin
and Yeongsan river regions, they were also well preserved under river region and subbasin level
selections. Thus, it shows that the transferability of the selected GCMs to uncertainty in local-scale
hydrological impacts studies can be improved by using finer scale of climate data sets for the KKZ
algorithm. In terms of spatial scale of climate data sets for selection of GCMs, it is found that a single
set of top five GCMs (i.e., the five GCMs selected for national level, South Korea) can explain almost
the whole range of inter-model variabilities except a few subbasins in case of changes in mean and
high flow although it may not be applicable to changes in low flow.

Regarding the findings, final suggestion on the representative climate change scenarios for South
Korea were determined as shown in Tables 5 and 6 for 2030s and 2060s future period, respectively,
under RCP 4.5. Note that we chose the RCP 4.5 as a realistic future scenario since it represent the
possible mitigation measure unlike the RCP 8.5, which represents the worst case for the climate change
adaptation. For climate change impact studies on mean flow and high flow variables, a single set of
GCMs was assigned for all the 113 subbasins for each future period. For low flow variable, on the
other hand, the five different sets of GCMs were assigned to the subbasins belonging to the five river
regions, respectively. Based on the selecting process of the KKZ algorithm, the 1st GCM represents the
centroid across all the ensemble members so that the first GCM can represent the median of changes
in the hydrologic variable. From the second selection, on the other hand, since the GCM that lies
farthest from the previous selection(s) is selected, the 2nd to the 5th GCMs represent the values close
to either the maximum or minimum changes in the hydrologic variable. Thus, by considering these
top five GCMs selected by the KKZ algorithm, almost the whole inter-model variabilities of changes in
hydrologic variables can be explained.
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Figure 7. The explained variabilities of changes in hydrologic variables (mean flow, high flow, and low
flow) in the 2030s period under RCP 4.5 for the 113 subbasins. The results in the first, the second,
and the third column from the left were estimated by the top five GCMs selected using the national
level, river region level, and subbasin level of climate data sets, respectively: (a) mean flow; (b) high
flow; (c) low flow.
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Figure 8. The explained variabilities of changes in hydrologic variables (mean flow, high flow, and low
flow) in the 2060s period under RCP 4.5 for the 113 subbasins. The results in the first, second, and third
column from the left were estimated by the top five GCMs selected using the national level, river region
level, and subbasin level of climate data sets, respectively: (a) mean flow; (b) high flow; (c) low flow.
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Table 5. Suggestion for the representative climate scenarios (GCMs) for the 2030s future period
under RCP 4.5.

Hydrologic
Variable

Spatial Scale
Representative Climate Scenarios (GCMs) Number of

Subbasins1st 2nd 3rd 4th 5th

mean flow South Korea CESM1-BGC CMCC-CMS HadGEM-ES MIROC-ESM-CHEM INM-CM4 113

high flow South Korea GISS-E2-R CMCC-CMS HadGEM-ES FGOALS-s2 MIROC-ESM-CHEM 113

low flow

Han River GISS-E2-R CMCC-CMS HadGEM-ES IPSL-CM5B-LR IPSL-CM5A-MR 30
Nakdong River CNRM-CM5 CMCC-CMS MPI-ESM-MR HadGEM-ES MPI-ESM-LR 33

Geum River BCC-CSM1-1 CMCC-CMS HadGEM-ES IPSL-CM5B-MR MIROC-ESM-CHEM 21
Seomjin River CNRM-CM5 CMCC-CMS MIROC-ESM-CHEM HadGEM-ES IPSL-CM5A-MR 15

Yeongsan River INM-CM4 CMCC-CMS HadGEM-ES CESM1-CAM5 IPSL-CM5A-MR 14

Table 6. Suggestion for the representative climate scenarios (GCMs) for the 2060s future period
under RCP 4.5.

Hydrologic
Variable

Spatial Scale
Representative Climate Scenarios (GCMs) Number of

Subbasins1st 2nd 3rd 4th 5th

mean flow South Korea FGOALS-s2 CMCC-CMS MIROC-ESM-CHEM HadGEM-ES INM-CM4 113

high flow South Korea CESM1-BGC CMCC-CMS CCSM4 GISS-E2-R MIROC-ESM-CHEM 113

low flow

Han River GFDL-ESM2M CMCC-CMS HadGEM-ES MIROC5 IPSL-CM5A-LR 30
Nakdong River CMCC-CM MPI-ESM-LR CMCC-CMS INM-CM4 MPI-ESM-MR 33

Geum River FGOALS-s2 CMCC-CMS MPI-ESM-LR IPSL-CM5A-MR CESM1-CAM5 21
Seomjin River MIROC5 CMCC-CMS MPI-ESM-LR INM-CM4 NorESM1-M 15

Yeongsan River HadGEM2-CC MPI-ESM-LR CMCC-CMS NorESM1-M IPSL-CM5A-MR 14

5. Conclusions

Appropriate spatial scales for the selection of representative climate scenarios were analyzed
in this study with a case study for South Korea. Overall, in case of such a small country like South
Korea (approximately 0.1 million km2), a single set of representative GCMs would be able to capture
inter-model variabilities of hydrologic variables for local-level impact studies. However, for low flow
variable, finer scale of GCMs selection would be required considering different sets for each local-level
case studies. Furthermore, the representative GCMs need to be selected separately for different future
periods since uncertainties in GCMs get larger with lead time, which is consistent with the previous
study by Hawkins and Sutton [47].

We found that the inter-model variabilities of changes in hydrologic variables are well preserved
by only a single set of GCMs (i.e., the top five GCMs from the total 27 in this study). This can
certainly reduce computational burden on water resources planning and management studies for
which potential uncertainties in climate change should be addressed [48]. However, for local-scale
hydrologic impact studies (i.e., subbasin level in this study), decision makers may have difficulty in
determining which set of GCMs they should use. If only a single set of GCMs is provided, they do not
have to worry about which scenarios to use. On the contrary, different sets of GCMs are provided for
each subbasin, which would hinder easy implementation of GCMs for local-scale studies.

Nonetheless, given that a single set of GCMs ranked by the national level selection has the
remarkable ability to capture potential inter-model variabilities of changes in mean and high flow
variables, the single set of representative climate scenarios can provide sufficient information on
uncertainties in future changes in mean- and high-flow regimes. Only for low flow variables would
a certain set of GCMs selected by finer spatial scale of climate data sets that are specified for local
basins of interest be required for better understanding of uncertainties in future changes in the low
flow regimes.

Furthermore, we found that different sets of GCMs were selected for the two different future
periods (the 2030s and 2060s in this study). This implies that utilization of the same set of GCMs
selected for near-term future would not be reliable for long-term future. Since relative importance of
uncertainties in GCMs increases with time [47], it seems reasonable that different sets of GCMs have
to be selected for the near-term and long-term future period separately. In addition, different sets of
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GCMs were selected under two different RCP scenarios (4.5 and 8.5). This implies that different sets of
representative GCMs can be selected according to what assumption on the future adaptation strategy
would be considered.

We should note that the area of national-level application tested in this study, South Korea,
is relatively small. When a national-level application is implemented on much wider nations, such as
United States (USA), China, and Australia, spatial heterogeneity on climate data sets would diminish
due to smoothing impact driven by averaging climate data sets on multiple locations. In these cases,
sub-national level (e.g., states in USA) selection can be recommended for the selection of representative
climate change scenarios.
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